• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 35
  • 14
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 289
  • 289
  • 289
  • 234
  • 233
  • 217
  • 65
  • 61
  • 58
  • 54
  • 37
  • 36
  • 35
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Evaluation of nitrogen incorporation effects in HfO₂ gate dielectric for improved MOSFET performance

Cho, Hag-ju, 1969- 08 July 2011 (has links)
Not available / text
152

Performance enhancement in column IV mobility, bandgap, and strain engineered MOSFETs

Onsongo, David Masara, 1972- 26 July 2011 (has links)
Not available / text
153

A study of thermally nitrided silicon dioxide thin films for metal-oxide-silicon VLSI techology

劉志宏, Liu, Zhihong. January 1990 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
154

Computer-aided design of RF MOSFET power amplifiers.

Hoile, Gary Alec. January 1992 (has links)
The process of designing high power RF amplifiers has in the past relied heavily on measurements, in conjunction with simple linear theory. With the advent of the harmonic balance method and increasingly faster computers, CAD techniques can be of great value in designing these nonlinear circuits. Relatively little work has been done in modelling RF power MOSFETs. The methods described in numerous papers for the nonlinear modelling of microwave GaAsFETs cannot be applied easily to these high power devices. This thesis describes a modelling procedure applicable to RF MOSFETs rated at over 100 W. This is achieved by the use of cold S parameters and pulsed drain current measurements taken at controlled temperatures. A method of determining the required device thermal impedance is given. A complete nonlinear equivalent circuit model is extracted for an MRF136 MOSFET, a 28 V, 15 W device. This includes two nonlinear capacitors. An equation is developed to describe accurately the drain current as a function of the internal gate and drain voltages. The model parameters are found by computer optimisation with measured data. Techniques for modelling the passive components in RF power amplifiers are given. These include resistors, inductors, capacitors, and ferrite transformers. Although linear ferrite transformer models are used, nonlinear forms are also investigated. The accuracy of the MOSFET model is verified by comparison to large signal measurements in a 50 0 system. A complete power amplifier using the MRF136, operating from 118 MHz to 175 MHz is built and analysed. The accuracy of predictions is generally within 10 % for output power and DC supply current, and around 30 % for input impedance. An amplifier is designed using the CAD package, and then built, requiring only a small final adjustment of the input matching circuit. The computer based methods described lead quickly to a near-optimal design and reduce the need for extensive high power measurements. The use of nonlinear analysis programs is thus established as a valuable design tool for engineers working with RF power amplifiers. / Thesis (Ph.D.)-University of Natal, Durban, 1992.
155

Modeling hot-electron injection and impact ionization in pFET's

Duffy, Christopher James 12 1900 (has links)
No description available.
156

A precision analog small-signal model for submicron MOSFET devices

Yoon, Kwang Sub 05 1900 (has links)
No description available.
157

Reliability and hot-electron effects in analog and mixed-mode circuits

Ge, David Ying 29 April 1993 (has links)
Reliability of sub-micron analog circuits is directly related to impact ionization and the subsequent changes in threshold voltage and drain current of n-MOSFET devices. This thesis presents theory of the hot-electron effects on the device characteristics and circuit performance, explores several approaches to improve performance at both the device and circuit level, and finally shows a new composite n-MOSFET device which significantly suppresses substrate current - an indication of hot-electron degradation. By using the composite device in the output gain stage of a CMOS differential amplifier with 1p.m technology, the normalized substrate current of the n-channel device is reduced by eight orders of magnitude for a sloping input waveform. The reduction in device substrate current is achieved at the cost of increased area and reduced frequency response. Replacing conventional n-channel devices with composite n-MOSFETs provides a simple way to improve device and circuit reliability without modification of the device structure and/or fabrication process. / Graduation date: 1993
158

Poly-Si/Poly-Si(1-x)Ge(x) by sputtering techniques for thin film pMOSFET applications /

Priyanto, Muh. Wahid. Unknown Date (has links)
Thesis (MEng)--University of South Australia, 1997
159

Quantum dots and radio-frequency electrometry in silicon.

Angus, Susan J., Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2008 (has links)
This thesis describes the development and demonstration of a new technique for the fabrication of well-defined quantum dots in a bulk silicon substrate, for potential applications such as quantum computation in coupled quantum dots. Hall characterisation was performed on double-gated mesaMetal-Oxide- Semiconductor Field-Effect Transistors (MOSFETs) on a silicon-on-insulator (SOI) substrate, for the purpose of silicon quantum dots in etched nanowires on SOI. Carrier density and mobility results are presented, demonstrating top- and backgate control over the two inversion layers created at the upper and lower surfaces of the superficial silicon mesa. A new technique is developed enabling effective depletion gating of quantum dots in a bulk silicon substrate. A lower layer of aluminium gates is defined using electron beam lithography; the surface of these gates is oxidised using a plasma oxidation technique; and a further layer of aluminium gates is deposited. The lower gates form tunable tunnel barriers in the narrow inversion layer channel created by the upper MOSFET gate. The two layers of gates are electrically isolated by the localised layer of aluminium oxide. Low-temperature transport spectroscopy has been performed in both the many electron (∼100 electrons) and the few electron (∼10 electrons) regimes.Excited states in the bias spectroscopy provide evidence of quantum confinement. Preliminary temperature and magnetic field dependence data are presented. These results demonstrate that depletion gates are an effective technique for defining quantum dots in silicon. Furthermore, the demonstration of the first silicon radio-frequency single electron transistor is reported. The island is again defined by electrostatically tunable tunnel barriers in a narrow channel field effect transistor. Charge sensitivities of better than 10μe/√Hz are demonstrated at MHz bandwidth. These results establish that silicon may be used to fabricate fast, sensitive electrometers.
160

Noise characterization and modeling of MOSFETs for RF IC applications /

Chen, Chih-Hung. Deen, M. Jamal. January 2002 (has links)
Thesis (Ph.D.)--McMaster University, 2002. / Adviser: Jamal Deen. Includes bibliographical references. Also available via World Wide Web.

Page generated in 0.0471 seconds