• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 13
  • 5
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 147
  • 147
  • 147
  • 46
  • 31
  • 30
  • 29
  • 28
  • 27
  • 26
  • 26
  • 24
  • 21
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Rational Synthesis Toward the Design of Functional Metal-Organic Materials

Eubank, Jarrod F 04 April 2008 (has links)
Design of targeted functional solid-state materials for desired applications remains a scientific challenge. To overcome this hurdle, numerous synthetic strategies have been devised. It has been shown that molecules and/or clusters with pre-selected shapes, molecular building blocks (MBBs), can be utilized as units of chemical construction toward a final structure composed of those units. Typically, in metal-organic structures metal-ligand directed assembly of the MBBs, via coordination chemistry in situ, leads to the final structure. The strength of the MBB formed and, consequently, the overall rigidity of the framework are essential in their use as porous materials for applications. Lack of rigidity, i.e. instability, will ultimately lead to the collapse of the open framework upon evacuation, resulting in inaccessible pores. This phenomenon has been demonstrated repeatedly in labile metal-organic materials (MOMs) constructed via flaccid metal-nitrogen coordination (MNx) between nitrogen-based ligands and metal ions. The structures of simple metal-carboxylate clusters are welldocumented, but only recently have they been targeted for the construction of MOMs. They often possess multiple metal-oxygen coordination bonds (M(CO2)x) that result in the generation of rigid nodes with fixed geometry. Our research group has utilized heterofunctional organic linkers, taking advantage of both pyridine- and carboxylate-based functions (MNy(CO2)z), which has allowed the construction of single-metal-ion-based MBBs resulting in stabile, rigid MOMs with targeted topologies. In this dissertation, I will discuss our single-metal-ion-based design strategy and the utilization of heterofunctional ligands for MNy(CO2)z coordination of single-metal ions. I have employed this strategy to specifically target threeconnected MOMs from 3,5-pyridinedicarboxylate and MNy(CO2)z coordination of various single-metal ions, especially chiral framworks such as (10,3)-a. In addition, I have explored the MOM diversity that can be obtained via various ligand modifications, including isomerism, expansion, and functionalization. I also will show that other heterofunctional ligands can be utilized to target novel MOMs, specifically via M(CO)y(CO2)z coordination, and, resultantly, I have achieved metal-ligand directed organic synthesis and mixed-metal MOMs with magnetic tunability. I have also explored applications for MOMs, including H2 storage, and studied the barriers to rotation of the H2 molecules inside MOMs using inelastic neutron scattering to better understand the MOM-H2 interactions.
52

Construction of Multidimensional Metal-organic Framework via Self-assembly Approach: the Harvest of Interesting Molecular Textures

Nguyen Pham, Bich Tram 30 July 2008 (has links)
Metal organic framework (MOF) has emerged as a new class of porous, thermally stable material which has attracted great attention due to their wide applications in gas storage, separation, catalysis etc. Self-assembly is the operative mechanism of MOFs syntheses; however, the control of MOF self-assembly is still a challenge in the construction of predetermined, structurally well-defined MOFs. The goal of the research is to arrive at multidimensional, highly porous and functional MOFs via hierarchical assembly of smaller molecular building blocks and, at the same time, to examine the possibilities for different interesting molecular textures. This goal is to be accomplished by the knowledge of ligand coordination mode, and geometry as well as logical choices of ligands and metals from which the MOFs are to be constructed from. Preparations of novel frameworks as well as other interesting molecular architectures are highlighted with their structures characterized.
53

Construction of Multidimensional Metal-organic Framework via Self-assembly Approach: the Harvest of Interesting Molecular Textures

Nguyen Pham, Bich Tram 30 July 2008 (has links)
Metal organic framework (MOF) has emerged as a new class of porous, thermally stable material which has attracted great attention due to their wide applications in gas storage, separation, catalysis etc. Self-assembly is the operative mechanism of MOFs syntheses; however, the control of MOF self-assembly is still a challenge in the construction of predetermined, structurally well-defined MOFs. The goal of the research is to arrive at multidimensional, highly porous and functional MOFs via hierarchical assembly of smaller molecular building blocks and, at the same time, to examine the possibilities for different interesting molecular textures. This goal is to be accomplished by the knowledge of ligand coordination mode, and geometry as well as logical choices of ligands and metals from which the MOFs are to be constructed from. Preparations of novel frameworks as well as other interesting molecular architectures are highlighted with their structures characterized.
54

Accelerating development of metal organic framework membranes using atomically detailed simulations

Keskin, Seda 15 October 2009 (has links)
A new group of nanoporous materials, metal organic frameworks (MOFs), have emerged as a fascinating alternative to more traditional nanoporous materials for membrane based gas separations. Although hundreds of different MOF structures have been synthesized in powder forms, very little is currently known about the potential performance of MOFs as membranes since fabrication and testing of membranes from new materials require a large amount of time and resources. The purpose of this thesis is to predict the macroscopic flux of multi-component gas mixtures through MOF-based membranes with information obtained from detailed atomistic simulations. First, atomically detailed simulations of gas adsorption and diffusion in MOFs combined with a continuum description of a membrane are introduced to predict the performance of MOF membranes. These results are compared with the only available experimental data for a MOF membrane. An efficient approximate method based on limited information from molecular simulations to accelerate the modeling of MOF membranes is then introduced. The accuracy and computational efficiency of different modeling approaches are discussed. A robust screening strategy is proposed to screen numerous MOF materials to identify the ones with the high membrane selectivity and to direct experimental efforts to the most promising of many possible MOF materials. This study provides the first predictions of any kind about the potential of MOFs as membranes and demonstrates that using molecular modeling for this purpose can be a useful means of identifying the phenomena that control the performance of MOFs as membranes.
55

Synthesis and characterization of a novel Poly(methyl methacrylate) Composites using Copper-4, 4'- Trimethylenedipyridine Metal-Organic Framework as Fillers

Liu, Shisi 01 June 2009 (has links)
A novel Poly (methyl methacrylate) Composites using Copper-4, 4'- Trimethylenedipyridine Metal-Organic Framework as Fillers (CTMOF) had been synthesized and analyzed. The CTMOF structure had been characterized by X-ray crystallography. The thermal and mechanical properties of CTMOF-PMMA composites had been examined via optical microscopy, differential scanning calorimetry (DSC), microhardness, and dynamic mechanical thermal analysis (DMTA). The results showed the increase of Glass transition temperatures and the improvement of mechanical properties of the PMMA composites as the concentration of CBMOF loading increased.
56

Molecular adsorption and diffusion properties of polymeric and microporous materials via quartz crystal microbalance techniques

Venkatasubramanian, Anandram 27 August 2014 (has links)
Nanoporous molecular sieve materials like metal organic frameworks (MOFs) and metal oxide nanotubes (AlSiNTs) have found a wide range of technological applications in catalysis, separations, and ion exchange due to their salient features over other contemporary sensing materials. As a result, these materials can function as a chemical recognition layer that relies on analyte adsorption and they have shown to selectively adsorb specific gas molecules from mixtures. The characterization of gas adsorption in these materials is performed predominantly by commercial gravimetric equipment, whose capital and operating costs are generally high and require relatively large amounts of sample. Thus, it is desirable to obtain a reliable measure of the gas transport properties of these materials over a substantial range of pressure and temperature by non-gravimetric methods. The objective of this thesis is to investigate the adsorption and diffusion characteristics of recently-identified nanoporous materials through the development and use of a high-pressure/high-temperature quartz crystal microbalance (QCM) device. In this regard, this thesis is divided into four main objectives, viz. (1) Design and development of high temperature/ high pressure QCM device, (2) Measurement and analysis of adsorption characteristics in nanoporous materials, (3) Diffusion measurement and analysis in polymer thin films and (4) Diffusion measurement and analysis in MOF crystals. The results obtained in Objectives 2-4 will allow us to make important recommendations regarding the use of specific nanoporous materials in molecular separation applications and also lead to significant understanding of gas uptake thermodynamics in nanoporous materials via the application of analytical models to the experimental data.
57

Flexible metal–organic frameworks

Schneemann, Andreas, Bon, Volodymyr, Schwedler, Inke, Senkovska, Irena, Kaskel, Stefan, Fischer, Roland A. 01 August 2014 (has links) (PDF)
Advances in flexible and functional metal–organic frameworks (MOFs), also called soft porous crystals, are reviewed by covering the literature of the five years period 2009–2013 with reference to the early pertinent work since the late 1990s. Flexible MOFs combine the crystalline order of the underlying coordination network with cooperative structural transformability. These materials can respond to physical and chemical stimuli of various kinds in a tunable fashion by molecular design, which does not exist for other known solid-state materials. Among the fascinating properties are so-called breathing and swelling phenomena as a function of host–guest interactions. Phase transitions are triggered by guest adsorption/desorption, photochemical, thermal, and mechanical stimuli. Other important flexible properties of MOFs, such as linker rotation and sub-net sliding, which are not necessarily accompanied by crystallographic phase transitions, are briefly mentioned as well. Emphasis is given on reviewing the recent progress in application of in situ characterization techniques and the results of theoretical approaches to characterize and understand the breathing mechanisms and phase transitions. The flexible MOF systems, which are discussed, are categorized by the type of metal-nodes involved and how their coordination chemistry with the linker molecules controls the framework dynamics. Aspects of tailoring the flexible and responsive properties by the mixed component solid-solution concept are included, and as well examples of possible applications of flexible metal–organic frameworks for separation, catalysis, sensing, and biomedicine.
58

Synthesis and Characterization of Rationally Designed Porous Materials for Energy Storage and Carbon Capture

Sculley, Julian Patrick 03 October 2013 (has links)
Two of the hottest areas in porous materials research in the last decade have been in energy storage, mainly hydrogen and methane, and in carbon capture and sequestration (CCS). Although these topics are intricately linked in terms of our future energy landscape, the specific materials needed to solve these problems must have significantly different properties. High pressure gas storage is most often linked with high surface areas and pore volumes, while carbon capture sorbents require high sorption enthalpies to achieve the needed selectivity. The latter typically involves separating CO2 from mixed gas streams of mostly nitrogen via a temperature swing adsorption (TSA) process. Much of the excitement has arisen because of the potential of metal-organic frameworks (MOFs) and porous polymer networks (PPNs). Both classes of materials have extremely high surface areas (upwards of 4000 m2/g) and can be modified to have specific physical properties, thus enabling high performance materials for targeted applications. This dissertation focuses on the synthesis and characterization of these novel materials for both applications by tuning framework topologies, composition, and surface properties. Specifically, two routes to synthesize a single molecule trap (SMT) highlight the flexibility of MOF design and ability to tune a framework to interact with specifically one guest molecule; computational and experimental evidence of the binding mechanism are shown as well. Furthermore, eight PPNs are synthesized and characterized for post-combustion carbon capture and direct air capture applications. In addition a high-throughput model, grounded in thermodynamics, to calculate the energy penalty associated with the carbon capture step is presented in order to evaluate all materials for TSA applications provide a comparison to the state of the art capture technologies. This includes results of working capacity and energy calculations to determine parasitic loads (per ton of CO2 captured) from readily available experimental data of any material (adsorption isotherms and heat capacities) using a few simple equations. Through various systematic investigations, trends are analyzed to form structure property relationships that will aid future material development.
59

Stepwise Structural Design of Hierarchically Porous Materials Constructed by Inorganic Compounds and Metal-Organic Frameworks / 無機化合物や金属有機構造体によって構築される階層的多孔質材料の段階的構造設計

Hara, Yosuke 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23732号 / 理博第4822号 / 新制||理||1690(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 北川 宏, 教授 吉村 一良, 教授 竹腰 清乃理 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
60

Desenvolvimento de redes metalo-orgânicas a base de ciclodextrina para liberação controlada de fármaco / Development of metal-organic framework based on cyclodextrin for drug release

Abuçafy, Marina Paiva [UNESP] 30 May 2016 (has links)
Submitted by MARINA PAIVA ABUCAFY null (marina.abucafy@gmail.com) on 2016-06-28T01:55:31Z No. of bitstreams: 1 dissertacao_27_06_16_corrigida.pdf: 3474917 bytes, checksum: 405eb7947595098d4116f5f388b038cd (MD5) / Rejected by Ana Paula Grisoto (grisotoana@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo a orientação abaixo: O arquivo submetido está sem a ficha catalográfica. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação. Corrija esta informação e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2016-06-29T14:46:10Z (GMT) / Submitted by MARINA PAIVA ABUCAFY null (marina.abucafy@gmail.com) on 2016-07-05T13:34:54Z No. of bitstreams: 1 dissertacao_marina.pdf: 3546765 bytes, checksum: cbf086b9c8ef98e5961d1869ae54063b (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-07-06T19:42:38Z (GMT) No. of bitstreams: 1 abucafy_mp_me_arafcf.pdf: 3546765 bytes, checksum: cbf086b9c8ef98e5961d1869ae54063b (MD5) / Made available in DSpace on 2016-07-06T19:42:38Z (GMT). No. of bitstreams: 1 abucafy_mp_me_arafcf.pdf: 3546765 bytes, checksum: cbf086b9c8ef98e5961d1869ae54063b (MD5) Previous issue date: 2016-05-30 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O avanço no desenvolvimento de novos sistemas carreadores de fármacos tem contribuído na melhoria da qualidade de vida no que diz respeito a diminuir os efeitos colaterais dos fármacos e aumentar a sobrevida dos pacientes. Visando superar as limitações dos carreadores já explorados pela literatura, busca-se desenvolver novos materiais carreadores que apresentem maior capacidade de encapsulamento de fármaco. Entre esses novos materiais existem as redes metalo- orgânicas (MOFs), que são constituídas por ligantes orgânicos e centros metálicos que se unem formando redes cristalinas e altamente porosas. Assim, o foco desse trabalho foi sintetizar e caracterizar as MOFs a base de ciclodextrina, e diferentes metais como potássio (γ-KCD), sódio (γ-NaCD) e ferro (γ-FeCD), além de avaliar a capacidade de liberação de fármaco dessas materiais. As MOFs foram sintetizadas seguindo uma metodologia descrita na literatura, com algumas modificações: a ciclodextrina e o sal de metal foram solubilizados em água e em seguida colocados em difusão em metanol, após a formação dos cristais, os mesmos foram ativados com diclorometano. Os difratogramas de raios- X (DRX) mostraram a cristalinidade do material e a presença de picos característicos das MOFs a base de ciclodextrina, relatado na literatura. As análises térmicas (TG e DSC) confirmam a formação das redes através da ligação entre a ciclodextrina e o metal. As micrografias da microscopia eletrônica de varredura (MEV) mostram que as diferentes geometrias das estruturas formadas, como cúbicas para γ-KCD e γ-NaCD e forma de bastões para γ-FeCD, além de que após a ativação é possível evidenciar a presença de poros. O fármaco modelo, diclofenaco de sódio, foi incorporado nas MOFs, o que foi confirmado através da espectroscopia vibracional no infravermelho (IV), e os resultados mostram que o material apresenta alta eficiência de encapsulação, superior a 60%. Os perfis de liberação obtidos demonstraram um efeito de controle da liberação do fármaco em PBS, sugerindo que a liberação do fármaco ocorre devido à combinação de dois ou mais processos, como a difusão do fármaco e erosão da rede metalo-orgânica. Desta maneira, é possível afirmar que as MOFs desenvolvidas são biocompatíveis, apresentam grande capacidade de encapsular fármaco além de apresentarem comportamento de liberação controlada. / The development of new drug carrier systems has contributed to improving the quality of life with respect to lessen the side effects of drugs and increase patient survival. Aiming to overcome the limitations of carriers already explored in the literature, we seek to develop new carrier materials that have higher drug encapsulation capacity. Among these new materials are the organic metallo networks (MOFs), which are formed by organic ligands and metal centers that combine to form crystalline and highly porous network. Thus, the focus of this work was to synthesize and characterize MOFs cyclodextrin basis, different metals such as potassium (γ-KCD), sodium (γ-NACD) and iron (γ-FECD), and to evaluate the release capacity of these drug materials. The MOFs were synthesized following a method described in the literature with some modifications: the cyclodextrin and the metal salt were solubilized in water and then placed in methanol diffusion after formation of the crystals, they were activated with dichloromethane. The -ray diffraction (XRD) showed the crystallinity and the presence of characteristic peaks of MOFs cyclodextrin base, reported in the literature. The thermal analysis (TG and DSC) confirmed the formation of networks by linking the cyclodextrin and the metal. The micrographs of scanning electron microscopy (SEM) show that different geometries of structures formed as cubical for γ-KCD and γ-NACD and form of sticks for γ-FECD, and that after activation is possible to demonstrate the presence of pores. The model drug, sodium diclofenac, was incorporated in MOFs, which was confirmed by vibrational infrared spectroscopy (IR), and the results show that the material has a high encapsulation efficiency greater than 60%. The obtained release profiles showed a drug release control effect in PBS, suggesting that drug release occurs due to the combination of two or more processes, such as diffusion of the drug and erosion of the metal-organic framework. In this way, we can say that the developed MOFs are biocompatible, have great ability to encapsulate the drug in addition to having controlled release behavior. / FAPESP: 2014/10888-1

Page generated in 0.1833 seconds