• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and physical properties of ReN i03 (Re=Sm, N d) nanostructured films prepared by Pulsed Laser Deposition

Diop, Ngom, Balla January 2010 (has links)
Philosophiae Doctor - PhD / Very few systems allow the study of the relationship between structural changes and physical properties in such a clear way as rare earth nickelate ReNi03 perovskites (Re (rare earth) = Pr, Nd, Sm and Gd). Synthesized for the first time by Demazeau et al [1] in 1971 and completely forgotten for almost twenty years, these compounds have regained interest since the discovery of high-temperature superconductivity and giant magnetoresistive effects in other perovskite-related systems. Due to its Metal-Insulator Transition (MIT) and thermochromic properties, the rare earth nickelate perovskite ReNi03 has received a great deal of attention for the past ten years in their thin films form [12]. Such unusual electronic and optical features are all the more interesting since the metal-insulator transition temperature (TMn) can be tuned by changing the Re cation: LaNi03 is metallic. No minimum of the metallic conductivity of Sm0 . ssNd 0.45Ni03, as observed by Gire et al [12] (entropic effect), was reported by Ambrosini and Hamet [11]. It has been suggested by Obradors et al. [13] that changing the rare earth cation in the ReNi03 system, acts as internal chemical pressure (increasing internal pressure by substituting the rare earth cation with another one of larger ionic radius) which can lead, as for the isostatic pressure experiment, to a tunability of the metal-insulator transition temperature [14, 15]. Obradors et al [13] reported on a decrease of T MIT upon increasing isostatic pressure but with remaining metallic properties of PrNi03 and NdNi03 (same magnitude and thermal dependence of the electrical resistivity)
2

Etude de la dynamique et de la structure de couches minces d’oxydes fonctionnels : srTiO3, VO2 et Al2O3 / Dynamical and structural study of functional oxide thin layers : srTiO3, VO2 and Al2O3

Peng, Weiwei 04 April 2011 (has links)
Afin de développer de nouvelles applications aux couches minces d’oxydes fonctionnels, il est nécessaire de comprendre les corrélations entre leurs modes de croissance, leur microstructure, leur structure à l’interface avec le substrat, et leurs contraintes et propriétés physiques. Pour cela, une étude par spectroscopie infrarouge et THz des systèmes modèles films/substrats a été exécutée, et confrontée à des calculs théoriques, en particulier sur des couches épitaxiales de SrTiO3/Si(001), VO2/Gd2O3/Si(111) et des couches d’alumine sur alliage d’aluminium. Les caractéristiques vibrationnelles des couches minces sont ici étudiées dans l’infrarouge moyen et lointain sur la ligne AILES du Synchrotron SOLEIL, et simulées à l’aide de la Théorie de la Fonctionnelle de la Densité (DFT), permettant ainsi la première détermination de la structure cristalline de ces couches. Ainsi, une comparaison entre la structure bidimensionnelle et tridimensionnelle des matériaux est effectuée. L’effet des contraintes dans les couches est évalué grâce aux variations des énergies de vibration par rapport au matériau massif. L’influence des conditions expérimentales de l’épitaxie dans la structure locale interatomique de couches minces de SrTiO3/Si(001) est évaluée. D’autre part, la nature de l’interface STO-Si peut être caractérisée par les modes de vibration du réseau cristallin. Enfin, la transition métal-isolant (MIT) des couches minces de VO2 sur des substrats de Gd2O3/Si(111) est étudié par spectroscopie IR ; les variations de propriétés optiques et diélectriques pendant la transition, ainsi que les changements d’intensité des modes de vibration, indiquent que la transition est entraînée par une corrélation électronique et une basse température. La phase monoclinique M1 de VO2 est un isolant de Mott. Ce résultat peut aider à un meilleur contrôle des MIT de couches minces de VO2 pour de futures applications. / In order to understand the relations between growth, microstructure, interface structure, strain, and physical properties in functional oxide thin films for further applications, a study of infrared and THz spectroscopy combined with theoretical calculation has been performed on the films/substrates model systems, in particular epitaxial SrTiO3/Si(001), VO2/Gd2O3/Si(111) films and alumina/alloy films. The vibrational characteristics of the crystal structure of films have been investigated in the mid and far infrared ranges on the AILES beamline at Synchrotron SOLEIL. This experimental vibrational study has been combined with Density Functional Theory (DFT) simulation to allow for the first measure of the crystalline structure of these thin films. The 2-dimensional lattice modification compared with the bulk materials has been discussed. The strain effect in the films can be evaluated on the phonon shifts compared with the crystal spectrum. The influences of epitaxial conditions on the local interatomic structure of SrTiO3/Si(001) thin films have been estimated. The nature of STO-Si interface can be characterized by the phonon modes. The metal–insulator transition (MIT) of VO2 thin films on Gd2O3/Si(111) substrate have been studied by IR spectroscopy. The variations of optical and dielectric properties during the MIT, as well as the phonon intensities, indicate that the MIT is driven by electron correlation and the low temperature M1 monoclinic phase of VO2 is a Mott insulator. This result may help to better understand and control the MITs of VO2 thin films in the device applications.
3

Investigation Of Electronic Structure Of Transition Metal Oxides Exhibiting Metal-insulator Transitions And Related Phenomena

Manju, U 02 1900 (has links)
Transition metal oxides have proven to be a fertile research area for condensed matter physicists due to the fascinating array of superconducting, magnetic and electronic properties they exhibit. A particular resurgence of intense activity in investigating the properties of these systems followed the discovery of high temperature superconductivity in the cuprates, colossal magnetoresistance in the manganites, ferroelectricity in the cobaltites and simultaneous ferroelectric and ferromagnetic ordering in the manganites. These diverse properties of transition metal compounds arise due to the presence of strong electron-electron interactions within the transition element 3d states. Indeed, it is the competition between the localizing effects of such interactions and the comparable hopping strengths driving the system towards delocalization, that is responsible for these wide spectrum of interesting properties. In terms of theoretical and fundamental issues, electronic structure of transition metal oxides play a most important role, providing a testing ground for new many-body theoretical approaches treating the correlation problem at various levels of approximations. In addition to this rich spectrum of properties, metal-insulator transitions often occur and can even be coincident with structural or magnetic changes due to the strong coupling between charge, magnetic and lattice degrees of freedom. However, in spite of the immense activities in this area, the underlying phenomena is not yet completely understood. A careful investigation of the electronic structure of these systems will help in the microscopic understanding of these and photoelectron spectroscopy has been established as the most powerful tool for investigating the electronic structures of these systems. In this thesis we investigate the electronic structures of some of these transition metal oxides and the metal-insulator transition as a function of electron correlation strength and doping of charge carriers by means of photoelectron spectroscopy; we analyze the experimental results using various theoretical approaches, in order to obtain detailed and quantitative understandings. This thesis is organized into seven chapters. Chapter 1 is a general introduction to the various concepts discussed in this thesis. Here we briefly describe the various mechanisms and theoretical formalisms used for understanding the metal-insulator transitions in strongly correlated systems and the evolution of the electronic structure across the transition. The experimental and the calculational techniques used in this thesis is described in Chapter 2. This includes different sample synthesis techniques and the characterization tools used in the present study. Photoelectron spectroscopic techniques used for probing the electronic structure of various systems are also discussed in this chapter. In Chapter 3, we discuss the coexistence of ferromagnetism and superconductivity in ruthenocuprates by looking at the electronic structures of RuSr2Eu1.5Ce0.5Cu2O10 which is a ferromagnetic superconductor having the ferromagnetic TC ~ 100 K and a superconducting transition of ~ 30 K compared with RuSr2EuCeCu2O10 which is a ferromagnetic (TC ~ 150 K) insulator in conjunction with two reference systems, RuSr2GdO6and Sr2RuO4. The coexistence of ferromagnetic order with superconductivity below the superconducting temperature is an interesting issue since the pair-breaking due to magnetic interactions is not significant in these cases. Extensive photoelectron spectroscopic measurements were performed on these systems and our results show that Eu and Ce in both the ruthenocuprates exists in 3+ and 4+ states, respectively. Also the analysis of the Ru 3d and 3p core levels suggests that Ru remains in the pentavalent state in both the cases. The constancy of Ru valency with doping of charge carriers that bring about an insulator to metal transition and the superconducting state suggests that the electronic structure and transport properties of these compounds are not governed by the Ru-O plane, but by the Cu-O plane, much as in the case of other high TC cuprates. Analysis of the Cu 2p core level spectra in terms of a cluster model, including configuration interaction and multiplet interactions between Cu 3d and 2p as well as that within the Cu 3d states, establish a close similarity of the basic electronic structure of these ruthenocuprates to those of other high TC cuprates. Here the charge transfer energy, Δ << Udd,Cu 3d multiplet-averaged Coulomb repulsion energy, establishing the compounds to be deep in the charge transfer regime. Continuing with the ruthenocuprate systems in Chapter 4, we look at the electronic structure of hole doped La2CuRuO6systems using various photoemission techniques. It was expected that since the substitution of La3+by Sr2+changes the d electron count, the system will undergo a metal to insulator transition, but the transport properties show that all of them remain semiconducting through out the lowest temperature of measurement. A careful analysis of the Ru 3d and 3p core level spectra shows that Ru exists in Ru 4+state in La2CuRuO6and goes towards Ru 5+state with hole doping. This suggests that the doped holes affects the electronic structure of the Ru levels in these systems. A spectral decomposition of the Ru 3d core level suggests the existence of a spin orbit split doublet having two peaks, a main core level peak and a satellite peak at the higher binding energy side of the main peak and the intensity ratio of the satellite peak to the main peak increases with the insulating nature of the compounds as reported for other Ru 4d strongly correlated systems. This observation is also consistent with the transport properties. Cu 2p core level spectra also shows variations in the satellite-to-main peak Cu 2p intensities suggesting that the electronic structure of the Cu levels are also getting affected with Sr doping. Valence band spectral features near the Fermi level shows that the spectral weight is highest for La2CuRuO6and depletes slowly with Sr doping consistent with the expected d electron count as suggested by the Ru valencies. In Chapter 5 and Chapter 6 we discuss the electronic structure investigations of two early transition metal oxide series, namely Ca1−xSrxVO3and Ce1−xSrxTiO3. Surface sensitivity dependence of photoemission experiments has been explored to show that the surface and the bulk electronic structures of Ca1−xSrxVO3system is different. Photoemission spectra of this system using synchrotron radiation reveal a hither to unnoticed polarization dependence of the photoemission matrix elements for the surface component leading to substantial underestimation. Extracted bulk spectra from experimentally determined electron escape depth and underestimation of surface contributions resolve the puzzling issues that arose due to the recent diverse interpretations of the electronic structure in Ca1−xSrxVO3. Keeping in mind the above-mentioned caveat, the present results still clearly establish that the linear polarization of synchrotron radiation plays a key role in determining the spectral lineshape in these systems. The experimentally-determined bulk spectra provide an understanding of the electronic structure in Ca1−xSrxVO3, consistent with experimental γ values, calculated change in the d-bandwidth and the geometrical/structural trends across the series, thereby resolving the puzzle concerning the structure-property relationship in this interesting class of compounds. In Chapter 6 we discuss the issues of metal-insulator transition close to the d0limit as well as the evolution of the electronic structure of a strongly correlated system as a function of electron occupancy, by investigating the family of Ce1−xSrxTiO3compounds by recording core level as well as valence band photoemission spectra using lab source as well as synchrotron radiations. Core level Ce 3d spectra from Ce1−xSrxTiO3samples establish a trivalent state of Ce in these compounds for all values of x confirming that charge doping in the present system does not alter the electronic structure of Ce. Hence the change in valency due to Sr substitution and thus, the carrier number, takes place only in the Ti 3d-O 2p manifold. We also carried out extensive VUV photoemission experiments on these samples with the photon energy varying between 26-122 eV. From the difference spectrum obtained by subtracting the off-resonance spectrum from the on-resonance one, we obtain the Ce 4f spectral signature; thus obtained Ce 4f spectrum which has a peak at about 3 eV binding energy and shows no intensity at EF even for the metallic samples, consistent with a Ce3+state. In order to study the states near EF responsible for the metal-insulator transition in these compounds, we recorded the valence band spectra at the Ce 4f off-resonance condition so that the coherent and the incoherent spectral features arising from the Ti 3d states could be clearly resolved, allowing us to investigate the metal insulator transition in the Ce1−xSrxTiO3system as a function of Sr or hole doping. The experimental spectra of the metallic compounds exhibit an intensity of the incoherent feature considerably larger than that predicted by theory. This discrepancy is possibly due to a difference in the surface and the bulk electronic structures of these compounds. Chapter 7 is divided into two parts. In the first part we discuss the extended x-ray absorption fine structure (EXAFS) studies performed on two transition metal oxide series, La1−xSrxCoO3and La1−xSrxFeO3to look at the local structure distortions happening around the transition metal ions and its role in bringing out metal to insulator transitions in transition metal oxide systems. Here we chose to investigate these two systems since La1−xSrxCoO3undergoes an insulator to metal transition for x ∼ 0.15 and La1−xSrxFeO3remains insulating for the entire range of doping. The static mean square relative displacement, which we believe to be a representation of the disorder present in the system, extracted by fitting the experimental data by a correlated Einstein model, as a function of composition in La1−xSrxCoO3saturates beyond the critical composition where as the disorder parameter continues to increase through out the entire doping range in the case of La1−xSrxFeO3where metal-insulator transition is absent. In the second part of Chapter 7 we discuss the x-ray absorption near edge structure (XANES) studies performed on the above mentioned series of systems. Co K-edge XANES spectra of La1−xSrxCoO3show that there is a systematic shift of the main absorption peak with hole doping suggesting that the Co valency changes systematically with Sr doping. Also, the pre-edge feature of LaCoO3shows the transitions to t2g level clearly showing that Co3+in LaCoO3is not in a pure low spin (t6 2g) state. The Fe K-edge XANES spectra of La1−xSrxFeO3also exhibit a systematic shift to the higher energy side with increase in Sr content, indicating an increase in the Fe valence. Also from the La L3edge analysis, it can be concluded that the oxygen environment around La and the electronic configuration of La are systematically changing with Sr doping.
4

Investigation Of Electronic And Magnetic Structure Of Transition Metal Oxides With Emphasis On Magnetoresistive Systems

Topwal, Dinesh 06 1900 (has links)
Electronic structure of transition metal oxides has been a subject of intense research since decades due to the wide spectrum of properties that they exhibit, like high temperature superconductivity, metal-insulator transitions (MIT), phase separation etc. Among these, colossal magnetoresistance (CMR), i.e. a sharp drop in the electrical resistance by the application of an external magnetic field, is a property of fundamental and technological importance. In the present study we investigate several of these interesting properties ranging from colossal magnetoresistance, metal-insulator transitions and phase separation phenomena on a wide range of magnetoresistive systems. All these properties originate in transition metal oxides due to a competition between the strong inter-atomic Coulomb interaction strength within the transition metal d electrons and a large hopping interaction strength between the metal d and oxygen 2p states. In this thesis we report the investigation of the electronic and magnetic structures of some magnetoresistive oxides, including various double perovskites and manganites, using various high energy spectroscopies in conjunction with various theoretical approaches. The samples for the present experimental investigation were prepared by different synthetic routes, such as solid state reaction, nitrate method, d.c arc melting and float zone method, and were characterized by x-ray diffraction, four probe resistivity, magnetic susceptibility, optical absorption and energy dispersive analysis of x-rays while some of the samples were supplied by our collaborators. Various spectroscopic techniques like x-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS) , bremsstrahlung isochromat spectroscopy (BIS), x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism spectroscopy (XMCD) , electron energy loss spectroscopy (EELS), spatially resolved photoelectron spectroscopy and M¨ ossbauer spectroscopy were used to probe the samples. Theoretical methods include configuration interaction cluster approach to fit the XAS and XMCD spectra while ab initio band structure calculations along with the least-square fitting procedure was used to fit some of the valence and conduction bands. Following a general introduction in Chapter 1, the details of various experimental and theoretical techniques are discussed in Chapter 2 of this thesis. Recently, a double perovskite, Sr2FeMoO6, belonging to a general family of halfmetallic ferromagnetic oxides, has shown a spectacularly large magnetoresistance even at the room temperature and at relatively small applied magnetic fields compared to the extensively investigated class of magnetoresistive manganites. Physical properties of this compound is strongly influenced by the Fe -Mo ordering. We hence synthesized Sr2FeMoO6 sample, both with high and low degree of Fe/Mo ordering. Spectroscopic investigations of these samples suggest the presence of Fe rich and Mo rich domains of the type Sr2Fe1+xMo1−xO6 in disordered Sr2FeMoO6 at times. This prompted us to prepare bulk samples of Sr2Fe1+xMo1−xO6. In Chapter 3 we address various issues related to Fe/Mo ordering like saturation magnetization, variation of TC, and CMR as well as oxidation state of Fe and Mo in Sr2FeMoO6using this new series, ”Sr2Fe1+xMo1−xO6” as it offers a better control on the Fe/Mo bonds by controlling x. On the basis of the electron spectroscopic studies in conjunction with a configuration interaction cluster calculation model coupled with the conduction band, we claim that Fe remains in 3+oxidation state throughout the series, where as Mo changes its valency to maintain the charge neutrality. An analysis of the magnetic momentas a function of x suggests that Fe at the ”wrong” crystallographic site is coupled anti-parallel to the Fe moments at the ”correct” site. Additionally, Mo depolarizes to the extend proportional to the number of Mo sites in the near-neighbor co-ordination shell. Continuing with the double perovskites in Chapter 4 we investigate the electronic and magnetic structure of Sr2FeMoO6, Ca2FeMoO6 and Ba2FeMoO6using XAS and XMCD studies. We find that the conventional XAS and XMCD calculations based on configuration interaction of a typical fragment, FeO6in this case, is insufficient to reproduce the experimental spectrum as the compounds considered here are metallic. In order to include the non local charge transfer, we coupled FeO6 octahedra to a conduction band which mimics the Mo band. Within this model we obtained a good fit to the experimental spectrum. Chapter 5 deals with another series of double perovskite (Sr1−yCay)2FeReO6which exhibits a rich phase diagram since it undergoes a metal insulator transition (MIT) with composition at low temperatures. This system becomes more interesting due to the presence of a temperature driven MIT for higher y compositions. We find that the MIT is not related to the change in valency of Fe and Re. Analysis of the near Fermi edge valence band spectra suggests opening up of a soft gap. The main reason for MIT in this system is most likely the presence of strong electron-electron correlation between multiple electrons at the Re site, which is caused by the mismatch of the Re ionic radius and change in the crystal structure across MIT. Another issue which has been extensively investigated in this thesis is phase separation in manganites presented in Chapter 6. We use a spatially resolved, direct spectroscopic probe for electronic structure with an additional unique sensitivity to chemical compositions, to investigate high quality single crystal samples of La1/4Pr3/8Ca3/8MnO3 in the first section. This unique probe establishes the formation of distinct insulating domains embedded in the metallic host at low temperatures, significantly in the absence of any perceptible chemical inhomogeneity, with the domain-size at least an order of magnitude larger than the previous largest estimate. We also provide compelling evidence of memory effects in such domain formation and morphology, suggesting an intimate connection between these electronic domains and long-range strains, often thought to be an important ingredient in the physics of doped manganites. In second part of this chapter we discuss another system namely Eu0.5Y0.5MnO3 which undergoes a chemical phase separation forming alternate stripes of Eu rich (Y deficient) orthorhombic phase and Y rich (Eu deficient) hexagonal phases. These stripes are amazingly straight and run parallel over millimeters. One more system that we investigated is a mixture of ferromagnetic La5/8Sr3/8MnO3and insulating ferroelectric LuMnO3 taken in ratio 3:7, here too the attempt to make a single crystal resulted into a chemical phase separation forming strips of metallic La5/8Sr3/8MnO3and insulating LuMnO3 throughout the sample surface. Preliminary studies suggests that strain between the chemically and crystallographically different species may result into such interesting morphology. In Chapter 7 we study pseudo-one dimensional compounds Sr3CuIrO6 and Sr3ZnIrO6 using photo electron spectroscopy. The experimental results were fitted using band structure calculations with Full Potential Linearized Augmented Plane Wave (FP-LAPW) method.
5

Electronic and Magnetic Structures of Some Selected Strongly Correlated Systems

Pal, Banabir January 2016 (has links) (PDF)
Transition metal oxides and chalcogenides are an ideal platform for demonstrating and investigating many interesting electronic phases of matter. These phases emerge as a result of collective many body interactions among the electrons. The omnipresent electron, depending on its interaction with other electrons and with the underlying lattice, can generate diverse phases of matter with exotic physical properties. The ultimate objective of Materials Science is to provide a complete microscopic understanding of these myriad electronic phases of matter. A proper understanding of the collective quant-tum behaviour of electrons in different system can also help in designing and tuning new electronic phases of matter that may have strong impact in the field of microelectronics, well beyond that predicted by Moore s law. Strong electron correlation effects produce a wide spectrum of ground state prop-retires like superconductivity, Metal Insulator Transition (MIT), charge-orbital ordering and many more. Similarly, different spin interactions among electrons, essentially due to various kinds of exchange coupling, give rise to varying magnetic ground state prop-retires like ferromagnetism, anti-ferromagnetism, spin glass, among others. The main objective of this thesis is to understand and rationalize diverse electronic and magnetic phases of matter in some selected strongly correlated systems. In chapter 1 we have provided an overview of various electronic and magnetic phases of matter which are relevant and necessary for understanding the chapters that follow. The first part of this chapter describes the fundamental concepts of the so called Metal Insulator Transition (MIT). A small section is dedicated to the subtle interactions among electrons and lattice that actually drive a system from a highly conducting metallic state to a strongly resistive insulating state. The second part of this chapter offers a compilation of different magnetic ground states which are discussed in detail in the last two chapters. In Chapter 2, we have explained various methodologies and experimental tech-antiques that have been used in the work reported in this thesis. In Chapter 3, we have provided a detailed understanding of the MIT in different polymorphic forms of Vanadium dioxide (VO2). Although VO2 exhibits a number of polymorphic forms, only the rutile/monoclinic VO2 phase has been studied extensively compared to other polymorphic forms. This phase shows a well-established MIT across ∼340 K, which has been extensively investigated in order to understand the relative importance of many body electron correlation effects arising primarily from on-site Coulomb interactions within the Vanadium 3d manifold, and single electron effects flounced by the dimerization of Vanadium atoms. Unlike the rutile phase of VO2, little is known about the MIT appearing across 212 K in the metastable B-phase of VO2. This phase shows dimerization of only half of the Vanadium atoms in the insulating state, in contrast to rutile/monoclinic VO2, which show complete dimerization. There is a long standing debate about the origin of the MIT in the rutile/monoclinic phase, that contrasts the role of the many-body Hubbard U term, with single particle effects of the dimerization. In light of this debate, the MIT in the B-phase offers a unique opportunity to understand and address the competition between many body and single particle effects, that has been unresolved over several decades. In this chapter we have investigated different polymorphs of VO2 to understand the underlying electronic structure and the nature of the MIT in these polymorphic forms. The MIT in VO2 B phase is very broad in nature. X-ray photoemission and optical conductivity data indicate that in case of VO2 B phase both correlation effects and dimerization is necessary to drive the MIT. We have also established that the correlation effects are more prominent for VO2 B phase compared to rutile/monoclinic phase. In Chapter 4, we have discussed the electronic structure of LaTiO3 (LTO)-SrTiO3 (STO) system. At the interface between polar LTO and non-polar (STO) oxides, an unique two dimensional electron gas (2DEG) like state appears, that exhibits a phenomenal range of unexpected transport, magnetic, and electronic properties. Thus, this interface stands as a prospective candidate for not only fundamental scientific investigation, but also application in technological and ultimately commercial frontiers. In this chapter, using variable energy Hard X-ray photoemission spectroscopy (HAXPES), we have experimentally investigated the layer resolved evolution of electronic structure across the interface in LTO-STO system. HAXPES results suggest that the interface is more coherent in nature and the coherent to incoherent feature ratio changes significantly as we probe deeper into the layer In chapter 5, we have investigated the electronic structure of the chemically exfoliated trigonal phase of MoS2. This elusive trigonal phase exists only as small patches on chemically exfoliated MoS2, and is believed to control functioning of MoS2 based devices. Its electronic structure is little understood, with total absence of any spec-troscopic data, and contradictory claims from theoretical investigations. We have ad-dressed this issue experimentally by studying the electronic structure of few layered chemically exfoliated MoS2 systems using spatially resolved X-ray photoemission spec-otoscopy and micro Raman spectroscopy in conjunction with electronic structure calculations. We have established that the ground state of this unique trigonal phase is actually a small gap (∼90 meV) semiconductor. This is in contrast with most of the claims in existing literature. In chapter 6, we have re-examined and revaluated the electronic structure of the late 3d transition metal monoxides (NiO, FeO, and CoO) using a combination of HAX-PES and state-of-the-art theoretical calculations. We have observed a strong evolution in the valence band spectra as a function of excitation energy. Theoretical results show that a combined GW+LDA+DMFT scheme is essential for explaining the observed experimental findings. Additionally, variable temperature HAXPES measurement In chapter 8, we have differentiated the surface and the bulk electronic structure in Sr2FeMoO6 and also have provided a new route to increase the Curie temperature of this material. Sr2FeMoO6 is well known for its high Curie temperature (Tc ∼410 K), half-metallic ferromagnetism, and a spectacularly large tunnelling magnetoresistance. The surface electronic structure of Sr2FeMoO6 is believed to be different from the bulk; leading to a Spin-Valve type Magnetoresistance. We have carried out variable energy HAXPES on Sr2FeMoO6 to probe electronic structure as a function of surface depth. Our experimental results indicate that surface is more Mo6+ rich. We have also demonstrated what we believe is the first direct experimental evidence of hard ferro-magnetism in the surface layer using X Ray Magnetic Circular Dichroism (XMCD) with dual detection mode. In the second part of this chapter we have designed a new route to increase the Curie temperature and have been successfully able to achieve a Curie temperature as high as 515 K.

Page generated in 0.1337 seconds