• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 55
  • 39
  • 19
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 350
  • 54
  • 54
  • 48
  • 48
  • 45
  • 44
  • 43
  • 39
  • 37
  • 29
  • 27
  • 27
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Computational Analysis of Viruses in Metagenomic Data

Tithi, Saima Sultana 24 October 2019 (has links)
Viruses have huge impact on controlling diseases and regulating many key ecosystem processes. As metagenomic data can contain many microbiomes including many viruses, by analyzing metagenomic data we can analyze many viruses at the same time. The first step towards analyzing metagenomic data is to identify and quantify viruses present in the data. In order to answer this question, we developed a computational pipeline, FastViromeExplorer. FastViromeExplorer leverages a pseudoalignment based approach, which is faster than the traditional alignment based approach to quickly align millions/billions of reads. Application of FastViromeExplorer on both human gut samples and environmental samples shows that our tool can successfully identify viruses and quantify the abundances of viruses quickly and accurately even for a large data set. As viruses are getting increased attention in recent times, most of the viruses are still unknown or uncategorized. To discover novel viruses from metagenomic data, we developed a computational pipeline named FVE-novel. FVE-novel leverages a hybrid of both reference based and de novo assembly approach to recover novel viruses from metagenomic data. By applying FVE-novel to an ocean metagenome sample, we successfully recovered two novel viruses and two different strains of known phages. Analysis of viral assemblies from metagenomic data reveals that viral assemblies often contain assembly errors like chimeric sequences which means more than one viral genomes are incorrectly assembled together. In order to identify and fix these types of assembly errors, we developed a computational tool called VirChecker. Our tool can identify and fix assembly errors due to chimeric assembly. VirChecker also extends the assembly as much as possible to complete it and then annotates the extended and improved assembly. Application of VirChecker to viral scaffolds collected from an ocean meatgenome sample shows that our tool successfully fixes the assembly errors and extends two novel virus genomes and two strains of known phage genomes. / Doctor of Philosophy / Virus, the most abundant micro-organism on earth has a profound impact on human health and environment. Analyzing metagenomic data for viruses has the beneFIt of analyzing many viruses at a time without the need of cultivating them in the lab environment. Here, in this dissertation, we addressed three research problems of analyzing viruses from metagenomic data. To analyze viruses in metagenomic data, the first question needs to answer is what viruses are there and at what quantity. To answer this question, we developed a computational pipeline, FastViromeExplorer. Our tool can identify viruses from metagenomic data and quantify the abundances of viruses present in the data quickly and accurately even for a large data set. To recover novel virus genomes from metagenomic data, we developed a computational pipeline named FVE-novel. By applying FVE-novel to an ocean metagenome sample, we successfully recovered two novel viruses and two strains of known phages. Examination of viral assemblies from metagenomic data reveals that due to the complex nature of metagenome data, viral assemblies often contain assembly errors and are incomplete. To solve this problem, we developed a computational pipeline, named VirChecker, to polish, extend and annotate viral assemblies. Application of VirChecker to virus genomes recovered from an ocean metagenome sample shows that our tool successfully extended and completed those virus genomes.
242

Interactions in the microbiome: communities of organisms and communities of genes

10 September 2019 (has links)
Yes / A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic, or functional in nature. The term ‘community’ is applied ambiguously; in some cases, the term refers simply to a set of observed entities, while in other cases, it requires that these entities interact with one another. Microorganisms can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of ‘Who is there?’ and ‘What are they doing?’ to the mechanistically driven question of ‘How will they respond?’
243

Investigating the environmental conditions that drive mercury methylation in freshwater systems

Khairallah, Anthony January 2024 (has links)
Methylmercury (MeHg) is a hazardous neurotoxin that bioaccumulates throughout the food web, which is converted from inorganic mercury (Hg) by microorganisms in oxygen-deprived (hypoxic, or anoxic) conditions. Climate change challenges the ability to limit Hg methylation in the environment since increasing temperatures are predicted to increase the prevalence of hypoxic and anoxic conditions in water columns. My Master thesis project aimed to investigate the diversity, abundance, composition, and structure of Hg-methylating communities to tie together the influence of environmental conditions. To do so, I used bioinformatic tools to analyze a dataset containing freshwater environmental DNA sequences from a broad diversity of metagenomes. The dataset was collected in tandem with environmental metadata (e.g., oxygen) which was used to compare the abundance of one of the two Hg-methylating genes; hgcA. I found that the majority of hgcA genes came from metagenomes collected in hypoxic and anoxic water layers. Interestingly, certain metagenomes in hypoxic and anoxic water layers did not contain any hgcA genes and thus potentially no Hg methylators. Some hgcA genes were found in metagenomes from oxic water layers, which could be explained by settling particles originating from the sediment-water interface acting as oxygen deprived niches. These findings are crucial as they imply that the anticipated changes in freshwater oxygenation, resulting from climate change, will lead to increased niches for Hg-methylating microorganisms. Particularly, increasing algal blooms and persistent lake stratification leads to more deoxygenated water columns, which explains why MeHg can become an increasing hazard to animal and human well-being.
244

Metagenomic approaches for examining the diversity of large DNA viruses in the biosphere

Farzad, Roxanna 28 July 2023 (has links)
The discovery of large DNA viruses has challenged the traditional perception of viral complexity due to their enormous genome size and physical dimensions. Previously, viruses were considered small, filterable agents until the discovery of large DNA viruses. Among large DNA viruses, the phylum Nucleocytoviricota and its members, which are often called "giant viruses" have large genome sizes (up to 2.5 Mbp) and virion sizes (up to 1.5 um). Due to having large virion and genome sizes, these viruses were often excluded from viral surveys and remained understudied for years. Luckily, the advancement of metagenomic analysis has facilitated the study of large DNA viruses by analyzing them directly from their environment without cultivating them in the lab, which could be challenging for viruses. In the first chapter of the thesis, I investigated 11 metagenome-assembled genomes (MAGs) of giant viruses previously surveyed from Station ALOHA in the Pacific Ocean. St. ALOHA is located near Hawaii and represents oligotrophic gyres which the majority of the ocean is made of them. I focused on 11 MAGs of giant viruses to get insight into their phylogenetic characteristics, genomic repertoire, and global distribution patterns. Despite the fact that metagenomic analysis has facilitated the study of genetic materials of microbes and viruses on a huge scale, it is essential to benchmark the performance of metagenomic tools and understand the associated biases, particularly in viral metagenomics. In the second chapter, I evaluated the performance of metagenomic tools (contigs assembler and binning tool) in recovering viral genomes using annotated dataset. We used a metagenome simulator (CAMISIM) to generate simulated short reads with known composition to assess these processes. Moreover, I emphasized the importance of binning contigs for viral genomes to fully recover the genomes of viruses along with discussing how diversity metrics were differed for contigs, bins populations. / Master of Science / Viruses are generally thought to be small biological agents with small genome (genetic material) sizes and tiny physical structures; for instance, the genome length of a Human Immunodeficiency Virus (HIV) is around 10 kilobase pair (a unit for measuring genetic material in an organism), and the virion size (physical dimension of a virus) can go up to 120 nm. The discovery of large DNA viruses has challenged the idea of considering viruses as small biological entities, as their genome sizes and physical dimensions can be up to 2.5 megabase pairs and 1500 nm, respectively. Famous members of large DNA viruses from the phylum Nucleocytoviricota are often known as "Giant Viruses'' because they have enormous genome sizes and physical dimensions. Due to having large viral particles, these viruses may usually be excluded from viral surveys. For instance, in field studies, samples must be filtered through a fraction (e.g., 0.2 um) to eliminate bacterial and archaeal genomes and cellular debris, which also results in excluding larger viruses. Since these viruses remain understudied for several years because of biases associated with having large viral particles, there is a solid need to discover and investigate more about them. Growing and cultivating viruses in the laboratory may be challenging, as they need specific hosts to be dependent on to produce more viral progeny and some specific laboratory environments. Luckily, with the advancement of biotechnology, scientists could find ways to evade the need for cultivating viruses in the lab and study them with computational tools such as metagenomic analysis and bioinformatic tools. Metagenomics analysis helps to study the genetic materials of microbial or viral populations directly from their habitat without growing them in a laboratory. In short, metagenomic analysis has multiple steps, including collecting and filtering samples, fragmenting DNA within the samples, generating short DNA sequences (short-read sequences) with NGS (Next Generation Sequencing) technology, assembling short-read sequences into large DNA fragments which can be contigs (contiguous DNA fragments) and metagenome-assembled genome (MAGs). With metagenomic analysis, we can recover the genome of multiple organisms, and we name the recovered genome as metagenome-assembled genome (MAGs) as it is generated through metagenomic processes. The metagenomic analysis will allow us to study microbes and viruses in their environment and gain insight into their taxonomic details, genomic content, and how widespread they are. In the first chapter, I studied 11 MAGs of giant viruses previously surveyed from St. ALOHA, Hawaii. St. ALOHA is a good field site for examining microbial processes and diversity and a good representative of oligotrophic waters (low in nutrients). I examined 11 MAGs of giant viruses to investigate their taxonomic characteristics to clarify which order they belong to within their phylum, their genomic content, and their global distribution pattern. Although studies have successfully recovered the genome of large DNA viruses from their habitats and then analyzed them, all these metagenomic processes need to be evaluated so the results will be valid to consider as the genome of our interested organisms. In the second chapter, I developed a workflow for viral metagenomic analysis to assess metagenomic tools' performance in recovering reliable viral genomes, particularly for large DNA viruses. Most of these benchmarking workflows are done for bacterial and archaeal genomes, and in this thesis, I used these metagenomic tools and applied them to recover large DNA viruses genomes. Also, I emphasized the importance of using binning tools to fully recover large DNA viruses genomes, as due to their large genome size, their genomes might remain fragmented into different contigs, which are longer sequences than reads but shorter than MAGs.
245

High resolution differentiation of infectious agents at the level of antibody and nucleic acid by using peptide microarray and nanopore sequencing

Hansen, Sören 03 July 2019 (has links)
No description available.
246

Novel approach for identification of biocatalysts by reverse omics techniques

Egelkamp, Richard 20 February 2019 (has links)
No description available.
247

Microbial assemblage in grapevine's phyllosphere : who is the driver ? / Assemblage microbien dans la phyllosphère de la vigne : qui est le pilote ?

Singh, Prashant 30 November 2018 (has links)
Vitis vinifera subsp. vinifera L., les principales espèces de raisins sont cultivées pour la production de fruits et la production de vin dans le monde est un hôte naturel d'une grande variété de micro-organismes procaryotes et eucaryotes qui interagissent avec la vigne, ayant des effets bénéfiques ou phytopathogènes. Ils pourraient également jouer un rôle majeur dans le rendement des fruits, la qualité du raisin, la protection des plantes et, finalement, dans le modèle de la fermentation du raisin et la production de vin. La phyllosphère (constituée des parties aériennes de la plante) est l'un des habitats microbiens les plus répandus sur terre et est un milieu assez négligé, en particulier dans les vignes et de nombreuses questions liées à cet habitat microbien sont toujours sans réponse.Cette thèse est un effort pour répondre à une question fondamentale en écologie microbienne: quels sont les facteurs qui déterminent le microbiome dans la phyllosphère de la vigne? Les communautés microbiennes de la phyllosphère (PMCs) vivent à l'interface plante-climat et sa capacité à s'établir, prospérer et se reproduire sur la surface des feuilles ou des fruits dépend de plusieurs caractéristiques fonctionnelles microbiennes, comme la capacité de se fixer sur la cuticule et d'utiliser la foliaire. nutriments ainsi que les conditions climatiques dominantes comme la température, l'humidité de l'air et la pluie. La chimie des feuilles ou des fruits, la physiologie et la structure morphologique diffèrent selon le génotype et l'espèce puisque tous ces traits ont une base génétique, et cette variation peut mener à une combinaison différente d'assemblage de PMC parmi les génotypes de plantes. Ainsi, le premier objectif de notre travail était d'évaluer les impacts des cultivars de vigne (variétés de Vitis vinifera L) et des espèces de vigne (espèces Vitis entièrement différentes) sur l'assemblage du microbiome dans la phyllosphère à un endroit géographique particulier (pour minimiser les effets environnementaux) . Plus tard, les impacts de certains cultivars et terroirs de vigne commercialement importants (représentés par trois zones climatiques françaises) ont également été évalués et comparés. Les impacts de la saison et des organes extérieurs de la plante (feuilles et baies) sur la structuration des taxons microbiens dans la phyllosphère ont également été évalués et présentés dans ce travail. De plus, des impacts spécifiques à l'espèce sur le microbiome de la phyllosphère ont également été testés et représentés.Dans l'ensemble, notre étude a évalué et comparé les nombreuses facettes des facteurs qui peuvent influencer structure du microbiome dans la phyllosphère avec un accent particulier sur la pression de sélection relative exercée par le génotype de la vigne et son interaction avec différentes conditions climatiques (ou terroir), ce qui peut améliorer nos chances de trouver des gènes contrôlant les PMCs sur la phyllosphère. les gènes sont réellement importants dans des environnements réalistes et probablement ces gènes nous donneraient de nouvelles idées pour la sélection de nouveaux cépages sains présentant de meilleurs caractères sur leur phyllosphère. De plus, considérant que les PMC végétales jouent un rôle crucial dans la santé et la forme des plantes car elles peuvent moduler la susceptibilité foliaire aux infections, cette étude pourrait également être utile pour développer des méthodes de biocontrôle innovantes et naturelles ou phytostimulation contre les pathogènes de la vigne. de variétés résistantes innovantes. / Vitis vinifera subsp. vinifera L., the main grape species are grown for fruit and wine production over the world is a natural host of a wide variety of prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects. They could also play a major role in fruit yield, grape quality, plant protection and, ultimately, in the pattern of grape fermentation and wine production. Phyllosphere (consists of the aerial parts of the plant) is one of the most prevalent microbial habitats on earth and is quite a neglected milieu, especially in grapevines and many questions related to this microbial habitat, are still unanswered.This thesis is an effort to answer a very fundamental question in microbial ecology- what are the drivers that shape the microbiome in the grapevine's phyllosphere? The phyllosphere microbial communities (PMCs) live at the plant-climate interface and its ability to establish, thrive and reproduce on the leaf or fruit surface depends on several microbial functional traits, such as the ability to attach to the cuticle and to use the foliar nutrients as well as well as to the prevailing climatic conditions like temperature, air humidity and rain. Leaf or fruit chemistry, physiology, and morphological structure differ among plant genotype and species as all these traits have a genetic basis, and this variation may lead to a different combination of PMCs assemblage among plant genotypes. Hence, the first objective of our work was to assess the impacts of grapevine cultivars (varieties of Vitis vinifera L) and grapevine species (entirely different Vitis species) on microbiome assemblage in the phyllosphere at a particular geographic location (to minimize the environmental effects). Later on, impacts of some commercially important grapevine cultivars and terroirs (represented by three French climate zones) were also assessed and compared. Impacts of the season and exterior plant organs (leaf and berries) on microbial taxa structuring in the phyllosphere was also assessed and presented in this work. Furthermore, species-specific impacts on phyllosphere microbiome were also tested and represented.Overall our study assessed and compared the many facets of the factors that may influence themicrobiome structure in the phyllosphere with a special focus on relative selection pressure exerted by grapevine genotype and its interaction with different climatic conditions (or terroir), which may improve our chances to find genes that controls PMCs on phyllosphere, and simultaneously increase our confidence that those genes are actually important in realistic environments and probably those genes would give us new insights for breeding new and healthy grape varieties displaying better traits on their phyllosphere. Moreover, considering that the plant PMCs plays a crucial role in plant health and fitness as it can modulate leaf susceptibility to infection, this study could also be helpful to develop innovative and natural biocontrol methods or phytostimulation against grapevine pathogens or rethink breeding schemes for the creation of innovative resistant varieties.
248

Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgotos da região metropolitana de São Paulo. / Diversity of autochthonous DNA viruses and alóctones of springs and sewage of the metropolitan region of São Paulo.

Moura, Elisabeth Mendes Martins de 06 December 2017 (has links)
A água doce no Brasil, assim como o seu consumo é extremamente importante para as diversas atividades criadas pelo ser humano. Por esta razão o consumo deste bem é muito grande e consequentemente, provocando o seu impacto. Os mananciais são normalmente usados para abastecimento doméstico, comercial, industrial e outros fins. Os estudos na área de ecologia de micro-organismos em águas (mananciais e esgoto) vêm sendo realizados com mais intensidade nos últimos anos. Nas últimas décadas foi introduzido o conceito de virioplâncton com base na abundância e diversidade de partículas virais presentes no ambiente aquático. O virioplâncton influencia muitos processos ecológicos e biogeoquímicos, como ciclagem de nutriente, taxa de sedimentação de partículas, diversidade e distribuição de espécies de algas e bactérias, controle de florações de fitoplâncton e transferência genética horizontal. Os estudos nesta área da Virologia molecular ainda estão muito restritos no país, bem como muito pouco se conhece sobre a diversidade viral na água no Brasil. / Freshwater in Brazil, as well as its consumption is extremely important for the various activities created by human being. For this reason the consumption of this good is very great and consequently, causing its impact. The sources are usually used for domestic, commercial, industrial and other purposes. Studies on the ecology of microorganisms in waters (freshwater and sewage) have been carried out more intensively in recent years. In recent decades the concept of virioplankton has been introduced based on the abundance and diversity of viral particles present in the aquatic environment. Virioplankton influences many ecological and biogeochemical processes, such as nutrient cycling, particle sedimentation rate, diversity and distribution of algal and bacterial species, control of phytoplankton blooms and horizontal gene transfer. Studies in this area of molecular Virology are still very restricted in the country, and very little is known about viral diversity in water in Brazil.
249

Microbial community profiling of human gastrointestinal cancers / Investigação de perfis microbianos humanos e sua relação com o câncer gastro-intestinal

Thomas, Andrew Maltez 12 December 2018 (has links)
The human microbiome - defined as the microbial communities that live in and on our bodies - is emerging as a key factor in human diseases. The expanding research field that investigates the role of the microbiome on human cancer development, termed oncobiome, has led to important discoveries such as the role of Fusobacterium nucleatum in colorectal cancer carcinogenesis and tumor progression. Motivated by these discoveries, this thesis studied the oncobiome from different perspectives, investigating whether alterations to microbial profiles were associated with disease status or an adverse response to treatment. We used both biopsy tissue samples and 16S rRNA amplicon sequencing (N = 36), as well as privately and publicly available fecal whole metagenomes (N = 764) to investigate microbiome-colorectal cancer (CRC) associations. We observed significant increases in species richness in CRC, regardless of sample type or methodology, which was partially due to expansions of species typically from the oral cavity, as well as an overabundance of specific taxa such as Bacteroides fragilis, Fusobacterium, Desulfovibrio and Bilophila in CRC. Functional potential analysis of CRC metagenomes revealed that the choline trimethylamine-lyase (cutC) gene was over-abundant in CRC, with the strength of association dependent on four identified sequence variants, pointing at a novel potential mechanism of CRC carcinogenesis. Predictive microbiome signatures trained on the combination of multiple datasets showed very high and consistent performances on distinct cohorts (average AUC 0.83, minimum 0.81). To investigate the microbiomes role in response to treatment, we profiled microbial communities of gastric wash samples in gastric cancer patients (N = 36) before and after neoadjuvant chemotherapy through 16S rRNA amplicon sequencing. Gastric wash microbial communities presented remarkably high inter-individual variation, with significant decreases in richness and phylogenetic diversity after treatment and associations with pH, pathological response and sample collection. The most abundant genera found in patients before or after chemotherapy treatment included Streptococcus, Prevotella, Rothia and Veillonella. Despite limitations inherent to differing experimental choices, this thesis provides microbiome signatures that can be the basis for clinical prognostic tests and hypothesis-driven mechanistic studies, as well as supporting the role of the human oral microbiome in whole-body diseases. / O microbioma humano - definido como as comunidades microbianas que vivem sobre e dentro do corpo humano - está se tornando um fator cada vez mais importante em doenças humanas. O campo de estudo que investiga o papel do microbioma no desenvolvimento do câncer humano, denominado oncobioma, está crescendo e já levou a importantes descobertas como o papel da espécie Fusobacterium nucleatum na carcinogênese e progressão tumoral de tumores colorretais. Motivado por estas descobertas, esta tese de doutorado analisou o oncobioma por diferentes perspectivas, investigando se alterações nos perfis microbianos estavam associados à presença da doença ou a uma resposta adversa ao tratamento. Usamos tanto amostras de tecidos de biópsias e o sequenciamento do gene 16S rRNA (N = 36), quanto metagenomas fecais públicos e privados (N = 764), para investigar associações entre o microbioma e o câncer colorretal (CCR). Observamos um aumento significativo da riqueza microbiana no CCR, independentemente do tipo da amostra ou metodologia, que era em parte, devido ao aumento de espécies tipicamente presentes na cavidade oral. Observamos também um aumento da abundância de táxons específicos no CCR, que incluíam Bacteroides fragilis, Fusobacterium, Desulfovibrio e Bilophila. Analisando o potencial funcional dos metagenomas, encontramos um aumento significativo da enzima liase colina trimetilamina (cutC) no CCR, cuja associação era dependente de 4 variantes de sequência, demonstrando ser um possível novo mecanismo de carcinogênese no CCR. Assinaturas preditivas do microbioma treinadas na combinação dos estudos demonstraram ser altamente preditivas e consistentes nos diferentes estudos (média de AUC 0.83, mínimo de 0.81). Para investigar o possível papel do microbioma na resposta ao tratamento, analisamos os perfis microbianos do suco gástrico de pacientes com câncer gástrico (N = 36) antes e depois do tratamento quimioterápico neoadjuvante. As comunidades microbianas apresentaram uma variabilidade inter-individual notavelmente grande, com diminuições significativas na riqueza e diversidade filogenética pós tratamento, além de estarem associadas principalmente ao pH, mas também à resposta patológica e ao tempo da coleta. Os gêneros mais abundantes encontrados nos pacientes antes ou depois da quimioterapia incluíam Streptococcus, Prevotella, Rothia e Veillonella. Apesar das limitações inerentes às escolhas experimentais, esta tese proporciona assinaturas do microbioma que podem servir de base para testes clínicos prognósticos e estudos mecanísticos, além de dar mais suporte ao papel do microbioma oral em doenças humanas.
250

Microbial community profiling of human gastrointestinal cancers / Investigação de perfis microbianos humanos e sua relação com o câncer gastro-intestinal

Andrew Maltez Thomas 12 December 2018 (has links)
The human microbiome - defined as the microbial communities that live in and on our bodies - is emerging as a key factor in human diseases. The expanding research field that investigates the role of the microbiome on human cancer development, termed oncobiome, has led to important discoveries such as the role of Fusobacterium nucleatum in colorectal cancer carcinogenesis and tumor progression. Motivated by these discoveries, this thesis studied the oncobiome from different perspectives, investigating whether alterations to microbial profiles were associated with disease status or an adverse response to treatment. We used both biopsy tissue samples and 16S rRNA amplicon sequencing (N = 36), as well as privately and publicly available fecal whole metagenomes (N = 764) to investigate microbiome-colorectal cancer (CRC) associations. We observed significant increases in species richness in CRC, regardless of sample type or methodology, which was partially due to expansions of species typically from the oral cavity, as well as an overabundance of specific taxa such as Bacteroides fragilis, Fusobacterium, Desulfovibrio and Bilophila in CRC. Functional potential analysis of CRC metagenomes revealed that the choline trimethylamine-lyase (cutC) gene was over-abundant in CRC, with the strength of association dependent on four identified sequence variants, pointing at a novel potential mechanism of CRC carcinogenesis. Predictive microbiome signatures trained on the combination of multiple datasets showed very high and consistent performances on distinct cohorts (average AUC 0.83, minimum 0.81). To investigate the microbiomes role in response to treatment, we profiled microbial communities of gastric wash samples in gastric cancer patients (N = 36) before and after neoadjuvant chemotherapy through 16S rRNA amplicon sequencing. Gastric wash microbial communities presented remarkably high inter-individual variation, with significant decreases in richness and phylogenetic diversity after treatment and associations with pH, pathological response and sample collection. The most abundant genera found in patients before or after chemotherapy treatment included Streptococcus, Prevotella, Rothia and Veillonella. Despite limitations inherent to differing experimental choices, this thesis provides microbiome signatures that can be the basis for clinical prognostic tests and hypothesis-driven mechanistic studies, as well as supporting the role of the human oral microbiome in whole-body diseases. / O microbioma humano - definido como as comunidades microbianas que vivem sobre e dentro do corpo humano - está se tornando um fator cada vez mais importante em doenças humanas. O campo de estudo que investiga o papel do microbioma no desenvolvimento do câncer humano, denominado oncobioma, está crescendo e já levou a importantes descobertas como o papel da espécie Fusobacterium nucleatum na carcinogênese e progressão tumoral de tumores colorretais. Motivado por estas descobertas, esta tese de doutorado analisou o oncobioma por diferentes perspectivas, investigando se alterações nos perfis microbianos estavam associados à presença da doença ou a uma resposta adversa ao tratamento. Usamos tanto amostras de tecidos de biópsias e o sequenciamento do gene 16S rRNA (N = 36), quanto metagenomas fecais públicos e privados (N = 764), para investigar associações entre o microbioma e o câncer colorretal (CCR). Observamos um aumento significativo da riqueza microbiana no CCR, independentemente do tipo da amostra ou metodologia, que era em parte, devido ao aumento de espécies tipicamente presentes na cavidade oral. Observamos também um aumento da abundância de táxons específicos no CCR, que incluíam Bacteroides fragilis, Fusobacterium, Desulfovibrio e Bilophila. Analisando o potencial funcional dos metagenomas, encontramos um aumento significativo da enzima liase colina trimetilamina (cutC) no CCR, cuja associação era dependente de 4 variantes de sequência, demonstrando ser um possível novo mecanismo de carcinogênese no CCR. Assinaturas preditivas do microbioma treinadas na combinação dos estudos demonstraram ser altamente preditivas e consistentes nos diferentes estudos (média de AUC 0.83, mínimo de 0.81). Para investigar o possível papel do microbioma na resposta ao tratamento, analisamos os perfis microbianos do suco gástrico de pacientes com câncer gástrico (N = 36) antes e depois do tratamento quimioterápico neoadjuvante. As comunidades microbianas apresentaram uma variabilidade inter-individual notavelmente grande, com diminuições significativas na riqueza e diversidade filogenética pós tratamento, além de estarem associadas principalmente ao pH, mas também à resposta patológica e ao tempo da coleta. Os gêneros mais abundantes encontrados nos pacientes antes ou depois da quimioterapia incluíam Streptococcus, Prevotella, Rothia e Veillonella. Apesar das limitações inerentes às escolhas experimentais, esta tese proporciona assinaturas do microbioma que podem servir de base para testes clínicos prognósticos e estudos mecanísticos, além de dar mais suporte ao papel do microbioma oral em doenças humanas.

Page generated in 0.0373 seconds