• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 1
  • Tagged with
  • 16
  • 11
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A toolkit for visualization of patterns of gene expression in live Drosophila embryos

Ejsmont, Radoslaw 03 September 2011 (has links)
Developing biological systems can be approximately described as complex, three dimensional cellular assemblies that change dramatically across time as a consequence of cell proliferation, differentiation and movements. The presented project aims to overcome problems of limited resolution in both space and time of classical analysis by in situ hybridization on fixed tissue. The employment of the newly developed Single Plane Illumination Microscopy (SPIM) combined with new approaches for in vivo data acquisition and processing promise to yield high-resolution four-dimensional data of the complete Drosophila embryogenesis. We developed a toolkit for high-throughput gene engineering in flies, that provides means for creating faithful in vivo reporters of gene expression during Drosophila melanogaster development. The cornerstone of the toolkit is a fosmid genomic library enabling high-throughput recombineering and φC31 mediated site-specific transgenesis. The dominant, 3xP3-dsRed fly selectable marker on the fosmid backbone allows, in principle, transgenesis of the fosmid clones into any non-melanogaster species. In order to extend the capabilities of the gene engineering toolkit to include “evo-devo” studies, we generated genomic fosmid libraries for other sequenced Drosophilidae: D. virilis, D.simulans and D. pseudoobscura. The libraries for these species were constructed in the pFlyFos vector allowing for recombineering modification and φC31 transgenesis of non-melanogaster genomic loci into D. melanogaster. We have developed a PCR pooling strategy to identify clones for a specific gene from the libraries without extensive clone sequencing and mapping. The clones from these libraries will be primarily used for cross-species gene expression studies. As another application, transgenes originating from closely related species can be used to rescue D. melanogaster RNAi phenotypes and establish their specificity. Together with SPIM microscopy, the toolkit will allow to visualize gene expression patterns throughout Drosophila development.
2

Contexto genômico e expressão de genes envolvidos na redução do sulfato em solos de manguezal / Genomic context and expression of genes involved in sulfate reduction in mangrove soils

Lourenço, Marcus Venicius de Mello 19 December 2016 (has links)
Os manguezais compõem um bioma de interface entre o continente e o oceano em regiões intertropicais, ambiente este caracterizado por condições únicas ambientais e uma elevada biodiversidade. Este projeto tem como objetivo estudar, utilizando abordagens de metagenômica e metatranscriptomica, as comunidades microbianas encontradas nos manguezais localizados nos municípios de Bertioga/SP e Cananeia/SP, com enfoque nos genes relacionados ao processo de redução do sulfato. Para tanto, uma biblioteca metagenômica contendo 12.960 clones em vetor fosmídeo foi triada por meio de PCR específico para o gene dsrB, ao mesmo passo que esta foi completamente sequenciada em plataforma Illumina HiSeq2000. Foram obtidos três insertos metagenomicos (23D5, MGV 10001431 e MGV 10016026, com 31, 31 e 34 kb, respectivamente). Estes foram então anotados e analisados mais detalhadamente. A inserção 23D5 foi a única a apresentar genes essenciais para a redução dissimilatória do sulfato (apr, hdr, dsr, sat). A diversidade taxonômica dos grupos relacionados ao ciclo do enxofre demonstrou a predominância dos filos Bacteroidetes e Proteobacteria enquanto a análise filogenética para gene dsrB apresentou diferenças entre os três insertos, afiliando os mesmos a sequências similares a Firmicutes e Deltaproteobacteria e revelando serem diferentes das sequências presentes em base de dados. A análise de metatrascriptomica dos quatro manguezais apresentou um padrão de expressão diferencial para o cluster dsr de acordo com o estado de conservação dos manguezais estudados. Estes resultados compõem o primeiro acesso a fragmentos genômicos e a funcionalidade dos mesmos em microrganismos redutores de sulfato em solos de manguezais. / Mangrove is a biome composed of the interface between the continent and the ocean in tropical areas, characterizing by unique environmental conditions and high biodiversity. Here, we aimed to study, using metagenomic and metatranscriptomic approaches, the microbial communities identified in the mangroves located in the cities of Bertioga/SP and Cananeia/SP, focusing on genes related to the sulfate reduction process. For this purpose, a metagenomic library containing 12.960 clones in fosmid vector was screened by PCR for the specific dsrB gene, and the whole library was also completely sequenced by the Illumina HiSeq2000 platform. Three metagenomic inserts were obtained (23D5, MGV 10016026 and MGV 10001431, with 31, 31 and 34 kb, respectively), which were recorded and detail analyzed. The insertion 23D5 was the only one that presents essential genes for dissimilatory sulfate reduction (apr, hdr, dsr, sat). The taxonomic diversity of groups related to the sulfur cycle demonstrated the predominance of Bacteroidetes and Proteobacteria phyla, while phylogenetic analysis to dsrB gene showed differences between the three inserts, affiliating them to similar sequences of Firmicutes and Deltaproteobacteria, and revealing differ from the sequences present in the data base. The metatranscriptomic analysis of the four mangroves showed a pattern of differential expression for the DSR cluster according to the conservation status of the studied mangroves. These results constitute the first access of genomic fragments and functionality of the sulfate reducing microorganisms in mangrove soils.
3

Contexto genômico e expressão de genes envolvidos na redução do sulfato em solos de manguezal / Genomic context and expression of genes involved in sulfate reduction in mangrove soils

Marcus Venicius de Mello Lourenço 19 December 2016 (has links)
Os manguezais compõem um bioma de interface entre o continente e o oceano em regiões intertropicais, ambiente este caracterizado por condições únicas ambientais e uma elevada biodiversidade. Este projeto tem como objetivo estudar, utilizando abordagens de metagenômica e metatranscriptomica, as comunidades microbianas encontradas nos manguezais localizados nos municípios de Bertioga/SP e Cananeia/SP, com enfoque nos genes relacionados ao processo de redução do sulfato. Para tanto, uma biblioteca metagenômica contendo 12.960 clones em vetor fosmídeo foi triada por meio de PCR específico para o gene dsrB, ao mesmo passo que esta foi completamente sequenciada em plataforma Illumina HiSeq2000. Foram obtidos três insertos metagenomicos (23D5, MGV 10001431 e MGV 10016026, com 31, 31 e 34 kb, respectivamente). Estes foram então anotados e analisados mais detalhadamente. A inserção 23D5 foi a única a apresentar genes essenciais para a redução dissimilatória do sulfato (apr, hdr, dsr, sat). A diversidade taxonômica dos grupos relacionados ao ciclo do enxofre demonstrou a predominância dos filos Bacteroidetes e Proteobacteria enquanto a análise filogenética para gene dsrB apresentou diferenças entre os três insertos, afiliando os mesmos a sequências similares a Firmicutes e Deltaproteobacteria e revelando serem diferentes das sequências presentes em base de dados. A análise de metatrascriptomica dos quatro manguezais apresentou um padrão de expressão diferencial para o cluster dsr de acordo com o estado de conservação dos manguezais estudados. Estes resultados compõem o primeiro acesso a fragmentos genômicos e a funcionalidade dos mesmos em microrganismos redutores de sulfato em solos de manguezais. / Mangrove is a biome composed of the interface between the continent and the ocean in tropical areas, characterizing by unique environmental conditions and high biodiversity. Here, we aimed to study, using metagenomic and metatranscriptomic approaches, the microbial communities identified in the mangroves located in the cities of Bertioga/SP and Cananeia/SP, focusing on genes related to the sulfate reduction process. For this purpose, a metagenomic library containing 12.960 clones in fosmid vector was screened by PCR for the specific dsrB gene, and the whole library was also completely sequenced by the Illumina HiSeq2000 platform. Three metagenomic inserts were obtained (23D5, MGV 10016026 and MGV 10001431, with 31, 31 and 34 kb, respectively), which were recorded and detail analyzed. The insertion 23D5 was the only one that presents essential genes for dissimilatory sulfate reduction (apr, hdr, dsr, sat). The taxonomic diversity of groups related to the sulfur cycle demonstrated the predominance of Bacteroidetes and Proteobacteria phyla, while phylogenetic analysis to dsrB gene showed differences between the three inserts, affiliating them to similar sequences of Firmicutes and Deltaproteobacteria, and revealing differ from the sequences present in the data base. The metatranscriptomic analysis of the four mangroves showed a pattern of differential expression for the DSR cluster according to the conservation status of the studied mangroves. These results constitute the first access of genomic fragments and functionality of the sulfate reducing microorganisms in mangrove soils.
4

A toolkit for visualization of patterns of gene expression in live Drosophila embryos

Ejsmont, Radoslaw 07 April 2011 (has links) (PDF)
Developing biological systems can be approximately described as complex, three dimensional cellular assemblies that change dramatically across time as a consequence of cell proliferation, differentiation and movements. The presented project aims to overcome problems of limited resolution in both space and time of classical analysis by in situ hybridization on fixed tissue. The employment of the newly developed Single Plane Illumination Microscopy (SPIM) combined with new approaches for in vivo data acquisition and processing promise to yield high-resolution four-dimensional data of the complete Drosophila embryogenesis. We developed a toolkit for high-throughput gene engineering in flies, that provides means for creating faithful in vivo reporters of gene expression during Drosophila melanogaster development. The cornerstone of the toolkit is a fosmid genomic library enabling high-throughput recombineering and φC31 mediated site-specific transgenesis. The dominant, 3xP3-dsRed fly selectable marker on the fosmid backbone allows, in principle, transgenesis of the fosmid clones into any non-melanogaster species. In order to extend the capabilities of the gene engineering toolkit to include “evo-devo” studies, we generated genomic fosmid libraries for other sequenced Drosophilidae: D. virilis, D.simulans and D. pseudoobscura. The libraries for these species were constructed in the pFlyFos vector allowing for recombineering modification and φC31 transgenesis of non-melanogaster genomic loci into D. melanogaster. We have developed a PCR pooling strategy to identify clones for a specific gene from the libraries without extensive clone sequencing and mapping. The clones from these libraries will be primarily used for cross-species gene expression studies. As another application, transgenes originating from closely related species can be used to rescue D. melanogaster RNAi phenotypes and establish their specificity. Together with SPIM microscopy, the toolkit will allow to visualize gene expression patterns throughout Drosophila development.
5

Descrição e caracterização de uma nova ?-N-acetil-hexosaminidase (GH3) por metagenômica de solo de manguezal / Description and characterization of a novel ?-N-acetylhexosaminidase (GH3) by metagenomic mangrove soil

Soares Júnior, Fábio Lino 25 August 2015 (has links)
Bactéria e fungos são as principais fontes de enzimas envolvidas na transformação de compostos chave para o fluxo de carbono em solos de manguezal, caracterizado por alta prevalência de anaerobiose, salinidade e elevado teor de matéria orgânica. A decomposição de plantas ou resíduos de animais nestas condições é muito lenta, devido à pressão seletiva sobre a evolução de enzimas envolvidas nos processos de mineralização de nutrientes. A metagenômica, permiti o acesso a grande maioria da diversidade microbiana no ambiente, por meio da geração de bibliotecas de clones, o que resulta em um cenário promissor para bioprospecção de novas atividades enzimáticas. Neste estudo, foi relatada a descrição e caracterização de uma nova ?-N-acetil-hexosaminidase (EC 3.2.1.52) da família GH3, envolvida na degradação da matéria orgânica em solo de manguezal contaminado por derramamento de óleo localizado no município de Bertioga-SP, por meio de uma triagem de 12.960 clones metagenômicos. O clone positivo para a atividade celulolítica foi sequenciado e um total de 1.175.586 reads foram gerados com tamanho médio de 198 pb. As sequencias foram trimadas com base na qualidade de índice PHRED >= 30.0, e remoção de sequencias do hospedeiro (E. coli) e do vetor (fosmídeo), originando um contig final com 39.586 Kb. Entre as ORF\'s anotadas a partir do contig gerado, uma sequencia de 1.065 nucleotídeos foi identificada como codificante para a enzima ?-N-acetil-hexosaminidase, evidenciando baixa similaridade (32 %) com as demais encontradas no bancos de dados comparativos. A enzima foi expressa e purificada, onde uma banda isolada foi visualizada por SDS-PAGE com massa molecular prevista de 43 kDa. Por fim, as atividades ótimas da enzima (30 °C; pH 5.0; 0.5 M de NaCl; diminuição de atividade após 3hs de incubação) foram caracterizadas por meio do indicador p-nitrophenol (pNP) ligados aos substratos GlNac, GalNac e Glc. A detecção da enzima por meio da metagenômica, evidenciou que os manguezais são reservatórios de novas enzimas com características diferenciadas e altos potenciais de aplicabilidades biotecnológicas / Bacteria and fungi are major sources of enzymes involved in the transformation of key compounds for the carbon fluxes on mangrove soils, characterized by the high prevalence of anaerobiosis salinity and high content of organic matter. The decomposition of plant or animals residues under these conditions is very slow, acting as a selective pressure on the evolution of enzymes involved in the mineralization process of nutrients. Metagenomics has provided access to the vast majority of the microbial diversity in the environment through the generation of fosmid libraries, resulting in a promising scenario for bioprospection enzymatic activities. In this study, we report the description and characterization of a novel ?-N-acetylhexosaminidase (EC 3.2.1.52) of GH3 family, involved in the degradation of organic matter in mangrove soils contaminated by oil spill located in the city of Bertioga-SP through of a screening of 12.960 metagenomic clones. The positive clone for cellulolytic activitie was sequenced and a total of 1.175.586 reads were generated with measuring size 198 bp. The sequences were trimmed based on the index of quality PHRED >= 30.0 and removing the sequences to host (E. coli) and vector (fosmid) resulting in a contig of 39.586 Kb. Between the anoted ORF\'s from generated contig a sequence of 1.065 nucleotides was identified coding for a ?-N-acetylhexosaminidase showing low similatrity (32 %) with the other found in comparatives databases. The enzyme was expressed and purified where an isolated band can be visualized by SDS-PAGE with molecular mass of 43 kDa. Finally, as optimum activity of the enzyme (30 °C; pH 5.0; 0.5M NaCl; decreased activity after 3 h incubation) were characterized by the indicator p-nitrophenol (pNP) linked to the substrates GlNac, GalNac and Glc. The detection of the enzyme through metagenomics indicated that mangroves are reservoirs of novel enzymes with different characteristics and high potential for biotechnological applicability
6

Gene Discovery in Antarctic Dry Valley Soils.

Anderson, Dominique Elizabeth. January 2008 (has links)
<p>The metagenomic approach to gene discovery circumvents conventional gene and gene product acquisition by exploiting the uncultured majority of microorganisms in the environment. It was demonstrated in this study that metagenomic methods are suitable for gene mining in extreme environments that harbor very high levels of unculturable microorganisms. DNA was extracted from Antarctic mineral soil samples taken from the Miers Valley, Antarctica. The metagenomic DNA was also used to construct a fosmid library comprising over 7900 clones with an average insert size of 29 kb. PCR amplification using bacterial and archaeal 16S rRNA gene specific primers and subsequent denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rDNA amplicons showed that a small percentage of bacterial diversity (&gt / 1%) was captured in the metagenomic fosmid library. Activity-based screening for lipase and esterase genes using a tributyrin plate assay yielded twelve positive clones. LD1, a putative, novel cold-active GDSL lipase/esterase was identified and sequenced. The C-terminal domain of the ORF was found to be an autotransporter similar to those associated with type V secretion systems in Gram negative bacteria. Sub-cloning of the gene resulted in lipolytic activity in E. coli. Preliminary enzyme assays have determined that LD1 hydrolyses p-nitrophenyl esters with chain lengths shorter than C10, an indication that the enzyme is an esterase. Complete purification and characterisation of this enzyme is subject to further study.</p>
7

New Strategies in the Localization of Natural Product Biosynthetic Pathways and Achieving Heterologous Expression

Kim, Eun Jin 2009 December 1900 (has links)
Natural products have long furnished medical science playing a significant role in drug discovery and development. Their importance notwithstanding, it is estimated that less than 1% of microorganisms can be cultivated from environmental sources using standard laboratory techniques. It is therefore necessary to develop biochemical and genetic techniques to access these uncultivable genomes. Here as a point of departure toward this goal, two cDNA libraries of two microorganisms were constructed along with five fosmid libraries with DNA isolated from marine environmental samples. We describe the construction of cDNA libraries from marine microbial species and detail experiments to exploit these libraries for their natural product biosynthetic pathways and other metabolic enzymes they harbor. However, no useful biosynthetic pathways were detected within the cDNA libraries. Genetic selection by complementation was additionally explored as a method to identify and localize biosynthetic gene clusters within marine microbial DNA libraries. Genetic selection is a fast and economic method which utilizes selection of a part of a pathway to represent the presence of an entire pathway for the complementation of known mutant strains. We describe genetic selection to localize biotin biosynthetic pathways of Hon6 (Chromohalobacter sp.) as a proof of principle experiment for the identification and localization of biosynthetic pathways in general. Instead of developing purification methods or manipulating cultivation conditions, large fragments of non-culturable bacterial genomes can be cloned and expressed using recombinant DNA technology. A strong transcriptional promoter to control high-level gene expression is required in recombinant expression plasmids. We aimed to develop new tools to control gene expression through the use of riboswitches. Riboswitches are metabolite-sensing ribonucleic acid (RNA) elements that possess the remarkable ability to control gene expression. The thiamine pyrophosphate (TPP) riboswitch system was chosen as it will enable use of E. coli as a suitable host strain. This system is particularly attractive because it has one of the simplest structures among the riboswitches elucidated to date. The use of the TPP riboswitch will also enable modulation of pathway gene expression by varying the TPP coccentration as many gene products are toxic. The violacein gene cluster from Chromobacterium violaceum was selected and placed under the control of this riboswitch. We describe modulation of heterologous gene expression by the ThiC/Riboswitch and detail experiments to investigate the expression and manipulation of the gene cluster under various promoters.
8

Gene Discovery in Antarctic Dry Valley Soils.

Anderson, Dominique Elizabeth. January 2008 (has links)
<p>The metagenomic approach to gene discovery circumvents conventional gene and gene product acquisition by exploiting the uncultured majority of microorganisms in the environment. It was demonstrated in this study that metagenomic methods are suitable for gene mining in extreme environments that harbor very high levels of unculturable microorganisms. DNA was extracted from Antarctic mineral soil samples taken from the Miers Valley, Antarctica. The metagenomic DNA was also used to construct a fosmid library comprising over 7900 clones with an average insert size of 29 kb. PCR amplification using bacterial and archaeal 16S rRNA gene specific primers and subsequent denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rDNA amplicons showed that a small percentage of bacterial diversity (&gt / 1%) was captured in the metagenomic fosmid library. Activity-based screening for lipase and esterase genes using a tributyrin plate assay yielded twelve positive clones. LD1, a putative, novel cold-active GDSL lipase/esterase was identified and sequenced. The C-terminal domain of the ORF was found to be an autotransporter similar to those associated with type V secretion systems in Gram negative bacteria. Sub-cloning of the gene resulted in lipolytic activity in E. coli. Preliminary enzyme assays have determined that LD1 hydrolyses p-nitrophenyl esters with chain lengths shorter than C10, an indication that the enzyme is an esterase. Complete purification and characterisation of this enzyme is subject to further study.</p>
9

Descrição e caracterização de uma nova ?-N-acetil-hexosaminidase (GH3) por metagenômica de solo de manguezal / Description and characterization of a novel ?-N-acetylhexosaminidase (GH3) by metagenomic mangrove soil

Fábio Lino Soares Júnior 25 August 2015 (has links)
Bactéria e fungos são as principais fontes de enzimas envolvidas na transformação de compostos chave para o fluxo de carbono em solos de manguezal, caracterizado por alta prevalência de anaerobiose, salinidade e elevado teor de matéria orgânica. A decomposição de plantas ou resíduos de animais nestas condições é muito lenta, devido à pressão seletiva sobre a evolução de enzimas envolvidas nos processos de mineralização de nutrientes. A metagenômica, permiti o acesso a grande maioria da diversidade microbiana no ambiente, por meio da geração de bibliotecas de clones, o que resulta em um cenário promissor para bioprospecção de novas atividades enzimáticas. Neste estudo, foi relatada a descrição e caracterização de uma nova ?-N-acetil-hexosaminidase (EC 3.2.1.52) da família GH3, envolvida na degradação da matéria orgânica em solo de manguezal contaminado por derramamento de óleo localizado no município de Bertioga-SP, por meio de uma triagem de 12.960 clones metagenômicos. O clone positivo para a atividade celulolítica foi sequenciado e um total de 1.175.586 reads foram gerados com tamanho médio de 198 pb. As sequencias foram trimadas com base na qualidade de índice PHRED >= 30.0, e remoção de sequencias do hospedeiro (E. coli) e do vetor (fosmídeo), originando um contig final com 39.586 Kb. Entre as ORF\'s anotadas a partir do contig gerado, uma sequencia de 1.065 nucleotídeos foi identificada como codificante para a enzima ?-N-acetil-hexosaminidase, evidenciando baixa similaridade (32 %) com as demais encontradas no bancos de dados comparativos. A enzima foi expressa e purificada, onde uma banda isolada foi visualizada por SDS-PAGE com massa molecular prevista de 43 kDa. Por fim, as atividades ótimas da enzima (30 °C; pH 5.0; 0.5 M de NaCl; diminuição de atividade após 3hs de incubação) foram caracterizadas por meio do indicador p-nitrophenol (pNP) ligados aos substratos GlNac, GalNac e Glc. A detecção da enzima por meio da metagenômica, evidenciou que os manguezais são reservatórios de novas enzimas com características diferenciadas e altos potenciais de aplicabilidades biotecnológicas / Bacteria and fungi are major sources of enzymes involved in the transformation of key compounds for the carbon fluxes on mangrove soils, characterized by the high prevalence of anaerobiosis salinity and high content of organic matter. The decomposition of plant or animals residues under these conditions is very slow, acting as a selective pressure on the evolution of enzymes involved in the mineralization process of nutrients. Metagenomics has provided access to the vast majority of the microbial diversity in the environment through the generation of fosmid libraries, resulting in a promising scenario for bioprospection enzymatic activities. In this study, we report the description and characterization of a novel ?-N-acetylhexosaminidase (EC 3.2.1.52) of GH3 family, involved in the degradation of organic matter in mangrove soils contaminated by oil spill located in the city of Bertioga-SP through of a screening of 12.960 metagenomic clones. The positive clone for cellulolytic activitie was sequenced and a total of 1.175.586 reads were generated with measuring size 198 bp. The sequences were trimmed based on the index of quality PHRED >= 30.0 and removing the sequences to host (E. coli) and vector (fosmid) resulting in a contig of 39.586 Kb. Between the anoted ORF\'s from generated contig a sequence of 1.065 nucleotides was identified coding for a ?-N-acetylhexosaminidase showing low similatrity (32 %) with the other found in comparatives databases. The enzyme was expressed and purified where an isolated band can be visualized by SDS-PAGE with molecular mass of 43 kDa. Finally, as optimum activity of the enzyme (30 °C; pH 5.0; 0.5M NaCl; decreased activity after 3 h incubation) were characterized by the indicator p-nitrophenol (pNP) linked to the substrates GlNac, GalNac and Glc. The detection of the enzyme through metagenomics indicated that mangroves are reservoirs of novel enzymes with different characteristics and high potential for biotechnological applicability
10

Gene Discovery in Antarctic Dry Valley Soils

Anderson, Dominique Elizabeth January 2008 (has links)
Magister Scientiae - MSc / The metagenomic approach to gene discovery circumvents conventional gene and gene product acquisition by exploiting the uncultured majority of microorganisms in the environment. It was demonstrated in this study that metagenomic methods are suitable for gene mining in extreme environments that harbor very high levels of unculturable microorganisms. DNA was extracted from Antarctic mineral soil samples taken from the Miers Valley, Antarctica. The metagenomic DNA was also used to construct a fosmid library comprising over 7900 clones with an average insert size of 29 kb. PCR amplification using bacterial and archaeal 16S rRNA gene specific primers and subsequent denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rDNA amplicons showed that a small percentage of bacterial diversity was captured in the metagenomic fosmid library. Activity-based screening for lipase and esterase genes using a tributyrin plate assay yielded twelve positive clones. LD1, a putative, novel cold-active GDSL lipase/esterase was identified and sequenced. The C-terminal domain of the ORF was found to be an autotransporter similar to those associated with type V secretion systems in Gram negative bacteria. Sub-cloning of the gene resulted in lipolytic activity in E. coli. Preliminary enzyme assays have determined that LD1 hydrolyses p-nitrophenyl esters with chain lengths shorter than C10, an indication that the enzyme is an esterase. Complete purification and characterisation of this enzyme is subject to further study. / South Africa

Page generated in 0.0286 seconds