• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 728
  • 139
  • 31
  • 25
  • 14
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 1082
  • 1082
  • 634
  • 513
  • 312
  • 307
  • 264
  • 258
  • 257
  • 231
  • 136
  • 114
  • 103
  • 98
  • 87
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

CMOS current mode A/D converter with improved power efficiency using current mirror memory cells.

January 2004 (has links)
Chi-Hong, Chan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 114-117). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.iv / Table of Contents --- p.vi / List of Figures --- p.x / List of Tables --- p.xiii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1. --- System on a Chip (SoC) Design Challenges --- p.1 / Chapter 1.2. --- Research Objective --- p.3 / Chapter 1.3. --- Thesis Organization --- p.3 / Chapter 2. --- Fundamentals of CMOS Current Mode A/D converters --- p.5 / Chapter 2.1. --- Overview --- p.5 / Chapter 2.2. --- Current Mode Signal Processing --- p.5 / Chapter 2.2.1. --- Voltage Mode Circuit Design Technique --- p.5 / Chapter 2.2.2. --- Current Mode Circuit Design Technique --- p.6 / Chapter 2.2.3. --- First Generation (FG) SI Memory Cell vs. Second Generation (SG) SI Memory Cell --- p.7 / Chapter 2.3. --- Ideal Nyquist Rate A/D converters --- p.9 / Chapter 2.4. --- Static Performance Parameters --- p.13 / Chapter 2.4.1. --- Differential Non-Linearity (DNL) --- p.13 / Chapter 2.4.2. --- Integral Non-Linearity (INL) --- p.13 / Chapter 2.5. --- Performance Parameters in Frequency Domain --- p.15 / Chapter 2.5.1. --- Signal-to-Noise and Distortion Ratio (SNDR) --- p.16 / Chapter 2.5.2. --- Effective Number of Bits (ENOB) --- p.16 / Chapter 2.5.3. --- Spurious Free Dynamic Range (SFDR) --- p.16 / Chapter 3. --- Proposed Current Mirror Memory Cell (CMMC) --- p.18 / Chapter 3.1. --- Overview --- p.18 / Chapter 3.2. --- Working Principle of CMMC --- p.18 / Chapter 3.3. --- CMMC vs. FG SI Cells --- p.20 / Chapter 3.4. --- Analog Delay Cell Implementation using the two kinds of memory cells --- p.21 / Chapter 3.4.1. --- Delay Cell Implementation by FG Memory Cells --- p.22 / Chapter 3.4.2. --- Delay Cell Implementation by CMMC --- p.23 / Chapter 3.4.3. --- Simulation Results --- p.24 / Chapter 3.5. --- Conclusion --- p.27 / Chapter 4. --- Architectural Design of the 12-Bit CMOS A/D Converter --- p.28 / Chapter 4.1. --- Overview --- p.28 / Chapter 4.2. --- The Floating Analog-to-Digital Converter --- p.28 / Chapter 4.3. --- Conversion Algorithm --- p.32 / Chapter 4.4. --- Accuracy Considerations Due to Circuit Non-Idealities --- p.34 / Chapter 4.4.1. --- Gain Error of Residual Generator --- p.34 / Chapter 4.4.2. --- Offset Error of Residual Generator --- p.36 / Chapter 4.5. --- Speed Consideration --- p.36 / Chapter 4.6. --- Power Consumption vs. No. of Bits per Stage --- p.38 / Chapter 4.7. --- Final Architectural Design --- p.40 / Chapter 5. --- A/D Converter Implementation using CMMC --- p.41 / Chapter 5.1. --- Overview --- p.41 / Chapter 5.2. --- Current Sample-and-Hold --- p.41 / Chapter 5.2.1. --- Signal Independent CFT Cancellation --- p.43 / Chapter 5.2.2. --- Signal Dependent CFT Cancellation --- p.44 / Chapter 5.2.3. --- Complete CFT Cancellation --- p.45 / Chapter 5.2.4. --- CFT Cancellation by Transmission Gate --- p.45 / Chapter 5.2.5. --- CFT Cancellation by Dummy Switches --- p.47 / Chapter 5.3. --- Common Mode Feed Forward (CMFF) --- p.48 / Chapter 5.4. --- Differential Current Comparator --- p.52 / Chapter 5.4.1. --- Regenerative Latch --- p.53 / Chapter 5.4.2. --- Pre-amplifier --- p.54 / Chapter 5.5. --- Residual Generator --- p.55 / Chapter 5.6. --- Thermometer to Binary code Decoder --- p.57 / Chapter 6. --- Layout Considerations --- p.59 / Chapter 6.1. --- Overview --- p.59 / Chapter 6.2. --- Process Introduction --- p.59 / Chapter 6.3. --- Common Centroid Layout --- p.60 / Chapter 6.4. --- The Design of Power Supply Rails --- p.63 / Chapter 6.5. --- Shielding --- p.64 / Chapter 6.6. --- Layout of the whole design --- p.65 / Chapter 7. --- Simulation Results --- p.67 / Chapter 7.1. --- Overview --- p.67 / Chapter 7.2. --- Simulation Results of the Current Sample-and-Hold --- p.67 / Chapter 7.3. --- Simulation Results of the Differential Current Comparator --- p.70 / Chapter 7.4. --- Simulation Results of the overall ADC using One-Stage Simulation Result --- p.71 / Chapter 7.5. --- Power Simulation of the Overall 12-Bit ADC --- p.75 / Chapter 7.6. --- Summary --- p.78 / Chapter 8. --- Measurement Results --- p.79 / Chapter 8.1. --- Overview --- p.79 / Chapter 8.2. --- PCB Design Consideration --- p.79 / Chapter 8.3. --- Measurement Setup --- p.82 / Chapter 8.4. --- Measurement Result --- p.84 / Chapter 8.4.1. --- Static Parameters --- p.84 / Chapter 8.4.2. --- Frequency Domain Measures --- p.85 / Chapter 8.5. --- Discussion --- p.90 / Chapter 9. --- Conclusion --- p.95 / Chapter 9.1. --- Research Methodology of this Project --- p.95 / Chapter 9.2. --- Comparison between Voltage Mode and Current Mode Circuit --- p.97 / Chapter 9.3. --- Contribution of this Project --- p.98 / Chapter A. --- Appendices --- p.99 / Chapter A.I. --- Small Signal Analysis on CMMC and FG Memory Cell --- p.99 / Chapter A.II. --- The ESD Protection on the ADC --- p.102 / Chapter A.III. --- The Histogram Test to determine the DNL and INL of ADC --- p.104 / Chapter A.IV. --- Measurement Result of a Commercially Available ADC AD7820 --- p.106 / Chapter A.V. --- Pin Assignment of the Current Mode ADC --- p.109 / Chapter A.VI. --- Schematics of the Current Mode ADC --- p.111 / Chapter A.VII. --- The Chip Micrograph --- p.113 / Bibliography --- p.114
232

Low voltage and low power circuit techniques for CMOS RF frequency synthesizer application. / CUHK electronic theses & dissertations collection

January 2013 (has links)
在過去的幾十年中,無線通信已經歷了顯著的發展,並成為日常生活中必不可少的一部分。隨著對可移動便攜式電子設備的需求不斷增加,功耗已经成為射頻前端電路設計的一個最關鍵參數。在便攜式無線消費類電子中,頻率綜合器在收发机设计中提供本地振盪器(LO),它又是一個高功耗的子系統之一。降低頻率綜合器的功耗將會直接影响電池的使用時間。 / 為了驗證進來新型的低功耗技术,本文基於低成本的0.18微米三阱CMOS工藝,設計並實現了三個不同的電路模塊和一個頻率綜合器系統。第一個設計是一個低壓正交壓控振盪器(QVCO)和除肆分頻器的電流復用電路。在沒有損耗電壓餘量的情況下,兩個高頻模塊通過電流復用的方式,從而降低了功耗。測試結果顯示當電源電壓為1.3V ,電流消耗電流為2.7毫安。在2.2 GHz載波附近1MHz頻偏位置上的相位噪聲為 -114 dBc/Hz。第二個設計是應用於SDR的變壓器和電流復用的壓控振盪器/分頻器的電路。該電路通過調整偏置電壓,僅用一個分頻器就可以實現可變分頻比(2,3,…,9)的功能。實驗結果表明,分頻器的輸出頻率範圍從0.58至3.11 GHz,在5.72 GHz載波附近1MHz頻偏位置上的相位噪聲為-112.5 dBc / Hz,電源電壓為1.8V時,電流為4.7mA。第三個設計是應用於UWB的變壓器和電流復用的QVCO / SSBM電路。這個全新的結構電路面積為0.8平方毫米,在1.6V電源電壓下,消耗功耗約為11 mA。測量結果表明,帶外雜散抑制小於43dBc,頻率偏移1MHz位置處的相位噪聲小於-112 dBc/Hz。最後一個設計是應用於 MB-OFDM UWB的頻率綜合器。這個新結構只用了一個電感在不犧牲主要性能的情況下,可以實現小的芯片尺寸和低的功耗。測試結果全部基於UWB的頻段,相位噪聲為-119 dBc/Hz@10 MHz,電源電壓1.2 V,總電流消耗為24.7mA。 / Over the past decades, wireless communication has experienced a remarkable development and become an essential part of daily life. With the rapid increasing demand for mobile and portable electronic devices, the power dissipation has become one of the most critical design parameters, especially for RF front-ends. In portable wireless consumer electronics, the RF frequency synthesizer is one of the most power-consuming subsystems, which serves as local oscillator (LO) in transceiver design. Any power saving in frequency synthesizer will directly affect the running time of battery. / To demonstrate recent innovation in low power techniques, three different circuit blocks and one frequency synthesizer have been developed and fabricated in low-cost 0.18μm triple-well CMOS process. The first design is a low-voltage current reused quadrature VCO and divider-by-4 frequency divider circuit. By the novel sharing of transistors between the two high frequency blocks, the power consumption of the overall design can be reduced with little penalty on voltage headroom. Experimental results show a phase noise level of -114 dBc/Hz at 1 MHz offset from 2.2 GHz carrier and consumes 2.7 mA from a 1.3V power supply. The second design is a transformer-based current reused VCO/ILFD circuits for SDR application. By the adoption of bias tuning techniques, variable division ratios (2,3,…,9) can be achieved with a single divider circuit. Experimental results show an output frequency ranging from 0.58 to 3.11 GHz and a phase noise level of -112.5 dBc/Hz at 1 MHz offset from 5.72 GHz carrier, with a consumed current of 4.7 mA from a 1.8V power supply. The third design is a transformer-based current-reused QVCO/SSBM circuit for UWB application. The prototype is the first of its kind, while occupies a core area of 0.8 mm² and consumes roughly 11 mA from 1.6V power supply. Measurement results show that the out-of-band spurious rejection and phase noise at 1 MHz offset are better than 43 dBc and -112 dBc/Hz respectively. The final design is a frequency synthesizer for MB-OFDM UWB application. It uses a single inductor approach and novel system architecture to realize compact die size and low power consumption without sacrificing major performance. Experimental results show a phase noise level of -119 dBc/Hz@10 MHz offset for all UWB bands and consumes 24.7 mA from a 1.2 V power supply. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Li, Wei. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / Acknowledgement --- p.v / Table of Contents --- p.vi / List of Figures --- p.xi / List of Table --- p.xvi / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Motivation --- p.1 / Chapter 1.2 --- Outline of Dissertation --- p.3 / References --- p.5 / Chapter CHAPTER 2 --- A NOVEL LOW-VOLTAGE CURRENT REUSED, QUADRATURE VCO AND DIVIDE-BY-4 FREQUENCY DIVIDER --- p.6 / Chapter 2.1 --- Introduction --- p.6 / Chapter 2.2 --- Oscillation Principle of VCO --- p.9 / Chapter 2.3 --- Circuit Implementation --- p.14 / Chapter 2.3.1 --- Back-gate Coupled QVCO --- p.14 / Chapter 2.3.2 --- Divider-by-4 Frequency Divider --- p.20 / Chapter 2.3.3 --- Current Reuse QVCO and Frequency Divider --- p.24 / Chapter 2.3.3.1 --- Voltage Headroom --- p.25 / Chapter 2.3.3.2 --- Startup Condition --- p.26 / Chapter 2.3.3.3 --- Operating Range --- p.27 / Chapter 2.3.3.4 --- Phase Noise --- p.28 / Chapter 2.3.3.5 --- Transient Response --- p.30 / Chapter 2.4 --- Experimental Result --- p.31 / Chapter 2.4.1 --- Frequency Tuning Range --- p.32 / Chapter 2.4.2 --- Phase Noise --- p.33 / Chapter 2.4.3 --- Transient Response --- p.34 / Chapter 2.4.4 --- Performance Comparison --- p.34 / Chapter 2.5 --- Summary --- p.36 / Reference --- p.36 / Chapter CHAPTER 3 --- A TRANSFORMER BASED CURRENT REUSED VCO/ILFD CIRCUIT WITH VARIABLE DIVIDING RATIOS --- p.41 / Chapter 3.1 --- Introduction --- p.41 / Chapter 3.2 --- Transformer Design --- p.43 / Chapter 3.2.1 --- Ideal Transformer --- p.43 / Chapter 3.2.2 --- Transformer Tank --- p.45 / Chapter 3.3 --- Design of Current Reused VCO/ILFD --- p.49 / Chapter 3.3.1 --- Transformer Implement --- p.50 / Chapter 3.3.2 --- VCO Implement --- p.52 / Chapter 3.3.3 --- ILFD Implement --- p.54 / Chapter 3.4 --- Experiment Results --- p.60 / Chapter 3.4.1 --- Phase Noise --- p.61 / Chapter 3.4.2 --- Frequency Tuning Range --- p.62 / Chapter 3.4.3 --- Transient Response --- p.64 / Chapter 3.4.4 --- Performance Comparison --- p.65 / Chapter 3.5 --- Summary --- p.66 / Reference --- p.66 / Chapter CHAPTER --- 4 CURRENT REUSED QVCO/SSBM CIRCUIT FOR MB-OFDM UWB FREQUENCY SYNTHESIZER --- p.70 / Chapter 4.1 --- Introduction --- p.70 / Chapter 4.2 --- Proposed solution for UWB frequency synthesizer --- p.72 / Chapter 4.3 --- Bimodal Oscillation Phenomenon --- p.74 / Chapter 4.4 --- Design of Current Reused QVCO/SSBM Circuit --- p.81 / Chapter 4.4.1 --- Transformer Implementation --- p.82 / Chapter 4.4.2 --- QVCO Implementation --- p.85 / Chapter 4.4.3 --- SSBM Implementation --- p.88 / Chapter 4.5 --- Experimental Results --- p.89 / Chapter 4.5.1 --- Phase Noise --- p.91 / Chapter 4.5.2 --- Spur Suppression --- p.92 / Chapter 4.5.3 --- Performance Comparison --- p.93 / Chapter 4.6 --- Summary --- p.94 / Reference --- p.95 / Chapter CHAPTER 5 --- A SINGLE INDUCTOR APPROACH TO THE DESIGN OF LOW-VOLTAGE MB-OFDM UWB FREQUENCY SYNTHESIZER --- p.98 / Chapter 5.1 --- Introduction --- p.98 / Chapter 5.2 --- Frequency Synthesizer Background --- p.101 / Chapter 5.2.1 --- General Consideration --- p.101 / Chapter 5.2.1.1 --- Frequency Requirement --- p.102 / Chapter 5.2.1.2 --- Phase Noise --- p.103 / Chapter 5.2.1.3 --- Spurious Tones --- p.104 / Chapter 5.2.1.4 --- Switching Time --- p.105 / Chapter 5.2.2 --- Overview of MB-OFDM UWB Frequency Synthesizer --- p.105 / Chapter 5.3 --- Frequency Synthesizer System Design --- p.109 / Chapter 5.3.1 --- Proposed Frequency synthesizer Architecture --- p.109 / Chapter 5.3.2 --- Stability Analysis --- p.111 / Chapter 5.3.3 --- Phase Noise Contribution --- p.115 / Chapter 5.4 --- Circuit Implementation --- p.121 / Chapter 5.4.1 --- Current Reused Multiplier/SSBM --- p.121 / Chapter 5.4.2 --- 12-Phase Cross-coupled Ring VCO --- p.128 / Chapter 5.4.3 --- Regenerative Frequency Divider --- p.131 / Chapter 5.4.4 --- Tri-mode Phase Calibration Buffer --- p.132 / Chapter 5.4.5 --- Phase-Frequency Detector(PFD) --- p.134 / Chapter 5.4.6 --- Charge Pump --- p.135 / Chapter 5.4.7 --- CML Divider --- p.136 / Chapter 5.5 --- Experimental Result --- p.137 / Chapter 5.5.1 --- Frequency Tuning Range --- p.139 / Chapter 5.5.2 --- Phase Noise --- p.140 / Chapter 5.5.3 --- Spur Suppression --- p.141 / Chapter 5.5.4 --- Performance Comparison --- p.142 / Chapter 5.6 --- Summary --- p.143 / Reference --- p.143 / Chapter CHAPTER 6 --- CONCLUSIONS AND FUTURE WORKS --- p.147 / Chapter 6.1 --- Conclusions --- p.147 / Chapter 6.2 --- Future Works --- p.149 / List of Publication --- p.150
233

A 1 V 1.575 GHz CMOS integrated receiver front-end. / CUHK electronic theses & dissertations collection

January 2004 (has links)
Cheng Wang Chi. / "October 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 135-139) / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
234

A low voltage 900 MHz CMOS mixer.

January 2001 (has links)
by Cheng Wang Chi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 108-111). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgments --- p.v / Contents --- p.vii / List of Tables --- p.xiii / List of Figures --- p.xiv / Chapter Chapter1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation --- p.1 / Chapter 1.2 --- Technical Challenges of CMOS RF Design --- p.2 / Chapter 1.3 --- General Background --- p.2 / Chapter 1.3.1 --- Bipolar and CMOS Mixers --- p.4 / Chapter 1.4 --- Research Goal --- p.4 / Chapter 1.5 --- Thesis Outline --- p.5 / Chapter Chapter2 --- RF Fundamentals --- p.6 / Chapter 2.1 --- Introduction --- p.6 / Chapter 2.2 --- Frequency Translation --- p.6 / Chapter 2.3 --- Conversion Gain --- p.8 / Chapter 2.4 --- Linearity --- p.8 / Chapter 2.4.1 --- 1-dB Compression Point --- p.11 / Chapter 2.4.2 --- Third Intercept Point (IP3) --- p.11 / Chapter 2.5 --- Dynamic Range (DR) --- p.13 / Chapter 2.5.1 --- Spurious-Free Dynamic Range (SFDR) --- p.13 / Chapter 2.5.2 --- Blocking Dynamic Range (BDR) --- p.14 / Chapter 2.6 --- Blocking and Desensitization --- p.15 / Chapter 2.7 --- Port-to-Port Isolation --- p.15 / Chapter 2.8 --- Single-Balanced and Double-Balanced Mixers --- p.16 / Chapter 2.9 --- Noise --- p.16 / Chapter 2.9.1 --- Noise in the Local Oscillator --- p.17 / Chapter 2.9.2 --- Noise Figure --- p.18 / Chapter Chapter3 --- Downconversion Mixer --- p.19 / Chapter 3.1 --- Introduction --- p.19 / Chapter 3.2 --- Review of Mixer Topology --- p.19 / Chapter 3.2.1 --- Square-Law Mixer --- p.20 / Chapter 3.2.2 --- CMOS Gilbert Cell --- p.21 / Chapter 3.2.3 --- Potentiometric Mixer --- p.22 / Chapter 3.2.4 --- Subsampling Mixer --- p.23 / Chapter Chapter4 --- Proposed Downconversion Mixer --- p.24 / Chapter 4.1 --- Analysis of Proposal Mixer --- p.24 / Chapter 4.2 --- Current Folded Mirror Mixer --- p.24 / Chapter 4.2.1 --- Operating Principle --- p.25 / Chapter 4.2.2 --- Large Signal Analysis --- p.26 / Chapter 4.2.3 --- Small Signal Analysis --- p.29 / Chapter 4.3 --- Current Mode Mixer --- p.32 / Chapter 4.3.1 --- Operating Principle --- p.33 / Chapter 4.3.2 --- Large Signal Analysis --- p.33 / Chapter 4.3.3 --- Small Signal Analysis --- p.34 / Chapter 4.3.4 --- V-I Converter --- p.36 / Chapter 4.3.4.1 --- Equation Analysis --- p.37 / Chapter 4.4 --- Second Order Effects --- p.38 / Chapter 4.4.1 --- Device Mismatch --- p.38 / Chapter 4.4.2 --- Body Effect --- p.39 / Chapter 4.5 --- Single-ended to Differential-ended converter --- p.39 / Chapter 4.6 --- Output Buffer Stage --- p.40 / Chapter 4.7 --- Noise Theory --- p.41 / Chapter 4.7.1 --- SSB and DSB Noise Figure --- p.42 / Chapter 4.7.2 --- Noise Figure --- p.43 / Chapter Chapter5 --- Simulation Results --- p.44 / Chapter 5.1 --- Introduction --- p.44 / Chapter 5.2 --- Current Folded Mirror Mixer --- p.44 / Chapter 5.2.1 --- Conversion Gain --- p.45 / Chapter 5.2.2 --- Linearity --- p.46 / Chapter 5.2.2.1 --- 1dB Compression Point and IIP3 --- p.49 / Chapter 5.2.3 --- Output Buffer Stage --- p.49 / Chapter 5.3 --- Current Mode Mixer --- p.51 / Chapter 5.3.1 --- Conversion Gain --- p.51 / Chapter 5.3.2 --- Linearity --- p.52 / Chapter 5.3.2.1 --- 1-dB Compression Point and IIP3 --- p.52 / Chapter 5.3.3 --- Output Buffer Stage --- p.53 / Chapter 5.3.4 --- V-I Converter --- p.54 / Chapter 5.4 --- Single-ended to Differential-ended Converter --- p.55 / Chapter Chapter6 --- Layout Consideration --- p.57 / Chapter 6.1 --- Introduction --- p.57 / Chapter 6.2 --- CMOS transistor Layout --- p.57 / Chapter 6.3 --- Resistor Layout --- p.59 / Chapter 6.4 --- Capacitor Layout --- p.60 / Chapter 6.5 --- Substrate Tap --- p.62 / Chapter 6.6 --- Pad Layout --- p.63 / Chapter 6.7 --- Analog Cell Layout --- p.64 / Chapter Chapter7 --- Measurements --- p.65 / Chapter 7.1 --- Introduction --- p.65 / Chapter 7.2 --- Downconversion mixer --- p.66 / Chapter 7.3 --- PCB Layout --- p.66 / Chapter 7.4 --- Test Setups --- p.68 / Chapter 7.4.1 --- Measurement Setup for S-Parameter --- p.68 / Chapter 7.4.2 --- Measurement Setup for 1-dB Compression Point and IIP3 --- p.70 / Chapter 7.5 --- Measurement Result of the Current Folded Mirror Mixer --- p.72 / Chapter 7.5.1 --- S-Parameter Measurement --- p.75 / Chapter 7.5.2 --- Conversion Gain and the Effect of the IF Variation --- p.77 / Chapter 7.5.3 --- 1-dB Compression Point --- p.78 / Chapter 7.5.4 --- IIP3 --- p.79 / Chapter 7.5.5 --- LO Power Effect to the Mixer --- p.81 / Chapter 7.5.6 --- Performance Summaries of the Current Folded Mirror Mixer --- p.82 / Chapter 7.5.7 --- Discussion --- p.83 / Chapter 7.6 --- Measurement Result of the Current Mode Mixer --- p.84 / Chapter 7.6.1 --- S-Parameter Measurement --- p.87 / Chapter 7.6.2 --- Conversion Gain and the Effect of the IF Variation --- p.89 / Chapter 7.6.3 --- 1-dB Compression Point --- p.90 / Chapter 7.6.4 --- IIP3 --- p.91 / Chapter 7.6.5 --- LO Power Effect to the Mixer --- p.93 / Chapter 7.6.6 --- Performance Summaries of the Current Mode Mixer --- p.94 / Chapter 7.6.7 --- Discussion --- p.95 / Chapter 7.7 --- Measurement Result of the Single-ended to Differential-ended converter --- p.96 / Chapter 7.7.1 --- Measurement Setup for the Phase Difference --- p.97 / Chapter 7.7.2 --- Phase Difference Measurement --- p.98 / Chapter 7.7.3 --- Discussion --- p.99 / Chapter Chapter8 --- Conclusion --- p.100 / Chapter Appendix A --- Characteristics of the Gilbert Quad Pair --- p.102 / Chapter A.1 --- Large-Signal Analysis --- p.102 / Chapter Appendix B --- Characteristics of the V-I Converter --- p.105 / Chapter B.1 --- Large-Signal Analysis --- p.105 / Bibliography --- p.108
235

Architectures and Circuit Techniques for High-Performance Field-Programmable CMOS Software Defined Radios

Zhu, Jianxun January 2017 (has links)
Next-generation wireless communication systems put more stringent performance requirements on the wireless RF receiver circuits. Sensitivity, linearity, bandwidth and power consumption are some of the most important specifications that often face tightly coupled tradeoffs between them. To increase the data throughput, a large number of fragmented spectrums are being introduced to the wireless communication standards. Carrier aggregation technology needs concurrent communication across several non-contiguous frequency bands, which results in a rapidly growing number of band combinations. Supporting all the frequency bands and their aggregation combinations increases the complexity of the RF receivers. Highly flexible software defined radio (SDR) is a promising technology to address these applications scenarios with lower complexity by relaxing the specifications of the RF filters or eliminating them. However, there are still many technology challenges with both the receiver architecture and the circuit implementations. The performance requirements of the receivers can also vary across different application scenario and RF environments. Field-programmable dynamic performance tradeoff can potentially reduce the power consumption of the receiver. In this dissertation, we address the performance enhancement challenges in the wideband SDRs by innovations at both the circuit building block level and the receiver architecture level. A series of research projects are conducted to push the state-of-the-art performance envelope and add features such as field-programmable performance tradeoff and concurrent reception. The projects originate from the concept of thermal noise canceling techniques and further enhance the RF performance and add features for more capable SDR receivers. Four generations of prototype LNA or receiver chips are designed, and each of them pushes at least one aspect of the RF performance such as bandwidth, linearity, and NF. A noise-canceling distributed LNA breaks the tradeoff between NF and RF bandwidth by introducing microwave circuit techniques from the distributed amplifiers. The LNA architecture uniquely provides ultra high bandwidth and low NF at low frequencies. A family of field-programmable LNA realized field-programmable performance tradeoff with current-reuse programmable transconductance cells. Interferer-reflecting loops can be applied around the LNAs to improve their input linearity by rejecting the out-of-band interferers with a wideband low in- put impedance. A low noise transconductance amplifier (LNTA) that operates in class-AB-C is invented to can handle rail-to-rail out-of-band blocker without saturation. Class-AB and class-C transconductors form a composite amplifier to increase the linear range of the input voltage. A new antenna interface named frequency-translational quadrature-hybrid (FTQH) breaks the input impedance matching requirement of the LNAs by introducing quadrature hybrid couplers to the CMOS RFIC design. The FTQH receiver achieves wideband sub-1dB NF and supports scalable massive frequency-agile concurrent reception.
236

Cu2O thin films for p-type metal oxide thin film transistors

Han, Sanggil January 2018 (has links)
The rapid progress of n-type metal oxide thin film transistors (TFTs) has motivated research on p-type metal oxide TFTs in order to realise metal oxide-based CMOS circuits which enable low power consumption large-area electronics. Cuprous oxide (Cu2O) has previously been proposed as a suitable active layer for p-type metal oxide TFTs. The two most significant challenges for achieving good quality Cu2O TFTs are to overcome the low field-effect mobility and an unacceptably high off-state current that are a feature of devices that have been reported to date. This dissertation focuses on improving the carrier mobility, and identifying the main origins of the low field-effect mobility and high off-state current in Cu2O TFTs. This work has three major findings. The first major outcome is a demonstration that vacuum annealing can be used to improve the carrier mobility in Cu2O without phase conversion, such as oxidation (CuO) or oxide reduction (Cu). In order to allow an in-depth discussion on the main origins of the very low carrier mobility in as-deposited films and the mobility enhancement by annealing, a quantitative analysis of the relative dominance of the main conduction mechanisms (i.e. trap-limited and grain-boundary-limited conduction) is performed. This shows that the low carrier mobility of as-deposited Cu2O is due to significant grain-boundary-limited conduction. In contrast, after annealing, grain-boundary-limited conduction becomes insignificant due to a considerable reduction in the energy barrier height at grain boundaries, and therefore trap-limited conduction dominates. A further mobility improvement by an increase in annealing temperature is explained by a reduction in the effect of trap-limited conduction resulting from a decrease in tail state density. The second major outcome of this work is the observation that grain orientation ([111] or [100] direction) of sputter-deposited Cu2O can be varied by control of the incident ion-to-Cu flux ratio. Using this technique, a systematic investigation on the effect of grain orientation on carrier mobility in Cu2O thin films is presented, which shows that the [100] Cu2O grain orientation is more favourable for realising a high carrier mobility. In the third and final outcome of this thesis, the temperature dependence of the drain current as a function of gate voltage along with the C-V characteristics reveals that minority carriers (electrons) cause the high off-state current in Cu2O TFTs. In addition, it is observed that an abrupt lowering of the activation energy and pinning of the Fermi energy occur in the off-state, which is attributed to subgap states at 0.38 eV below the conduction band minimum. These findings provide readers with the understanding of the main origins of the low carrier mobility and high off-state current in Cu2O TFTs, and the future research direction for resolving these problems.
237

A single chip carbon nanotube sensor.

January 2007 (has links)
Chow, Chun Tak. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 82-89). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background and Motivation --- p.1 / Chapter 1.2 --- Objective --- p.2 / Chapter 1.3 --- Contributions --- p.2 / Chapter 1.4 --- Organization of the Dissertation --- p.3 / Chapter 2 --- Carbon Nanotubes as Sensing Elements --- p.4 / Chapter 2.1 --- Introduction --- p.4 / Chapter 2.2 --- Introduction to Carbon Nanotubes --- p.5 / Chapter 2.3 --- Fabrication of Single Carbon Nanotube Sensors --- p.6 / Chapter 2.4 --- Batch Fabrication of CNT Sensors using Dielectrophoretic Force --- p.7 / Chapter 2.4.1 --- Basic CNTs Sensor Fabrication Process using DEP Process --- p.7 / Chapter 2.4.2 --- Modification of Fabrication Process --- p.9 / Chapter 2.5 --- Noise in Resistors --- p.9 / Chapter 2.5.1 --- Thermal Noise in Traditional Resistors --- p.10 / Chapter 2.5.2 --- Flicker Noise (1/f )Noise in Traditional Resistors --- p.11 / Chapter 2.6 --- Noise in CNTs Resistors --- p.11 / Chapter 2.6.1 --- Literature Review --- p.11 / Chapter 2.6.2 --- Noise in CNT Sensors Fabricated using DEP Process --- p.12 / Chapter 2.7 --- CNT Sensors --- p.16 / Chapter 2.7.1 --- Pressure Sensors --- p.17 / Chapter 2.7.2 --- Fluid-Flow Sensors --- p.18 / Chapter 2.7.3 --- Alcohol Sensors --- p.18 / Chapter 2.8 --- CNT Sensor Response --- p.19 / Chapter 2.8.1 --- Traditional Sensor Response Measurement Techniques . . . --- p.19 / Chapter 2.9 --- Accuracy of CNT Sensor System --- p.22 / Chapter 2.10 --- Summary --- p.24 / Chapter 3 --- Design and Analysis of a CNT-CMOS Integrated Sensor --- p.25 / Chapter 3.1 --- Introduction --- p.25 / Chapter 3.2 --- Introduction to CNT-CMOS Integration --- p.26 / Chapter 3.2.1 --- Difficulties with Commercial CNT Sensors --- p.26 / Chapter 3.2.2 --- Novel Idea for CNT-CMOS Integration --- p.26 / Chapter 3.3 --- Design and Analysis of a CNT-CMOS Sensor Prototype --- p.27 / Chapter 3.3.1 --- Goals of CNT-CMOS Integrated Sensor --- p.27 / Chapter 3.3.2 --- Architecture of CNT-CMOS Sensor --- p.28 / Chapter 3.3.3 --- Programmable Current Source --- p.29 / Chapter 3.3.4 --- Dual Slope ADC --- p.41 / Chapter 3.3.5 --- Power Consumption of CNT-CMOS IC --- p.53 / Chapter 3.3.6 --- Electrodes for CNT Sensor Formation --- p.53 / Chapter 3.3.7 --- Electrostatic Discharge Protection and Layout of Prototype --- p.56 / Chapter 3.4 --- Alcohol Tester --- p.60 / Chapter 3.4.1 --- Operation of Alcohol Tester --- p.60 / Chapter 3.5 --- Summary --- p.61 / Chapter 4 --- Results --- p.63 / Chapter 4.1 --- Introduction --- p.63 / Chapter 4.2 --- Chip Package and Photography --- p.63 / Chapter 4.3 --- Results from Programmable Current Source --- p.65 / Chapter 4.3.1 --- Temperature Coefficient --- p.65 / Chapter 4.3.2 --- Output Resistance --- p.66 / Chapter 4.4 --- Results from Dual Slope ADC --- p.67 / Chapter 4.5 --- Power consumption of the Integrated Circuit --- p.72 / Chapter 4.6 --- CNT Sensor Formation --- p.72 / Chapter 4.6.1 --- Noise Measurement of CNT-CMOS Integrated Sensor --- p.76 / Chapter 4.7 --- Alcohol Tester Results --- p.76 / Chapter 4.7.1 --- Carbon Resistor --- p.77 / Chapter 4.8 --- Summary --- p.77 / Chapter 5 --- Conclusion --- p.79 / Chapter 5.1 --- Future Work --- p.80 / Chapter 5.1.1 --- Detailed CNT Noise Characterization --- p.80 / Chapter 5.1.2 --- High Frequency CNT Measuring Technique --- p.81 / Chapter 5.1.3 --- Higher Degree of CMOS Integration --- p.81 / Chapter 5.2 --- Concluding Remarks --- p.81 / Bibliography --- p.82 / A Schematic Diagram of ADC Testing --- p.90
238

Structural, optical and sensing properties of cobalt and indium doped zinc oxide prepared mechano-chemically

Manamela, Mahlatse Fortunate January 2018 (has links)
Thesis ((MSc. (Physics)) -- University of Limpopo, 2018 / The mechano-chemical technique was employed to synthesise the undoped, cobalt and indium single and double doped ZnO nanoparticles powder samples. The x-ray diffraction (XRD), scanning electron microscopy (SEM), raman spectroscopy (RS), ultraviolet-visible spectroscopy (UV-vis), and photoluminescence (PL) spectroscopy were employed to characterise the prepared samples. The XRD and energy dispersive spectroscopy (EDS) results confirmed that the prepared samples were of hexagonal wurzite form. In addition, it was found that the diffraction pattern for In-ZnO nanoparticles display an additional peak which was associated with In3+ dopant. The peak suggest that In3+ ions prefer the interstitial site in the hexagonal ZnO structure. Doping the ZnO nanoparticles with Co and In did not significantly affect the lattice parameters but the average grain sizes of the nanoparticles were found to be reduced. The morphology of the samples revealed by the SEM images appear to be more spherical. The Raman modes obtained from the excitations wavelength of 514.532 nm further indicated that the prepared samples were of hexagonal ZnO structures. The energy band gap of the prepared samples were calculated from the UV-vis data which showed that the doped ZnO nanoparticles had smaller energy band gap compared to the undoped ZnO nanoparticles. The excitation wavelength of 350 nm were used in the PL study where various defects related emissions were observed for the doped and undoped ZnO nanoparticles. The kenosistec station equipment was used to investigate the prepared samples for gas sensing application. Ammonia (NH3), methane (CH4) and hydrogen sulphide (H2S) gases were probed. In all the response curves observed, the undoped and double doped ZnO nanoparticles are being favoured at a temperature range 200 – 350oC. In addition, the double doped ZnO nanoparticles was found to be more sensitive to CH4 at low temperatures and low v concentrations. / National Research Foundation (NRF) and Council for Scientific and Industrial Research (CSIR)
239

Clinical implementation of MOSFETs for entrance dose in-vitro dosimetry with high energy photons for external beam radiation therapy

Morton, Jason January 2006 (has links)
In external beam radiotherapy quality assurance is carried out on the individual components of the treatment chain. The patient simulating device, planning system and linear accelerators are tested regularly according to set protocols developed by national and international organizations. Even though these individual systems are tested errors can be made in the transfer between systems. The best quality assurance for the system is at the end of the treatment planning chain. In-vivo dosimetry measures the dose to the target volume through indirect measures at the end of the treatment planning chain and is therefore the most likely method for picking up errors which might occur earlier in the chain. Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) have been shown to have a similar error in estimating entrance dose for in-vivo dosimetry to diodes, but no studies have been done clinically with entrance dose in-vivo dosimetry with MOSFETs. The time savings for using MOSFETs makes them preferable to TLD's. Due to their small size and versatility in other applications they are useful as more than dedicated in-vivo dosimetry systems using diodes. Clinical implementation of external beam in-vivo dosimetry would add another use to the MOSFETs without purchasing more specialized equipment. My studies have shown that MOSFETs can be used clinically for external beam in-vivo dosimetry using entrance dose measurements. After the MOSFET measurement system was implemented using a custom built aluminium build up cap clinical measurements were performed. A total of 23 patients and 54 fields were studied. The mean for all clinical measurements was 1.3 %, with a standard deviation of 2.6 %. Results were normally distributed around a mean with skewness and kurtosis as -0.39 and 0.34 respectively. For breasts the mean was 1.8 %, with a standard deviation of 2.7 %. For prostates and hips the mean was 1.3 % with a standard deviation of 2.9 %. These results are similar to studies conducted with diodes and TLD's. From these results one can conclude that MOSFETs can be used for entrance dose in-vivo dosimetry and are no worse than diodes or TLD's in terms of their measurement accuracy. / Thesis (M.Sc.)--School of Chemistry and Physics, 2006.
240

Substrate coupling macromodel for lightly doped CMOS processes

Koteeswaran, Mohanalakshmi 16 September 2002 (has links)
A scalable macromodel for substrate noise coupling in lightly doped substrates with and without a buried layer has been developed. This model is based on Z-parameters and is scalable with contact size and separation. This model requires process dependent parameters that can be extracted easily from a small number of device simulations or measurements. Once these parameters are known, the model can be used for any spacing between the injecting and sensing contacts and for different contact geometries. The model is validated with measurements for a lightly doped substrate with a buried layer and predicts the substrate resistance values to within 12%. The substrate resistances obtained using the model are also in close agreement with the three-dimensional simulations for a lightly doped substrate. / Graduation date: 2003

Page generated in 0.0585 seconds