• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 19
  • 17
  • 8
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 262
  • 262
  • 262
  • 65
  • 64
  • 64
  • 49
  • 37
  • 35
  • 34
  • 33
  • 28
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Quest Towards the Design and Synthesis of Functional Metal-Organic Materials: A Molecular Building Block Approach

Sava, Dorina F 29 June 2009 (has links)
The design of functional materials for specific applications has been an ongoing challenge for scientists aiming to resolve present and future societal needs. A burgeoning interest was awarded to developing methods for the design and synthesis of hybrid materials, which encompass superior functionality via their multi-component system. In this context, Metal-Organic Materials (MOMs) are nominated as a new generation of crystalline solid-state materials, proven to provide attractive features in terms of tunability and versatility in the synthesis process. In strong correlation with their structure, their functions are related to numerous attractive features, with emphasis on gas storage related applications. Throughout the past decade, several design approaches have been systematically developed for the synthesis of MOMs. Their construction from building blocks has facilitated the process of rational design and has set necessary conditions for the assembly of intended networks. Herein, the focus is on utilizing the single-metal-ion based Molecular Building Block (MBB) approach to construct frameworks assembled from predetermined MBBs of the type MNx(CO2)y. These MBBs are derived from multifunctional organic ligands that have at least one N- and O- heterochelate function and which possess the capability to fully saturate the coordination sphere of a single-metal-ion (of 6- or higher coordination number), ensuring rigidity and directionality in the resulting MBBs. Ultimately, the target is on deriving rigid and directional MBBs that can be regarded as Tetrahedral Building Units (TBUs), which in conjunction with appropriate heterofunctional angular ligands are capable to facilitate the construction of Zeolite-like Metal-Organic Frameworks (ZMOFs). ZMOFs represent a unique subset of MOMs, particularly attractive due to their potential for numerous applications, arising from their fully exploitable large and extra-large cavities. The research studies highlighted in this dissertation will probe the validity and versatility of the single-metal-ion-based MBB approach to generate a repertoire of intended MOMs, ZMOFs, as well as novel functional materials constructed from heterochelating bridging ligands. Emphasis will be put on investigating the structure-function relationship in MOMs synthesized via this approach; hydrogen and CO2 sorption studies, ion exchange, guest sensing, encapsulation of molecules, and magnetic measurements will be evaluated.
172

Homochiral Metal-Organic Materials: Design, Synthetic and Enantioseletive Separation

Zhang, Shi-Yuan 01 May 2014 (has links)
Owing to the growing demand for enantiopurity in biological and chemical processes, tremendous efforts have been devoted to the synthesis of homochiral metal-organic materials (MOMs) because of their potential applications in chiral separation and asymmetric catalysis. In this dissertation, the synthetic strategies for homochiral MOMs are discussed keeping the focus on their applications. Two distinct approaches have been taken to synthesize chiral structures with different topologies and accessible cavities. The chiral MOMs have been utilized in enantioselective separation of racemates. Chiral variants of the prototypal metal-organic framework MOF-5, δ-CMOF-5 and [lambda]-CMOF-5, have been synthesized by preparing MOF-5 in the presence of L-proline or D-proline, respectively. CMOF-5 crystallizes in chiral space group P213 instead of Fm-3m as exhibited by MOF-5. The phase purity of CMOF-5 was validated by single crystal and powder X-ray diffraction, IR spectroscopy, TGA, N2 adsorption, microanalysis and solid-state CD. CMOF-5 undergoes a reversible single crystal to single crystal phase change to MOF-5 when immersed in a variety of organic solvents although N-methyl-2-pyrolidone, NMP, does not induce loss of chirality. Indeed, MOF-5 undergoes chiral induction when immersed in NMP, affording racemic CMOF-5. A pair of homochiral network materials (CNMs), [Co2(S-man)2(bpy)3](NO3)2·guests (1S) and [Co2(R-man)2(bpy)3](NO3)2·guests (1R) based upon S-mendelic acid and R-mendelic acid were synthesized and characterized, respectively. The cationic networks contain 1D homochiral channels with the cross section of 8.0 Å × 8.0 Å. The chiral amphiphilic channel surfaces lined with hydrophilic nitrate anions and hydrophobic phenyl groups are capable for multiple interactions with guest species. Chiral resolution of 1-phenyl-1-propanol (PP) enantiomers was performed utilizing the homochiral porosity of 1S and 1R through different time period at different temperatures with/without additives. The mechanism for enantioselective separation of PP was fully investigated through single crystal structural analysis of guest exchanged 1S and 1R. Chiral resolution of PP revealed enhanced performance with additive, which can significantly improve the ee value from 32% to 60%.
173

Molecular Simulations of Adsorption and Diffusion in Metal-Organic Frameworks (MOFs)

Xiong, Ruichang 01 May 2010 (has links)
Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have received great interest since they were first synthesized in the late 1990s. Practical applications of MOFs are continuously being discovered as a better understanding of the properties of materials adsorbed within the nanopores of MOFs emerges. One such potential application is as a component of an explosive-sensing system. Another potential application is for hydrogen storage. This work is focused on tailoring MOFs to adsorb/desorb the explosive, RDX. Classical grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations have been performed to calculate adsorption isotherms and self-diffusivities of RDX in several IRMOFs. Because gathering experimental data on explosive compounds is dangerous, data is limited. Simulation can in part fill the gap of missing information. Through these simulations, many of the key issues associated with MOFs preconcentrating RDX have been resolved. The issues include both theoretical issues associated with the computational generation of properties and practical issues associated with the use of MOFs in explosive-sensing system. Theoretically, we evaluate the method for generating partial charges for MOFs and the impact of this choice on the adsorption isotherm and diffusivity. Practically, we show that the tailoring of an MOF with a polar group like an amine can lead to an adsorbent that (i) concentrates RDX from the bulk by as much as a factor of 3000, (ii) is highly selective for RDX, and (iii) retains sufficient RDX mobility allowing for rapid, real time sensing. Many of the impediments to the effective explosive detection can be framed as shortcomings in the understanding of molecule surface interactions. A fundamental, molecular-level understanding of the interaction between explosives and functionalized MOFs would provide the necessary guidance that allows the next generation of sensors to be developed. This is one of the main driving forces behind this dissertation. Another important achievement in this work is the demonstration of a new direction for tailoring MOFs. A new class of tailored MOFs containing porphyrins has been proposed. These tailored MOFs show greater capability for hydrogen storage, which also demonstrated the great functionalization of MOFs and great potential to serve as preconcentrators. The use of a novel multiscale modeling technique to develop equations of state for inhomogeneous fluids is included as a supplement to this dissertation.
174

Development of porous metal-organic frameworks for gas adsorption applications

Karra, Jagadeswarareddy 27 July 2011 (has links)
Metal-organic frameworks are a new class of porous materials that have potential applications in gas storage, separations, catalysis, sensors, non-linear optics, displays and electroluminescent devices. They are synthesized in a "building-block" approach by self-assembly of metal or metal-oxide vertices interconnected by rigid linker molecules. The highly ordered nature of MOF materials and the ability to tailor the framework's chemical functionality by modifying the organic ligands give the materials great potential for high efficiency adsorbents. In particular, MOFs that selectively adsorb CO₂ over N₂, and CH₄ are very important because they have the potential to reduce carbon emissions from coal-fired power plants and substantially diminish the cost of natural gas production. Despite their importance, MOFs that show high selective gas adsorption behavior are not so common. Development of MOFs for gas adsorption applications has been hindered by the lack of fundamental understanding of the interactions between the host-guest systems. Knowledge of how adsorbates bind to the material, and if so where and through which interaction, as well as how different species in adsorbed mixture compete and interact with the adsorption sites is a prerequisite for considering MOFs for adsorptive gas separation applications. In this work, we seek to understand the role of structural features (such as pore sizes, open metal site, functionalized ligands, pore volume, electrostatics) on the adsorptive separation of CO₂, CO and N₂ in prototype MOFs with the help of molecular modeling studies (GCMC simulations). Our simulation results suggest that the suitable MOFs for CO₂ adsorption and separation should have small size, open metal site, or large pore volume with functionalized groups. Some of the experimental challenges in the MOF based adsorbents for CO₂ capture include designing MOFs with smaller pores with/without open metal sites. Constructing such type of porous MOFs can lead to greater CO₂ capacities and adsorption selectivities over mixtures of CH₄ or N₂. Therefore, in the second project, we focused on design and development of small pore MOFs with/without open metal sites for adsorptive separation of carbon dioxide from binary mixtures of methane and nitrogen. We have synthesized and characterized several new MOFs (single ligand and mixed ligand MOFs) using different characterization techniques like single-crystal X-ray diffraction, powder X-ray diffraction, TGA, BET, gravimetric adsorption and examined their applicability in CO₂/N₂ and CO₂/CH₄ mixture separations. Our findings from this study suggest that further, rational development of new MOF compounds for CO₂ capture applications should focus on enriching open metal sites, increasing the pore volume, and minimizing the size of large pores. Flue gas streams and natural gas streams containing CO₂ are often saturated by water and its presence greatly reduces the CO₂ adsorption capacities and selectivities. So, in the third project, we investigated the structural stability of the developed MOFs by measuring water vapor adsorption isotherms on them at different humid conditions to understand which type of coordination environment in MOFs can resist humid environments. The results of this study suggest that MOFs connected through nitrogen-bearing ligands show greater water stability than materials constructed solely through carboxylic acid groups.
175

Metal-organic frameworks for water adsorption applications in the automotive filtration industry / Metall-organische Gerüstverbindungen für Wasseradsorptionsanwendungen im automotiven Filtrationsbereich

Küsgens, Pia 17 March 2010 (has links) (PDF)
In dieser Arbeit werden verschiedene MOF Materialien die sich für die Wasseradsorption eignen hinsichtlich Ihrer Wasseradsorptionseigenschaften untersucht. Das vielversprechendste Material wird ausgewählt und an einem Prüfstand für Lufttrocknerkartuschen untersucht. Für diese Messungen ist eine geeignete Formgebung des Pulvers von Nöten, welche eine wichtige Rolle in dieser Arbeit spielt. Das Material Cu3(BTC)2 wurde hier zu monolithischen Formkörpern verarbeitet. Eine weitere Art der Formgebung war das Pressen von Papieren sowie das direkte Kristallwachstum auf Zellulose Fasern. Desweiteren wurden die Materialien hinsichtlich der Trocknung von n-Heptan untersucht, was hier als Referenz für Dieselkraftstoffe herangezogen wurde. Die Analytik wurde mittels Karl-Fischer Titration duchgeführt. MOF Materialien wurden in beiden Fällen mit kommerziell verwendeten Zeolithen und Silikagel verglichen. / Metal-organic frameworks (MOFs) were investigated for their possible use in drying of compressed air in air braking systems for commercial vehicles. Another possible application was the drying of diesel fuel. In this context, n-heptane was chosen as a reference for diesel fuel. Selected metal-organic frameworks were characterized regarding the water adsorption properties by recording water adsorption isotherms. The most promising material was further investigated on a air-drying cartridge test rig. In order to perform these tests, the powder had to be processed to monolithic structures, beads or paper sheets,i.e. a shape that is suitable for the given application. The MOF Cu3(BTC)2 was sucessfully extruded to monolithic structures, which were used in the test rig experiments. Another possibility for immobilization of Cu3(BTC)2 was the crystal growth on pulp fibers. N-heptane drying isotherms were measured on selected samples making use of Karl-Fischer coulometric titration. In both applications, MOF materials were compared with silica based desiccants.
176

Synthesis and Structures of New Three-Dimensional Copper Metal-Organic Frameworks

Pally, Nitin Kumar 01 December 2013 (has links)
Metal-organic frameworks (MOFs) are crystalline materials with metal ions covalently bonded to organic ligands. The ligands act as spacers often creating a porous structure with very high pore volume and surface area. MOFs are known for their robust structures, high porosity, and different chemical functionalities and are considered for applications in adsorptions, separations, catalysis and gas storage. This work focuses on the synthesis of new MOFs using copper compounds. Different types of carboxylate ligands were used for the synthesis. Two new copper-organic frameworks, [Cu3(pyz)(btc)] (1), and [(Cu3(btc))•xH2O] (2) (btc= benzene-1,3,5-tricarboxylate, pyz= pyrazine) have been synthesized using hydro/solvothermal methods and have been characterized using X-ray diffraction, IR, TGA, fluorescence and CHN analysis.
177

Crystalline Metal-Organic Frameworks Based on Conformationally Flexible Phosphonic Acids

Gagnon, Kevin James 16 December 2013 (has links)
The goal of the work described in this dissertation was to investigate the structure of metal phosphonate frameworks which were composed of conforma-tionally flexible ligands. This goal was achieved through investigating new syn-thetic techniques, systematically changing structural aspects (i.e. chain length), and conducting in situ X-ray diffraction experiments under non-ambient condi-tions. First, the use of ionic liquids in the synthesis of metal phosphonates was in-vestigated. Reaction systems which had previously been studied in purely aqueous synthetic media were reinvestigated with the addition of a hydrophobic ionic liq-uid to the reaction. Second, the structural diversity of zinc alkylbisphosphonates was investigated through systematically varying the chain length and reaction conditions. Last, the structural changes associated with externally applied stimuli (namely temperature and pressure) on conformationally flexible metal phospho-nates were investigated. Elevated temperature was used to investigate the structur-al changes of a 1-D cobalt chain compound through three stages of dehydration and also applied pressures of up to 10 GPa were used to probe the structural resili-ence of two zinc alkylbisphosphonate materials under. The iminobis(methylphosphonic acid) type ligands are a good example of a small, simple, conformationally flexible ligand. There are three distinct different structural types, utilizing this ligand with cobalt metal, described in the literature, all of which contain bound or solvated water molecules. The addition of a hydrophobic ionic liquid to an aqueous synthesis medium resulted in new anhydrous compounds with unique structural features. Systematic investigations of zinc alkylbisphosphonate materials, construct-ed with three to six carbon linker ligands, resulted in four new families of com-pounds. Each of these families has unique structural features which may prove in-teresting in future applications developments. Importantly, it is shown that wheth-er the chain length is odd or even plays a role in structural type although it is not necessarily a requirement for a given structural type; furthermore, chain length itself is not strictly determinative of structural type. Dehydration in a cobalt phosphonate was followed via in situ single crystal X-ray diffraction. The compound goes through a two-stage dehydration mecha-nism in which the compound changes from a 1-D chain to a 2-D sheet. This pro-cess is reversible and shows unique switchable magnetic properties. The high pressure studies of an alkyl chain built zinc metal phosphonate showed that the chains provide a spring-like cushion to stabilize the compression of the system allowing for large distortions in the metal coordination environment, without destruction of the material. This intriguing observation raises questions as to whether or not these types of materials may play a role as a new class of piezo-functional solid-state materials.
178

Metal-organic framework-metal oxide composites for toxic gas adsorption and sensing

Stults, Katrina A. 22 May 2014 (has links)
Metal organic frameworks (MOFs) and metal oxide-MOF composites were investigated for adsorption and oxidation of carbon monoxide. Metal oxides were successfully included in MOFs via both impregnation and encapsulation. UiO-66, a zirconium-based MOF, was impregnated with magnesium or cobalt oxide. Cobalt oxide in UiO-66 increases the room temperature CO capacity and shows increased adsorption at 65°C due to strong cobalt-CO interactions. Titania and magnetic nanoparticles were encapsulated in HKUST-1, a copper-based MOF. Including titania in HKUST-1 lowers the CO oxidation onset temperature by over 100°C compared with HKUST-1, and the composite reaches complete conversion by 250°C. HKUST-1 with magnetic nanoparticles shows enhanced structural stability and increased room temperature adsorption of CO and hexane. MOF-74, an isostructural family with coordinatively unsaturated metal centers of cobalt, magnesium, nickel, or zinc, was investigated for the metal center’s impact on stability and adsorption. Pre-treatment conditions to optimize accessibility were found that maximize solvent removal while retaining structural integrity. The impact of air exposure on equilibrium CO capacity was investigated, and these predictions were compared to dynamic conditions, separating CO from nitrogen or air at room temperature. The cobalt analog loses only 25% of its CO capacity with air exposure, retaining higher capacity than the other analogs under ideal conditions. Unlike cobalt, the magnesium analog does not follow the predicted trends with air exposure, having higher dynamic capacities with pre-exposed samples. Under all dynamic conditions, the nickel analog oxidized a portion of the carbon monoxide feed.
179

Synthese und Charakterisierung neuer metall-organischer Gerüststrukturen zur Anwendung in der enantioselektiven Katalyse und Gasspeicherung

Hauptvogel, Ines Maria 10 December 2012 (has links) (PDF)
Zielstellung der durchgeführten Arbeiten war die Entwicklung neuer hochporöser metall-organischer Gerüststrukturen (engl.: metal-organic frameworks, MOFs) durch die Verwendung aufgeweiteter Linkermoleküle. Hierfür wurden verschiedene Synthesestrategien verfolgt. Zum einen wurde die Ausbildung von Layer-Pillar-Strukturen auf der Basis von Anthracen-Linkern genutzt, um poröse und sehr stabile metall-organische Gerüstverbindungen darzustellen. Außerdem wurden aufgeweitete trigonale Linkermoleküle bzw. eine Kombination von bi- und tridentaten Liganden verwendet, um hochporöse Koordinationspolymere zu synthetisieren. Zudem wurde die Synthese chiraler poröser Koordinationspolymere durch die Nutzung des modifizierten TADDOL-Katalysators als chirale organische Komponente verfolgt, um somit einen heterogenen Katalysator für die enantioselektive Katalyse zu gewinnen. Im Rahmen der vorliegenden Arbeit konnten die verschiedenen Synthesestrategien erfolgreich angewendet werden. Durch die Umsetzung des bidentaten Linkers 4,4´-Anthracen-9,10-diyldibenzoesäure und dem Säulenliganden 1,4-Diazabicyclo[2.2.2]octan (Dabco) mit verschiedenen Metallsalzen konnte eine neue Reihe isotyper, poröser Layer-Pillar-Verbindungen (DUT-30, DUT = Dresden University of Technology) mit einer sehr guten Stabilität gegenüber Luft und Feuchtigkeit dargestellt werden. Die Strukturen zeigen eine äußerst hohe Flexibilität, sodass sieben verschiedene Phasen der Verbindungen gefunden werden konnten. Dadurch sind diese Materialien prädestiniert zur Entfernung von Schadstoffen, wie z.B. organischen Lösungsmitteldämpfen, aus der Luft. Auch die Verwendung von trigonalen Linkern kann zur Synthese hochporöse Koordinationspolymere genutzt werden. Dies wurde anhand des Linkers 1,3,5-Tri-(4´-carboxy(1,1´-biphenyl)-4-yl)benzen erprobt. Die Umsetzung des Linkers mit Zinknitrat bzw. Cobaltnitrat führte zu den hexagonalen Schichtstrukturen DUT-40 und DUT-44. DUT-43 besteht ebenfalls aus einer derartigen hexagonalen Schichtstruktur, wobei hier jedoch die Verwendung von 4,4´-Biphenyldicarbonsäure als Co-Linker eine teilweise Verknüpfung der Schichten ermöglicht. Außerdem konnte durch die Umsetzung des tridentaten Linkers mit Kupfernitrat die Struktur von DUT-54 gebildet werden. In dieser liegen eindimensionale Stränge vor, wobei es zu einer gegenseitigen Durchdringung kommt und damit eine dreidimensionale Kanalstruktur entsteht. Eine weitere Synthesestrategie zur Erzeugung hochporöser Materialien nutzt die Verwendung von Co-Linkern für die Erzeugung der Koordinationspolymere. Hier war in der Vergangenheit vor allem die Kombination von bi- und tridentaten Linkern erfolgreich. Nutzt man als bidentaten Vertreter 9,10-Anthracendicarbonsäure, so eignet sich 4,4´,4´´-Benzen-1,3,5-triyltribenzoesäure als tridentater Co-Linker. Die solvothermale Umsetzung der beiden Linker in verschiedenen Lösungsmittelgemischen führte zu zwei neuen porösen Kooordinationspolymeren, welche beide Linkerarten enthalten. Um jedoch gezielt ein hochporöses und stabiles Material erzeugen zu können wurde eine Struktur simuliert, welche isoretikulär zu der bekannten Struktur DUT-6 ist, welche ebenfalls nach dem Prinzip der Kombination von bi- und tridentaten Liganden dargestellt wurde. Die zu erzeugende Struktur beruht auf dem tridentaten Linker 1,3,5-Tri-(4´-carboxy-(1,1´-biphenyl)-4-yl)-benzen und dem bidentaten Linker 1,4-Bi-p-carboxyphenylbuta-1,3-dien, welcher exakt die richtige Länge aufweist, um in diese Struktur eingebaut zu werden. Die Umsetzung von basischem Zinkacetat mit einem Gemisch der beiden Linker führte zu der zuvor simulierten Struktur. Für diese Verbindung, DUT-60, konnte eine spezifische Oberfläche von 6500 m2g-1 und ein Porenvolumen von 3.5 cm3g-1 berechnet werden, welche zu den höchsten jemals für poröse Koordinationspolymere ermittelten Werte gezählt werden können. Ein weiterer Bereich der vorliegenden Arbeit galt der Entwicklung eines neuen chiralen und porösen Koordinationspolymers, welches in der heterogenen enantioselektiven Katalyse eingesetzt werden kann. Dafür wurde der aus der homogenen Katalyse bekannte TADDOL-Linker modifiziert. Durch die solvothermale Umsetzung dieses Linkers mit Zinknitrat konnte die Verbindung DUT-39 erhalten werden. Diese zeigt hervorragende Werte bezüglich ihres Adsorptionsverhaltens für verschiedene Gase und zählt somit zu den chiralen, metall-organischen Gerüstverbindungen mit den höchsten Porositäten. Außerdem zeigt die Verbindung eine hohe thermische Stabilität sowie eine gute Stabilität gegenüber Luftfeuchte, was sie zu einem attraktiven Kandidaten für die heterogene enantioselektive Katalyse macht.
180

Noble and transition metal aromatic frameworks: synthesis, properties, and stability

Carson, Cantwell G. 14 May 2009 (has links)
In the first section, the electrical conductivity of rhodium phenylene-diisocyanide polymer is reported to be 3.4E-11 S/cm. However, the conductivity also exhibits an inverse exponential decay in air with t = 8 days. This change is attributed to the oxidation of the isocyanide functional group to an isocyanate, leading to degradation in the long-range metal-metal bonding, the dominant conductivity mechanism. Using a more stable carboxylate ligand, the Cu terephthalate (TPA) system is studied and compared against the Mg, Co, Ni, and Zn terephthalates. A synthesis in N,N-dimethylformamide (DMF) is developed and large quantities of the Cu(TPA)DMF can be synthesized in air. The crystal structure of the Cu(TPA) DMF is shown to be in the C2/m spacegroup. Upon desolvation, the Cu(TPA) is shown to have a large surface area of 625 m2/g. The magnetic susceptibility of the Cu(TPA) indicates anti-ferromagnetic coupling between adjacent Cu centers in the same dimer. The thermal stability of the Zn, Ni, Co, and Mg terephthalates is shown to increase with decreasing symmetric carboxylate stretch in the IR. The magnetic susceptibilities of the Co and Ni terephthalates have paramagnetic behavior, with a Weiss temperature of T = -12.9 K and T = 8.8 for Co(TPA) DMF and Ni(TPA)DMF respectively. A heterometallic Zn-Cu terephthalate is synthesized with Cu concentrations ranging from 0 to 100%. Upon the addition of Cu, Zn-rich frameworks increase in surface area, change in thermal stability, and increase their solvent retention from 16% to 25%. Zn is shown to couple with Cu in the same dimer at a high rate, changing the behavior of the dimer from anti-ferromagnetic to paramagnetic. The Weiss temperature suggests weak ferromagnetic interaction.

Page generated in 0.0547 seconds