• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 17
  • 12
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 150
  • 150
  • 91
  • 70
  • 39
  • 36
  • 36
  • 20
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Microstructure and Mechanical Properties of Laser Additively Manufactured Nickle based Alloy with External Nano Reinforcement: A Feasibility Study

Wang, Yachao 30 October 2018 (has links)
No description available.
102

A Simple Method for Evaluating Wear in Different Grades of Tooling Applied to Friction Stir Spot Welding

Kennard, Kirtis Frankland 01 July 2015 (has links) (PDF)
In this study tools consisting of a 5mm cylindrical pin and a 12mm shoulder held by a simple tool holder were used to compare the wear of 11 tooling materials. The objective was to determine if using these tools in a spot welding configuration to simulate friction stir welding could differentiate the potential performance of tooling materials. All tools were made of varying percentages of polycrystalline cubic boron nitride (PCBN), tungsten (W) and rhenium (Re). The materials are referred to herein as GV1, GV2, G1, G2, G3, G4, G5, G6, G7, G8 and G9.The tools were run to 205 welds if they did not fracture first. The grades averaged the following quantities of welds before fracture failure GV-1:0; GV-2:200; G1:82; G2:204; G3:205; G4:205; G5:96; G7:102.73; G8:21.2; G9:38.5. Of the tools that ran the full 205 welds without chipping, the average calculated volume loss, which was the best indication of wear, was as follows G2:1.83%; G3:2.53%; G4:2.41%; G5:1.93%; and G7:2.30%.The study showed that G2 had the least wear and G6 had the most wear, of those tools that completed all 205 spot welds. Fracture was the failure mode of all grades with over 70% CBN content. It was found that small CBN grain size was not correlated to better wear performance, as has been seen in a prior study.
103

Machinability Study on Silicon Carbide Particle-Reinforced Aluminum Alloy Composite with CVD Diamond Coated Tools

Vargas, Alexandro 01 January 2017 (has links) (PDF)
Particle-reinforced MMCs (pMMC) such as aluminum alloys reinforced with ceramic silicon carbide particles (AlSiC) require special cutting tools due to the high hardness and abrasive properties of the ceramic particles. Diamond coated cutting tools are ideal for machining this type of pMMC. Previous research studies focus on the machinability of pMMCs with low ceramic content. The aim of this research is to determine the optimal cutting parameters for machining AlSiC material containing high silicon carbide particle reinforcement (>25%). The optimal cutting parameters are determined by investigating the relationship between cutting forces, tool wear, burr formation, surface roughness, and material removal rate (MRR). Experimental milling tests are conducted using CVD diamond coated end mills and non-diamond tungsten carbide end mills. It was found that low tool rotation speeds, feed rates and depths of cut are necessary to achieve smoother surface finishes of R a < 1 μm. A high MRR to low tool wear and surface roughness ratio was obtainable at a tool rotation speed of 6500 r/min, feed rate of 762 mm/min and depth of cut of 3 mm. Results showed that a smooth surface roughness of the workpiece material was achieved with non-diamond tungsten carbide end mills, however, this was at the expense of extreme tool wear and high burr formation. The use of coolant caused a 50% increase in tool wear compared to the dry-cutting experiments which had lower cutting tool forces.
104

Development Of Nitrogen Concentration During Cryomilling Of Aluminum Composites

Hofmeister, Clara 01 January 2013 (has links)
The ideal properties of a structural material are light weight with extensive strength and ductility. A composite with high strength and tailorable ductility was developed consisting of nanocrystalline AA5083, boron carbide and coarser grained AA5083. The microstructure was determined through optical microscopy and transmission electron microscopy. A technique was developed to determine the nitrogen concentration of an AA5083 composite from secondary ion mass spectrometry utilizing a nitrogen ionimplanted standard. Aluminum nitride and amorphous nitrogen-rich dispersoids were found in the nanocrystalline aluminum grain boundaries. Nitrogen concentration increased as a function of cryomilling time up to 72hours. A greater nitrogen concentration resulted in an enhanced thermal stability of the nanocrystalline aluminum phase and a resultant increase in hardness. The distribution of the nitrogen-rich dispersoids may be estimated considering their size and the concentration of nitrogen in the composite. Contributions to strength and ductility from the Orowan relation can be more accurately modeled with the quantified nitrogen concentration.
105

Microstructure and Mechanical Investigation ofCarbides Particles Reinforced High AusteniticManganese Steel

Ait ouakrim, Abderrahim January 2023 (has links)
The objective of this study was to produce a metal matrix composite (MMC). This compositematerial proves highly suitable for scenarios involving abrasive wear, owing to the exceptionalhardness of carbide particles, in conjunction with the remarkable ductility and capacity for workhardening found in Hadfield steel. Therefore, the effect of WC and TiC on the microstructure,mechanical properties, and wear resistance was investigated. The X-Ray Diffraction (XRD)technique and Scanning Electron Microscope coupled with Energy X-ray Dispersive Spectroscopy(SEM-EDS) were employed to examine the phase transformation and microstructurecharacteristics of the MMCs. The grain size of carbides was calculated using ImageJ software.The wear test was conducted using a mini jaw crusher equipped with a stationary jaw (SJ) andmovable jaw (MJ). The wear characterization involved assessing volume loss, hardness profile,and the worn surface. The microstructures showed the formation of carbides particles dispersedwithin the matrix. Compared to the hardness of the manganese steel matrix, the MMCs exhibiteda significant increase in hardness. Regarding the wear performances, the movable jaw (MJ)demonstrated greater resistance (lower volume loss) compared to the stationnary jaw (SJ), indicatingdifferent wear mechanisms between the two jaws. The worn surface exhibited a texturedappearance with visible grooves, scratches, and embedded abrasive fragments. The hardnessprofile from the worn surface towards the core displayed a gradual decrease for both the SJ andMJ, indicating the work hardening capacity of manganese steel.
106

Design, Fabrication, and Characterization of Metals Reinforced with Two-Dimensional (2D) Materials

Charleston, Jonathan 05 July 2023 (has links)
The development of metals that can overcome the strength-ductility-weight trade-off has been an ongoing challenge in engineering for many decades. A promising option for making such materials are Metal matrix composites (MMCs). MMCs contain dispersions of reinforcement in the form of fibers, particles, or platelets that significantly improve their thermal, electrical, or mechanical performance. This dissertation focuses on reinforcement with two-dimensional (2D) materials due to their unprecedented mechanical properties. For instance, compared to steel, the most well-studied 2D material, graphene, is nearly forty times stronger (130 GPa) and five times stiffer (1 TPa). Examples of reinforcement by graphene have achieved increases in strength of 60% due to load transfer at the metal/graphene interface and dislocation blocking by the graphene. However, the superior mechanical properties of graphene are not fully transferred to the matrix in conventional MMCs, a phenomenon known as the "valley of death." In an effort to develop key insight into how the relationships between composite design, processing, structure, properties, and mechanics can be used to more effectively transfer the intrinsic mechanical properties of reinforcements to bulk composite materials, nanolayered composite systems made of Ni, Cu, and NiTi reinforced with graphene or 2D hexagonal boron nitride h-BN is studied using experimental techniques and molecular dynamics (MD) simulations. / Doctor of Philosophy / The design of new metals with concurrently improved strength and ductility has been an enduring goal in engineering for many decades. The utilization of components made with these new materials would reduce the weight of structures without sacrificing their performance. Such materials have the potential to revolutionize many industries, from electronics to aerospace. Traditional methods of improving the properties of metals by thermomechanical processing have approached a point where only minor performance improvements can be achieved. The development of Metal matrix composites (MMCs) is among the best approaches to achieving the strength-ductility goal. Metal matrix composites are a class of materials containing reinforcements of dissimilar materials that significantly improve their thermal conductivity, electrical conductivity, or mechanical performance. Reinforcements are typically in the form of dispersed fibers, particles, or platelets. The ideal reinforcement materials have superior mechanical properties compared to the metal matrix, a high surface area, and a strong interfacial bond with the matrix. Two-dimensional (2D) materials (materials made up of a single to a few layers of ordered atoms) are attractive for reinforcement in composite materials because they possess unprecedented intrinsic properties. The most well-studied 2D material, graphene, is made of a single layer of carbon atoms arranged in a hexagonal honeycomb pattern. It is nearly forty times stronger (130 GPa) and five times stiffer (1 TPa) than steel. Examples of graphene reinforcing have shown increases in strength of 60% due to load transfer at the metal/graphene interface and dislocation blocking by the graphene. Despite their exceptional mechanical properties, the superior mechanical properties of graphene are not fully transferred to the matrix when incorporated into conventional metal matrix composites. This phenomenon, known as the "valley of death," refers to the loss of mechanical performance at different length scales. One cause of this phenomenon is the difficulty of evenly dispersing the reinforcements in the matrix using traditional fabrication techniques. Another is the presence of dislocations in the metal matrix, which cause very large local lattice strains in the graphene. This atomistic-scale deformation at the interface between the metal and the graphene can significantly weaken it, leading to failure at low strains before reaching its intrinsic failure stress and strain. This dissertation aims to provide insight into how the relationships between composites' design, processing, structure, properties, and mechanics can be used to transfer intrinsic mechanical properties of reinforcements to bulk composite materials more effectively. For this, nanolayered composite systems of Ni and Cu reinforced with graphene or 2D h-BN were studied using experimental techniques and molecular dynamics (MD) simulations to elucidate the underlying mechanisms behind the composites' material structure and mechanical behavior. Additionally, we explore the incorporation of graphene in a metallic matrix that does not deform through dislocations (or shear bands), such as the shape memory alloy nickel-titanium ( Nitinol or NiTi), to avoid low strain failure of the metal/graphene interface. This theoretical strengthening mechanism is investigated by designing and fabricating NiTi/graphene composites.
107

Room and Elevated Temperature Sliding Wear Behavior of Cold Sprayed Ni-WC Composite Coatings

Torgerson, Tyler B. 08 1900 (has links)
The tribological properties of cold sprayed Ni-WC metal matrix composite (MMC) coatings were investigated under dry sliding conditions from room temperature (RT) up to 400°C, and during thermal cycling to explore their temperature adaptive friction and wear behavior. Characterization of worn surfaces was conducted using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy to determine the chemical and microstructural evolution during friction testing. Data provided insights into tribo-oxide formation mechanisms controlling friction and wear. It was determined that the steady-state coefficient of friction (CoF) decreased from 0.41 at RT to 0.32 at 400˚C, while the wear rate increased from 0.5×10-4 mm3/N·m at RT to 3.7×10-4 mm3/N·m at 400˚C. The friction reduction is attributed primarily to the tribochemical formation of lubricious NiO on both the wear track and transfer film adhered to the counterface. The increase in wear is attributed to a combination of thermal softening of the coating and a change in the wear mechanism from adhesive to more abrasive. In addition, the coating exhibited low friction behavior during thermal cycling by restoring the lubricious NiO phase inside the wear track at high temperature intervals. Therefore, cold sprayed Ni-WC coatings are potential candidates for elevated temperature and thermally self-adaptive sliding wear applications.
108

Design, Fabrication, and Analysis of a Multi-Layer, Low-Density, Thermally-Invariant Smart Composite via Ultrasonic Additive Manufacturing

Pritchard, Joshua D. 04 November 2014 (has links)
No description available.
109

Advanced Processing Techniques For Co-Continuous Ceramic Composites

Evarts, Jonathan S. 11 September 2008 (has links)
No description available.
110

Development and Characterization of Optimum Process Parameters for Metallic Composites made by Ultrasonic Consolidation

Hopkins, Christopher David 03 September 2010 (has links)
No description available.

Page generated in 0.0628 seconds