• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 9
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 83
  • 83
  • 83
  • 21
  • 20
  • 20
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Physico-chimie des échanges matrice/renfort dans un matériau composite acier/TiC / Chemicophysical exchanges in a steel/TiC metal matrix composite

Courleux, Alice 13 July 2011 (has links)
Un composite à matrice métallique et à renfort particulaire de carbure de titane (25vol.%) produit par la société Mecachrome par métallurgie des poudres est l’objet de cette étude. Le process industriel suit trois étapes : broyage à haute énergie des poudres d’acier et de carbure de titane (TiC) ; consolidation de la poudre composite par extrusion ou consolidation isostatique à chaud (HIP) ; traitements thermiques d’austénitisation. Les principales évolutions concernent la taille de particule, la taille de cristallite, le paramètre de maille et la composition chimique du renfort TiC. Dans cette étude, nous nous sommes concentrés uniquement sur l’évolution du renfort (les évolutions de la matrice sont développées dans le travail de M. Mourot). Afin de caractériser les particules de TiC à chaque étape du process, nous avons mis en place une procédure de dissolution chimique sélective de la matrice acier. Le TiC ainsi « extrait » de la matrice a ensuite été caractérisé de façon méthodique par microscopie électronique à balayage (MEB), microscopie électronique en transmission (MET), diffraction des rayons X (DRX) et analyse chimique élémentaire. Ces techniques ont permis de révéler des changements importants indiquant des interactions physico-chimiques durant les étapes d’élaboration du composite. Ces évolutions du renfort et l’étude thermodynamique des systèmes C-Fe-Ti et C-Fe-O-Ti ont permis de proposer les mécanismes réactionnels à prendre en compte lors de l’élaboration du composite acier/TiC / Steel metal matrix composites reinforced with titanium carbide particles (25 vol% ) can be industrially produced by a solid-state process including three main steps: mechanical alloying by high energy milling of steel and titanium carbide powders; consolidation of the powder mixture thus obtained by hot forging, hot extrusion or hot pressing at 1050-1250°C; heat treatment of the resulting composite material. During each of the three steps, the TiC reinforcing particles are submitted to severe mechanical shocks or stresses. Moreover, they can chemically react with impurities of the gas phase during milling or with the steel matrix during consolidation or further heat treatment. As a result, changes are likely to occur in the grain size, crystallite size, morphology and composition of the particles. The aim of this thesis was to point out and characterize these changes. For that purpose, a procedure was developed to selectively dissolve the metal matrix and extract the TiC particles from the starting powder mixture, from the consolidated composite material and from further heat-treated composite samples. The extracted TiC particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), chemical microanalysis (CMA) and X-ray diffraction (XRD). This revealed important changes indicative of the physical and chemical interaction phenomena that successively proceed during processing of the steel/TiC composite
72

Studies On Squeeze Cast Copper Based Metal Matrix Composites

Prakasan, K 06 1900 (has links) (PDF)
No description available.
73

Effects of TiB2 nanoparticles on the interfacial precipitation and mechanical properties of Al-Zn-Mg-Cu matrix composites / Effet de nanoparticules TiB2 sur la précipitation interfaciale et les propriétés mécaniques des composites à matrice de Al-Zn-Mg-Cu

Ma, Yu 19 September 2019 (has links)
L’influence des renforts nanoparticules de TiB2 (6 wt.%) sur la précipitation interfaciale de la phase (Zn1.5Cu0.5)Mg, la résistance à la traction et la fissuration sous chargement de fatigue (fatigue crack growth-FCG) des composites à matrice de Al-Zn-Mg-Cu ont été étudiées. Des échantillons de composites ont été obtenus par réaction in-situ pendant le moulage suivi d’un FSP (friction stir processing) et une extrusion à chaud. Seuls les échantillons moulés et extrudés ont été utilisés pour étude de FCG à cause de la limitation de la taille après FSP. Des observations au microscope électronique à balayage (SEM), avec la diffraction des électrons rétrodiffusés (SEM/EBSD) et au microscope électronique en transmission à haute résolution (HRSTEM) ont été réalisées pour caractériser la microstructure.Des échantillons présentent une structure des grains équi-axiaux et des nanoparticules de TiB2 sont distribuées de façon homogène dans la matrice. En état de solution solide, l’interface TiB2/Al est de nature semi-cohérente et très propre. En état de vieillissementou ou sur vieillissement, la précipitation interfacaile hétérogène de la phase (Zn1.5Cu0.5)Mg a été observée. La cinétique de la précipitation interfaciale a été discutée. Les interfaces entre Al/(Zn1.5Cu0.5)Mg/TiB2 sont quasi cohérentes et l’interface TiB2/Al a été renforcée grâce à la réduction de l’énergie de l’interface. Ce mécanisme de précipitation interfaciale peut expliquer l’effet de renforcement de l’interface contribuant simultanement l’augmentation de la résistance et de l’élongation des échatillons de composite.La majorité de nanoparticules TiB2 tentent de s’agglomérer le long des joints de grains dans des échantillons sans FSP. La vitesse de croissance de fissure a été augmentée à l’intérieur des grains avec un facteur d’intensité (ΔK) intermédiaire ou important à cause de l’affinement de grains. Cependant, la vitesse de croissance de fissure a été diminuée aux joints de grains avec (ΔK) faible ou intermédiaire à cause de la présence des clusters de TiB2 tandis que cette vitesse augmente avec (ΔK) important à cause de la coalescence des micropores. / The influences of TiB2 reinforcement nanoparticles (6 wt.%) on the interfacial precipitation of (Zn1.5Cu0.5)Mg phase, the associated tensile and fatigue crack growth (FCG) properties of the Al-Zn-Mg-Cu matrix composites have been studied. The composite samples were produced by in-situ reaction during casting followed by friction stir processing (FSP) and hot extrusion, while only casted and extruded samples were used for evaluating FCG due to size limit of the nugget zone after FSP. Scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and high-resolution scanning transmission electron microscopy (HRSTEM) were employed for the microstructure characterization.The as-processed composite samples contain the fine equiaxed-grain structure, where TiB2 nanoparticles are homogenously distributed. At solid-solution state, the TiB2/Al interfaces are featured by the clean and semi-coherent nature. At the peak-aged and overaged states, the interface precipitate determined as (Zn1.5Cu0.5)Mg phase was formed, and the underlying heterogeneous interfacial precipitation kinetics was discussed. The Al/(Zn1.5Cu0.5)Mg/TiB2 multi-interfaces were revealed to be almost coherent, and the TiB2/Al interfaces were thus strengthened due to the greatly reduced coherency strains. This mechanism was proposed as precipitation assisted interface strengthening, which has contributed to the simultaneously enhanced tensile strength and uniform elongation of the as-processed composite.The majority of TiB2 nanoparticles tend to aggregate along grain boundaries (GBs) in the composite samples without FSP. The FCG rate is increased inside grains at intermediate and high stress intensity factor (ΔK) ranges due to the refined grain size. However, the FCG rate at the GBs is decreased at the low and intermediate ΔK ranges by fatigue crack deflection and trapping due to the presence of TiB2 clusters, while it increases at the high ΔK range due to microvoid coalescence.
74

ADVANCED PROCESSING OF NICKEL-TITANIUM-GRAPHITE BASED METAL MATRIX COMPOSITES

Patil, Amit k. 12 June 2019 (has links)
No description available.
75

Experimental Study And Modeling Of Mechanical Micro-machining Of Particle Reinforced Heterogeneous Materials

Liu, Jian 01 January 2012 (has links)
This study focuses on developing explicit analytical and numerical process models for mechanical micro-machining of heterogeneous materials. These models are used to select suitable process parameters for preparing and micro-machining of these advanced materials. The material system studied in this research is Magnesium Metal Matrix Composites (Mg-MMCs) reinforced with nano-sized and micro-sized silicon carbide (SiC) particles. This research is motivated by increasing demands of miniaturized components with high mechanical performance in various industries. Mg-MMCs become one of the best candidates due to its light weight, high strength, and high creep/wear resistance. However, the improved strength and abrasive nature of the reinforcements bring great challenges for the subsequent micro-machining process. Systematic experimental investigations on the machinability of Mg-MMCs reinforced with SiC nano-particles have been conducted. The nanocomposites containing 5 Vol.%, 10 Vol.% and 15 Vol.% reinforcements, as well as pure magnesium, are studied by using the Design of Experiment (DOE) method. Cutting forces, surface morphology and surface roughness are characterized to understand the machinability of the four materials. Based on response surface methodology (RSM) design, experimental models and related contour plots have been developed to build a connection between different materials properties and cutting parameters. Those models can be used to predict the cutting force, the surface roughness, and then optimize the machining process. An analytical cutting force model has been developed to predict cutting forces of MgMMCs reinforced with nano-sized SiC particles in the micro-milling process. This model is iv different from previous ones by encompassing the behaviors of reinforcement nanoparticles in three cutting scenarios, i.e., shearing, ploughing and elastic recovery. By using the enhanced yield strength in the cutting force model, three major strengthening factors are incorporated, including load-bearing effect, enhanced dislocation density strengthening effect and Orowan strengthening effect. In this way, the particle size and volume fraction, as significant factors affecting the cutting forces, are explicitly considered. In order to validate the model, various cutting conditions using different size end mills (100 µm and 1 mm dia.) have been conducted on Mg-MMCs with volume fraction from 0 (pure magnesium) to 15 Vol.%. The simulated cutting forces show a good agreement with the experimental data. The proposed model can predict the major force amplitude variations and force profile changes as functions of the nanoparticles’ volume fraction. Next, a systematic evaluation of six ductile fracture models has been conducted to identify the most suitable fracture criterion for micro-scale cutting simulations. The evaluated fracture models include constant fracture strain, Johnson-Cook, Johnson-Cook coupling criterion, Wilkins, modified Cockcroft-Latham, and Bao-Wierzbicki fracture criterion. By means of a user material subroutine (VUMAT), these fracture models are implemented into a Finite Element (FE) orthogonal cutting model in ABAQUS/Explicit platform. The local parameters (stress, strain, fracture factor, velocity fields) and global variables (chip morphology, cutting forces, temperature, shear angle, and machined surface integrity) are evaluated. Results indicate that by coupling with the damage evolution, the capability of Johnson-Cook and Bao-Wierzbicki can be further extended to predict accurate chip morphology. Bao-Wierzbiki-based coupling model provides the best simulation results in this study. v The micro-cutting performance of MMCs materials has also been studied by using FE modeling method. A 2-D FE micro-cutting model has been constructed. Firstly, homogenized material properties are employed to evaluate the effect of particles’ volume fraction. Secondly, micro-structures of the two-phase material are modeled in FE cutting models. The effects of the existing micro-sized and nano-sized ceramic particles on micro-cutting performance are carefully evaluated in two case studies. Results show that by using the homogenized material properties based on Johnson-Cook plasticity and fracture model with damage evolution, the micro-cutting performance of nano-reinforced Mg-MMCs can be predicted. Crack generation for SiC particle reinforced MMCs is different from their homogeneous counterparts; the effect of micro-sized particles is different from the one of nano-sized particles. In summary, through this research, a better understanding of the unique cutting mechanism for particle reinforced heterogeneous materials has been obtained. The effect of reinforcements on micro-cutting performance is obtained, which will help material engineers tailor suitable material properties for special mechanical design, associated manufacturing method and application needs. Moreover, the proposed analytical and numerical models provide a guideline to optimize process parameters for preparing and micro-machining of heterogeneous MMCs materials. This will eventually facilitate the automation of MMCs’ machining process and realize high-efficiency, high-quality, and low-cost manufacturing of composite materials.
76

Development and Characterization of NiTi Joining Methods and Metal Matrix Composite Transducers with Embedded NiTi by Ultrasonic Consolidation

Hahnlen, Ryan M. 03 September 2009 (has links)
No description available.
77

Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE / Contribution on the topic COMPOSITE MATERIALS - MATERIAL COMPOUNDS : Status quo and research approaches

Nestler, Daisy Julia 15 April 2014 (has links) (PDF)
Vielschichtige Eigenschaftsprofile benötigen zunehmend moderne Verbundwerkstoffe und Werkstoffverbunde einschließlich der raschen Entfaltung neuer Fertigungstechnologien, da der monolithische Werkstoff bzw. ein einziger Werkstoff den heutigen komplexen Anforderungen nicht mehr genügen kann. Zukünftige Werkstoffsysteme haben wirtschaftlich eine Schlüsselposition und sind auf den Wachstumsmärkten von grundlegender Bedeutung. Gefragt sind maßgeschneiderte Leichtbauwerkstoffe (tailor-made composites) mit einem adaptierten Design. Dazu müssen Konzepte entwickelt werden, um die Kombination der Komponenten optimal zu gestalten. Das erfordert werkstoffspezifisches Wissen und Korrelationsvermögen sowie die Gestaltung komplexer Technologien, auch unter dem Aspekt der kontinuierlichen Massen- und Großserienfertigung (in-line, in-situ) und damit der Kostenreduzierung bislang teurer Verbundwerkstoffe und Werkstoffverbunde. In der vorliegenden Arbeit wird in vergleichbarer und vergleichender Art und Weise sowie abstrahierter Form ein Bogen über das Gesamtgebiet der Verbundwerkstoffe und Werkstoffverbunde gespannt. Eine zusammenfassende Publikation über dieses noch sehr junge, aber bereits breit aufgestellte Wissenschaftsgebiet fehlt bislang. Das ist der Separierung der einzelnen, fest aufgeteilten Gruppierungen der Verbundwerkstoffe geschuldet. Querverbindungen werden selten hergestellt. Dieses Defizit in einem gewissen Maße auszugleichen, ist Ziel der Arbeit. Besondere Berücksichtigung finden Begriffsbestimmungen und Klassifikationen, Herstellungsverfahren und Eigenschaften der Werkstoffe. Es werden klare Strukturierungen und Übersichten herausgearbeitet. Zuordnungen von etablierten und neuen Technologien sollen zur Begriffsstabilität der Terminologien „Mischbauweise“ und „Hybrider Verbund“ beitragen. Zudem wird die Problematik „Recycling und Recyclingtechnologien“ diskutiert. Zusammenfassend werden Handlungsfelder zukünftiger Forschungs- und Entwicklungsprojekte spezifiziert. Aus dem Blickwinkel der verschiedenen Herstellungsrouten insbesondere für Halbzeuge und Bauteile und der dabei gewonnenen Erkenntnisse werden verallgemeinerte Konzepte für tailor-made Verbundwerkstoffe und Werkstoffverbunde vorgeschlagen („Stellschraubenschema“). Diese allgemeinen Werkstoffkonzepte werden auf eigene aktuelle Forschungsprojekte der Schwerpunktthemen Metallmatrix- und Polymermatrix-Verbundwerkstoffe sowie der hybriden Werkstoffverbunde appliziert. Forschungsfelder für zukünftige Projekte werden abgeleitet. Besonderes Augenmerk gilt den hybriden Verbunden als tragende Säule zukünftiger Entwicklungen im Leichtbau. Hier spielen in-line- und in-situ-Prozesse eine entscheidende Rolle für eine großseriennahe, kosteneffiziente und ressourcenschonende Produktion. / Complex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary. The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made. The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production.
78

Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE: Status quo und Forschungsansätze

Nestler, Daisy Julia 04 November 2013 (has links)
Vielschichtige Eigenschaftsprofile benötigen zunehmend moderne Verbundwerkstoffe und Werkstoffverbunde einschließlich der raschen Entfaltung neuer Fertigungstechnologien, da der monolithische Werkstoff bzw. ein einziger Werkstoff den heutigen komplexen Anforderungen nicht mehr genügen kann. Zukünftige Werkstoffsysteme haben wirtschaftlich eine Schlüsselposition und sind auf den Wachstumsmärkten von grundlegender Bedeutung. Gefragt sind maßgeschneiderte Leichtbauwerkstoffe (tailor-made composites) mit einem adaptierten Design. Dazu müssen Konzepte entwickelt werden, um die Kombination der Komponenten optimal zu gestalten. Das erfordert werkstoffspezifisches Wissen und Korrelationsvermögen sowie die Gestaltung komplexer Technologien, auch unter dem Aspekt der kontinuierlichen Massen- und Großserienfertigung (in-line, in-situ) und damit der Kostenreduzierung bislang teurer Verbundwerkstoffe und Werkstoffverbunde. In der vorliegenden Arbeit wird in vergleichbarer und vergleichender Art und Weise sowie abstrahierter Form ein Bogen über das Gesamtgebiet der Verbundwerkstoffe und Werkstoffverbunde gespannt. Eine zusammenfassende Publikation über dieses noch sehr junge, aber bereits breit aufgestellte Wissenschaftsgebiet fehlt bislang. Das ist der Separierung der einzelnen, fest aufgeteilten Gruppierungen der Verbundwerkstoffe geschuldet. Querverbindungen werden selten hergestellt. Dieses Defizit in einem gewissen Maße auszugleichen, ist Ziel der Arbeit. Besondere Berücksichtigung finden Begriffsbestimmungen und Klassifikationen, Herstellungsverfahren und Eigenschaften der Werkstoffe. Es werden klare Strukturierungen und Übersichten herausgearbeitet. Zuordnungen von etablierten und neuen Technologien sollen zur Begriffsstabilität der Terminologien „Mischbauweise“ und „Hybrider Verbund“ beitragen. Zudem wird die Problematik „Recycling und Recyclingtechnologien“ diskutiert. Zusammenfassend werden Handlungsfelder zukünftiger Forschungs- und Entwicklungsprojekte spezifiziert. Aus dem Blickwinkel der verschiedenen Herstellungsrouten insbesondere für Halbzeuge und Bauteile und der dabei gewonnenen Erkenntnisse werden verallgemeinerte Konzepte für tailor-made Verbundwerkstoffe und Werkstoffverbunde vorgeschlagen („Stellschraubenschema“). Diese allgemeinen Werkstoffkonzepte werden auf eigene aktuelle Forschungsprojekte der Schwerpunktthemen Metallmatrix- und Polymermatrix-Verbundwerkstoffe sowie der hybriden Werkstoffverbunde appliziert. Forschungsfelder für zukünftige Projekte werden abgeleitet. Besonderes Augenmerk gilt den hybriden Verbunden als tragende Säule zukünftiger Entwicklungen im Leichtbau. Hier spielen in-line- und in-situ-Prozesse eine entscheidende Rolle für eine großseriennahe, kosteneffiziente und ressourcenschonende Produktion. / Complex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary. The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made. The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production.
79

応力負荷状態にある金属基複合材料のミクロ組織変化の解析と制御

金武, 直幸, 小橋, 真 03 1900 (has links)
科学研究費補助金 研究種目:一般研究(B) 課題番号:04452280 研究代表者:金武 直幸 研究期間:1992-1993年度
80

Fabricação de compósitos de matriz metálica da liga de alumínio AA1100 com reforço cerâmico de Óxido de Zinco através de técnicas de metalurgia do pó

LINS, André Emanoel Poroca 28 January 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-04T13:36:40Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Mestrado_(Andre E. Poroca Lins)_Final.pdf: 64666922 bytes, checksum: 584e69803acfdd0b31e2b58094eb9b6c (MD5) / Made available in DSpace on 2017-04-04T13:36:40Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação_Mestrado_(Andre E. Poroca Lins)_Final.pdf: 64666922 bytes, checksum: 584e69803acfdd0b31e2b58094eb9b6c (MD5) Previous issue date: 2015-01-28 / Os materiais com óxido de zinco vêm passando por um rápido desenvolvimento devido as suas potenciais aplicações em uma ampla variedade de áreas tecnológicas, tais como eletrônica, catálise, cerâmica, fotodetectores, sensores, células solares, entre outras. Porém, torna-se fundamental o estudo das propriedades, condições de síntese e aplicações. Um material que vem se destacando devido as suas propriedades mecânicas, elétricas, magnéticas, ópticas e químicas é o óxido de zinco (ZnO). No óxido de zinco tais propriedades dependem principalmente do tamanho e morfologia de suas partículas. O avanço no desenvolvimento de materiais com óxido de zinco vem recebendo bastante destaque no meio científico e se tornando de fundamental importância devido à interdisciplinaridade entre vários campos da ciência, e por permitir a obtenção de novos materiais com melhores propriedades físicas e químicas. O objetivo principal desse trabalho é produzir um compósito de matriz de alumínio AA1100, reforçado com material cerâmico, o óxido de zinco (ZnO), utilizando o processo de metalurgia do pó e técnica de moagem de alta energia. Para tanto, utilizou-se a caracterização por microscopia ótica (MO), microscopia eletrônica de varredura (MEV), difração de raios X (DRX) e difração a laser para avaliar as características do compósito, além de verificar as propriedades mecânicas inerentes e constatar a superioridade em relação a materiais produzidos de forma convencional. No primeiro momento é feita a avaliação da mistura dos pós produzidos, segundo variação percentual do reforço e tempo de processamento, com o objetivo de obter dados iniciais. Em seguida, é feito o processamento das misturas dos pós para compactação e sinterização; visando obter pastilhas do compósito, nas quais serão feitas ensaios e caracterização microestrutural, e por fim avaliação de resultados e conclusões. / The zinc oxide composites materials are undergoing rapid development due to their potential applications in a wide variety of technological areas such as electronics, catalysis, ceramics, photodetectors, sensors, solar cells, among others. However, it is fundamental the studies of the properties, synthesis conditions and applications. A material that has been highlighted due to its mechanical, electrical, magnetic, optical and chemical properties is the zinc oxide (ZnO). In zinc oxide such properties mainly depend on the size and morphology of the particles. The technological progress in the development of materials with zinc oxide has been receiving a lot of attention in the scientific community and becoming of paramount importance due to several interdisciplinary fields of science, and for allowing the obtaining of new materials with improved physical and chemical properties. The main objective of this work is to produce matrix composites of aluminum alloy AA1100, reinforced with ceramic material, the zinc oxide (ZnO), the process of using powder metallurgy technique and high energy milling. For this we used the characterization by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD, and laser diffraction to evaluate and compare the features of composite, besides checking the mechanical properties and see the inherent superiority over conventionally produced material. At first assessment is made of the mixture of powders produced according to percentage change in the reinforcement and processing time, in order to obtain initial data. Then the processing is done mixtures of powders for compaction and sintering, to obtain tablets composite in which are made tests and microstructural characterization, and ultimately evaluating the results and conclusions.

Page generated in 0.1133 seconds