• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 11
  • 8
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical characterisation of metallofullerenes

Campanera Alsina, Josep Maria 21 February 2005 (has links)
INFORME FINAL"Alguns importants descobriments de la ciència són accidentals. Això fou, certament, el cas del ful·lerè C60. Quan ara fa quatre anys, l'any 2000, vaig iniciar el treball d'investigació sobre els metal·loful·lerens m'havien arribat veus de la importància mediàtica d'aquestes noves estructures però no de la intensa història del seu descobriment. Aquesta m'ha fascinat. Sobretot quan l'any 2003 vaig tenir la possibilitat de fer una estada al grup del professor Kroto de la universitat de Sussex (Gran Bretanya). Llavors els textos, sorprenents però inerts, que havia llegit sobre la història del descobriment dels ful·lerens prenien forma en espais coneguts i personatges propers". Aquest és el prefaci de la meva tesi. Segurament aquesta estada a Sussex al grup d'un dels descobridors dels ful·lerens ha estat el moment més entranyable en aquesta carrera científica per l'estudi dels metal·loful·lerens.A partir de la síntesi de la molècula de C60 en quantitats apreciables la química dels ful·lerens en general, i en particular amb metalls de transició, ha experimentat un increment espectacular. L'objectiu d'aquesta tesi és l'estudi de l'estructura i la reactivitat de diferents derivats organometàl·lics de ful·lerens o metal·loful·lerens. El treball d'investigació usa les eines de la química computacional (Teoria del funcional de la densitat, DFT) per tal de modelar els metal·loful·lerens més interessants apareguts entre el 1999 i el 2005. Tot i que els metal·loful·lerens presenten una varietat d'estructures formidable, podem classificar-los en tres grans famílies des del punt de vista estructural: un primer grup són els metal·loful·lerens exoèdrics on els metalls es situen fora de la caixa, en un segon grup tenim els metal·loful·lerens heteroèdrics o heteroful·lerens on les caixes de carbonis han estat dopades (certes posicions han estat substituïdes) amb altres elements com ara: N, B, Si, Fe i altres metalls i finalment l'últim grup són els metal·loful·lerens endoèdrics on la derivatització metàl·lica es dóna a l'interior de la caixa. Així l'estudi teòric dels compostos més novedosos i novells de cadascuna de les tres famílies de metal·loful·lerens és el puntal de la present tesi doctoral. Per cadascuna de les famílies hem desgranat l'estructura electrònica i geomètrica, hem descrit el tipus d'enllaç metall-ful·lerè, hem avaluat els factors que intervenen en l'estabilitat relativa dels possibles isòmers, hem també predit la reactivitat davant de reaccions d'addició i finalment els hem caracteritzat des d'un punt de vista físic (càlcul del potencial d'ionització i afinitat electrònica). L'estructura electrònica ens ha permès seleccionar quins metal·loful·lerens endoèdrics seran estables avançant-nos als experimentalistes en la seva cerca de nous complexos. La diversitat de tipologies d'enllaç ha sigut tant gran com famílies de metal·loful·lerens. Hem descrit un enllaç iònic pels metal·loful·lerens endoèdrics, un enllaç covalent en el cas dels metal·loful·lerens heteroèdrics i un enllaç coordinatiu pels metal·loful·lerens exoèdrics. Hem aplicat noves metodologies per l'estudi de l'isomerisme. Les tècniques d'anàlisi multivariant de dades ens han permès esbrinar quins factors són importants per l'estabilitat relativa dels isòmers i a la vegada construir models de predicció per altres isòmers. Així doncs, l'acoblament de la química teòrica i la quimiometria ha estat sens dubte l'aportació més rellevant del present treball d'investigació.Tarragona, 28 de novembre de 2004Josep Maria Campanera AlsinaFINAL REPORT The characterisation of the most novel metallofullerenes up to 2004 has been theoretically and systematically discussed in this study. From the structural point of view, metallofullerenes can be divided into three main groups, all of which have been discussed in this study: endohedral, heterohedral and exohedral metallofullerenes. The main families of compounds studied are Sc3-nMnN@Ck (n = 0-3, M = Y, La; k = 68, 78, 80) (endohedral), CxMn (x = 56, 57, 58, 59; M = Pt, Ir, Os; n = 1, 2) (heterohedral) and (-Ck){M(PH3)2}n (k = 60, 70, 84; M = Pt, Pd, Ni; n = 1, 2, 4, 6) (exohedral). The present study is a step forward in our knowledge of each of these families of compounds, and in particular, in our understanding of the metal-carbon bond, isomerism and reactivity. The DFT method proved to be an excellent computational tool for providing good geometries, for solving the intricacies of the different metal-carbon bonds, for producing experimental data (ionization potentials and electron affinities) and also for making predictions about isomerism stability and reactivity. The principal conclusions drawn about the species studied here are: Different types of structures, different types of metal-carbon bonds. The metal units in each family of compounds are located differently in relation to the fullerene carbon framework: inside the cage, within the carbon framework and outside the cage. The encapsulation of a trimetallic nitride template unit (TNT, Sc3-nMnN; n = 0-3; M = Y, La) inside the carbon cage to produce TNT endohedral metallofullerenes is explained by an ionic pair (cage-metal) model in which the TNT unit formally transfers six electrons to the cage. On the other hand, in heterohedral metallofullerenes, metals establish a covalent metal-carbon bond without causing oxidation to the metal. Finally, the (MPH3)2 metal units situated exohedrally to the fullerene are only coordinated in a  mode to the CC bond. Chemometric tools applied to isomerism studies. The regioisomers of heterohedral metallofullerenes are numerous: for example, the stoichiometry C57Pt2 has 47 distinct regioisomers. Thus, chemometric techniques which can manage considerable amounts of data must be used if we want to understand regioisomerism in heterohedral metallofullerenes. These tools have also been very useful for drawing conclusions from the considerable quantities of data provided by the factors which affect the stability of regioisomers. These tools have been used not only for analysing data but also for predicting the stability of other heterofullerenes.TNT encapsulation stabilizes fullerene isomers that are not available as free fullerenes. TNT endohedral metallofullerenes are formed by the encapsulation of a metallic nitride template inside the following cages: D3-C68:6140, D3h'-C78:5, D5h-C80:6 and Ih-C80:7. Any of these cages have never been detected experimentally.So, endohedral metallofullerenes can make non-classical fullerene isomers available for study. Furthermore, on the basis of the electronic structure we predicted that no other IPR fullerenes between C60 and C84 will be capable of encapsulating a TNT unit, apart from the fullerene isomers that are already known.Stability of the carbon skeleton is the principal factor that determines the regioisomer stability of the heterofullerenes. Metal atoms occupy neighbouring positions in the most stable structures of C57Pt2 and C56Pt2. Metal substitution deforms the carbon framework and partially destroys the fullerene aromaticity. This is the key factor in determining the stability of these disubstituted clusters. Indeed, it is much easier to make a big hole that permits the incorporation of two Pt atoms in the carbon cage than two smaller holes in two opposite sites of the fullerene. Prediction of the exohedral reactivity taking into account the full characterization of the different CC bond types. We first performed a full characterization of all CC bond types of the fullerenes Ih-C60:1, D3-C68:6140, D5h-C70:1, D3h'-C78:5, Ih-C80:7, D2-C84:22 and D2d-C84:23. Each CC bond type is characterized by its topology, length, pyramidalization angle and Mayer bond order. This systematization enabled us to identify which sites were most reactive to a nucleophilic addition to free fullerenes or a [4 + 2] cycloaddition to TNT endohedral metallofullerenes.Tarragona, 8th Novembre 2004Josep Maria Campanera Alsina
2

Preparation of Endohedral Metallofullerenes by using Metal Carbides and Metal Carbonyls

Yang, Chun-Wen 14 August 2010 (has links)
none
3

Study the Preparation of Endohedral Metallofullerenes by Direct Current Arc Discharge Method

Liu, Nai-Lun 07 August 2006 (has links)
Endohedral metallofullerenes have special structures, therefore we are interested in. High-temperature laser vaporization method and direct current arc discharge method, which are the two methods for preparing endohedral metallofullerenes. Here we study the preparation of endohedral metallofullerenes by direct current arc discharge method, which uses two graphite rods as electrode and vaporizes the one which infill metal complex in high temperature and low helium gas pressure environment. We study in some metal complexes such as Mo(C5Ph5)2, Fe(CO)9, Ag and Au. After reaction, we collect the soot produced in reaction and choose different solvents to separate the products from it with Soxhlet extraction.
4

Computational Study of the Properties and Stabilities of Endohedral Metallofullerenes

Fuhrer, Timothy J. 23 April 2013 (has links)
The chemistry of fullerenes, which are a class of carbon allotropes that can be prepared by vaporization of graphite in an electric arc in a low pressure atmosphere,1 has become a topic of much experimental and theoretical study over the past 25 years.  Herein we present a series of theoretical studies related to recently discovered or studied endohedral metallofullerenes (EMF) and a theory as to the selective stability of certain isomers of EMFs. Computational treatments of the anions of C80 and C94 are presented and compared in an effort to gain an understanding and predictive model for which isomers of each cage size EMF will be most stable.  A model is proposed in which the pentagons of fullerene anions are seen as charge localization centers that repel one another, making the pyracyclene bonding motif much more unstable for fullerene anions than for fullerene neutral cages. Computational treatments are also presented for two newly discovered EMFs, Y2C2@C92 and Gd2@C79N.  Y2C2@C92 is reported to exhibit a previously undiscovered mode of internal cluster rotation, while Gd2@C79N is shown to have unusual stability for an azofullerene with a large spin quantum number (15/2). Finally, computational techniques are employed to predict the thermodynamic feasibility of a chemical reaction replacing one metal atom in a trimetallic-nitride template (TNT) endohedral metallofullerene with different metal atom.  At least two of these are predicted to be thermodynamically practical. / Ph. D.
5

Synthesis of Endohedral Metallofullerenes and Phosphino-fullerene Metal Complexes

Chen, Chia-Hsiang 23 July 2012 (has links)
none
6

Electron Transfer in Trimetal Nitride Metallofullerenes

Hagelberg, Frank, Wu, Jianhua 01 December 2009 (has links)
Two classes of trimetal nitride metallofullerenes, Sc3N@C n (n=68, 78) and MxSc3-xN@C80 (x=0-2), are investigated by Density Functional Theory with respect to their electronic properties and related geometric, energetic, and magnetic features. The substantial electron transfer from the metallic core to the fullerene cage makes these systems promising candidates for nonlinear optical devices. Pronounced magnetic effects associated with complexes that enclose lanthanide constituents suggest their suitability as contrast agents in biomedical imaging.
7

Novel preparation of endohedral metallofullerenes via laser vaporization of fullerene/metal pellets

Bailey, John Anderson 09 May 2009 (has links)
Electric-arc vaporization of graphite rod/metal (or metal oxide) mixtures in an inert He atmosphere has been the method of choice for the production of endohedral metallofullerenes (Am@C2n). However, yields of endohedral metallofullerenes have been limited to only a few percent of the total fullerene yield, making the production and isolation of macroscopic quantities (grams) difficult. In the present study, fullerene/metal mixtures have been vaporized using a CO₂-laser beam. The sample pellets employed in the laser vaporization were prepared from empty-cage fullerenes (C60, C70, C76, C78, C84, ..• ) and small percentages, by weight, of metal or nletal oxide (La203, SC203, Y 203, Sc, Y, Er). In addition, a sample mixture of a scandium endohedral metallofullerene extract, prepared by electric-arc vaporization, was subjected to the laser. Vaporized samples were analyzed by negative-ion chemical ionization mass spectrometry and by normal phase HPLC. Inert atmospheres of helium, argon, and xenon were compared for optimization of yields of endohedral metallofullerenes, as well as for production of unique endohedral species not observed by production via electric-arc vaporization. Scandium, yttrium, and erbium endohedral metallofullerenes were synthesized by vaporization of fullerene mixtures and the appropriate metal. Optimum conditions were realized with pellet temperatures greater than or equal to 3000°C and inert gas pressures of -100 Torr. This method of CO₂ laser vaporization also served as a valuable tool to analyze the production mechanisms of fullerenes and endohedral metallofullerenes, such as production pathways (Le., C60 -> higher fullerenes -> endohedral metallofullerenes). / Master of Science
8

Electron spin properties of carbon based manomaterials : metallofullerenes, nanotubes and peapods

Zaka, Mujtaba H. January 2011 (has links)
The successful utilization of carbon nanomaterials in future electron spin-based technologies is highly dependent upon the ability to control their assembly at the nanoscale to form tailored solid-state architectures. Spin active metallofullerenes (MFs), Sc@C<sub>82</sub> and La@C<sub>82,/sub>, can be self assembled in 3D fullerene crystals or inside a carbon nanotube to form peapod structures. Single walled carbon nanotubes (SWCNTs) are an architect material to potentially allow the formation of 1-D spin chains. SWCNTs should be optimised to allow formation of spin chains and free of magnetic catalyst and carbon impurities, which have previously limited investigations of SWCNT spin properties. To address this, SWCNTs produced by laser ablation with a non-magnetic PtRhRe catalyst were purified through a multiple step centrifugation process in order to remove amorphous carbon and catalyst impurities. Centrifugation of SWCNT solutions resulted in sedimentation of carbon nanotube bundles containing clusters of catalyst particles, while isolated nanotubes with reduced catalyst particle content remained in the supernatant. Electron paramagnetic resonance (EPR) signals were detected only for samples which contained catalyst particles, with the ultracentrifuged SWCNTs showing no EPR signal at X-band (9.4 GHz) and fields ≤0.4 T. Integration of MFs into future devices requires a clear understanding of the nature of the spin and spin-spin interactions. Evaluating the spin properties of MFs, in both 3D (crystals) and 1D (peapods), will identify the spin-spin interactions and the affect of the surrounding SWCNT. Diluting spin active Sc@C<sub>82</sub> and La@C<sub>82</sub> MFs in a diamagnetic C<sub>60</sub> matrix, between 0.4% and 100%, permitted the tuning of the mean fullerene separation and thus interfullerene spin interactions. In dilute concentrations of MFs the hyper ne structure was resolved in EPR and with increasing concentration exchange narrowing was observed as a single narrow EPR peak. Encapsulation of Sc@C<sub>82</sub> MFs, of varying dilutions, into purified SWCNTs allowed formation of highly ordered 1-D array of metallofullerenes. Changing the spin environment from 3D crystal to 1D peapod resulted in the loss of the observed hyperfine structure in EPR. A single narrow peak was observed for Sc@C<sub>82</sub>:C<sub>60</sub> peapods, indicating significant affect of the surrounding SWCNT structure upon the spin interactions of 1D metallofullerenes. Peapods of Ce@C<sub>82</sub> showed a similar EPR signal, suggesting that the observed narrow peak arises from charge transfer between the MF cage and the surrounding SWCNT.
9

Computational analysis of electronic properties and mechanism of formation of endohedral fullerenes and graphene with Fe atoms

Deng, Qingming 13 May 2016 (has links) (PDF)
In this thesis, a series of computational studies based on density functional theory (DFT) and density functional tight-binding (DFTB) is presented to deeply understand experimental results on the synthesis of endohedral fullerenes and graphene/iron hybrids at atomic level. In the first part, a simple and efficient model is proposed to evaluate the strain experienced by clusters encapsulated in endohedral metallofullerenes (EMFs). Calculations for the sole cluster, either in the neutral or the charged state, cannot be used for this goal. However, when the effect of the carbon cage is mimicked by small organic π-systems (such as pentalene and sumanene), the cluster has sufficient freedom to adopt the optimal configuration, and therefore the energetic characteristics of the EMF-induced distortion of the cluster can be evaluated. Both nitride and sulfide clusters were found to be rather flexible. Hence, they can be encapsulated in carbon cages of different size and shape. For carbide M2C2 cluster the situation is more complex. The optimized cluster can adopt either butterfly or linear shapes, and these configurations have substantially different metal-metal distance. Whereas for Sc2C2 both structures are isoenergetic, linear form of the Y2C2 cluster is substantially less stable than the butterfly-shaped configuration. These results show that phenomenon of the “nanoscale fullerene compression” once proposed by Zhang et al. (J. AM. CHEM. SOC. (2012),134(20)) should be “nanoscale fullerene stretching”. Finally, the results also reveal that both Ti2S and Ti2C2 cluster are strained in corresponding EMF molecules, but the origin of the strain is opposite: C78-D3h(5) cage imposes too long Ti···Ti distance for the sulfide cluster and too short distance for the carbide cluster. In the second part of the thesis, possible fullerene geometries and electronic structures have been explored theoretically for the species detected in mass spectra of the Sc-EMF extract synthesized using CH4 as a reactive gas. Two most promising candidates, namely Sc4C@C80-Ih(7) and Sc4C3@C80-Ih(7), have been identified and further studied at the DFT level. For Sc4C@C80, the tetrahedral Sc4 cluster with the central μ4-C atom was found to be 10 kJ/mol more stable than the square cluster. For Sc4C3@C80, the calculation showed that the most stable is the Sc4C3 cluster in which the triangular C3 moiety is η3- and η2-coordinated to Sc atoms. Whereas Sc4C@C80 has rather small HOMO-LUMO gap and low ionization potential, the HOMO-LUMO gap of Sc4C3@C80 is substantially higher and exceeds that of Sc4C2@C80. In the third part, computational studies of structures and reactivity are described for a new type of EMFs with a heptagon that has been produced in the arc-discharge synthesis. DFT computations predict that LaSc2N@Cs(hept)-C80 is more stable than LaSc2N@D5h-C80, so the former should be synthesized in much higher yield than observed. This disagreement may be ascribed to the kinetic factors rather than thermodynamic stability. Because of prospective applications of this EMFs by introducing functional groups, the influence of the heptagon on the chemical properties have been further evaluated. Thermodynamically and kinetically preferred reaction sites are studied computationally for Prato and Bingel-Hirsch cycloaddition reactions. In both types of reactions the heptagon is not affected, and chemical reactivity is determined by the adjacent pentalene units. Thermodynamically controlled Prato addition is predicted to proceed regioselectively across the pentagon/pentagon edges, whereas the most reactive sites in kinetically-controlled Bingel-Hirsch reaction are the carbon atoms next to the pentagon/pentagon edge. Fourth, although various EMFs have been successfully synthesized and characterized, the formation mechanism is still not known in details, and hence control of the synthesis products is rather poor. Therefore, EMF self-assembly process in Sc/carbon vapor in the presence and absence of cooling gas (helium) and reactive gas (NH3 and CH4) is systematically investigated using quantum chemical molecular dynamics (QM/MD) simulations based on the DFTB potentials. The cooling gas effect is that the presence of He atoms accelerates formation of pentagons and hexagons and reduces the size of formed carbon cages in comparison to the analogous He-free simulations. As a result, the Sc/C/He system yields a large number of successful trajectories (i.e. leading to the Sc-EMFs) with more realistic cage-size distribution than the Sc/C system. Encapsulation of Sc atoms within the carbon cage was found to proceed via two parallel mechanisms. The main mechanism involves nucleation of the several hexagons and pentagons with Sc atoms already at the early stages of the carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at high temperatures. Further growth of the carbon cage results in encapsulation of one or two Sc atoms within the forming fullerene. Another encapsulation mechanism is observed in rare cases. In this process, the closed cage is formed with Sc being a part of the carbon network, i.e. being bonded by three or four Sc–C σ-bonds. However, such intermediates are found to be unstable, and transform into the endohedral fullerenes within few picoseconds of annealing. In perfect agreement with experimental studies, extension of the simulation to Fe and Ti showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). The role of “reactive gas” in the EMF synthesis is revealed in dedicated simulations of the fullerene formation in the presence of several molecules of CH4 or NH3. When concentration of reactive gas is high, carbon vapor tends to form graphene flakes or other carbon species terminated by hydrogen atoms, whereas the yield of empty fullerenes is very low. Conversely, with additional metal atoms (Sc) and the same number of NH3 molecules, the yield of fullerenes constantly increase from 5 to 65% which is ascribed to the catalytic activity of metal atoms in the nucleation of carbon cages already at early stage. Moreover, due to the presence of hydrogen atoms from the reactive gas, the carbon cage formation requires much longer time, which provides sufficient reaction time to encapsulate 3 or 4 Sc atoms within one cage. It explains preferential formation of clusterfullerenes in experiments with reactive gas. At the same time, monometallofullerenes and dimetallofullerenes are the main products in absence of reactive gas. We also provide possible growth mechanisms of carbide and cyano-clusterfullerenes in details to elucidate how the intracluster goes into the cage. A possible growth mechanism of nitride clusterfullerenes has been proposed based on DFT results. In the last part, a free-standing crystalline single-atom thick layer of Fe has been studied theoretically. By investigating the energy difference, ΔE, between a suspended Fe monolayer and a nanoparticle using the equivalent number of Fe atoms, one can estimate that the largest stable membrane should be ca. 12 atoms wide or 3 × 3 nm2 which is in excellent agreement with the experimental observation. Otherwise, the possibility of C, O, N atoms embedded into the Fe membrane can been fully excluded by DFTB and DFT simulations, which agrees with electron energy loss spectroscopy (EELS) measurement. A significantly enhanced magnetic moment for single atom thick Fe membranes (3.08 μB) is predicted by DFT as compared to the bulk BCC Fe (2.1 μB), which originates from the 2D nature of the Fe membrane since the dz2 orbital is out-of-plane while the dxy orbital is in-plane.
10

Effects of non-covalent interactions on electronic structure and anisotropy in lanthanide-based single-molecule magnets: theoretical studies

Dubrovin, Vasilii 08 November 2021 (has links)
This work describes theoretical studies on molecular and electronic structures of lanthanide-based single-molecule magnets focusing on their magnetic properties. In this work, two main problems are covered: the structural ordering of endohedral fullerenes in different supramolecular arrangements, and the magnetic anisotropy of lanthanides in different charge coordinations. The basic methodes used in this work are density functional theory and multiconfigurational self-consistent field.:CHAPTER 1. THEORETICAL FOUNDATIONS OF RARE-EARTH MAGNETISM 12 1.1. Single-molecule magnetism and 4f-elements 14 1.1.1. Electronic structure of 4f-elements 16 1.1.2. LS-coupling scheme 19 1.1.3. Parameterization of the Crystal-Field splitting effect. 20 1.1.4. Zeeman splitting for a free ion 24 1.1.5. Spin Hamiltonian and pseudospin approximation 24 1.1.6. Kramers theorem 25 1.1.7. Weak and strong molecular interactions. 26 1.2. Computational methods in application to Ln-based SMMs 27 1.2.1. Density functional theory (DFT). 28 1.2.2. Multiconfigurational methods in quantum chemistry 33 1.3. Role of molecular structure in single-molecular magnetism 41 1.3.1. Complexes of SMMs with organic molecules 45 1.3.2. SMMs deposited on surfaces 46 CHAPTER 2. STRUCTURAL ORDERING IN COCRYSTALS OF EMFs AND Ni(OEP) 49 2.1. Ordering in endohedral metallofullerenes 49 2.2. Modeling details 51 2.3. Conformer analysis 54 2.4. Electrostatic potential 58 CHAPTER 3. ISOMERISM OF Dy2ScN@C80 DEPOSITED ON SURFACES 61 3.1. Modeling details 62 3.2. Cluster conformation analysis 69 3.3. Charge density analysis 75 CHAPTER 4. Ho|MgO AS A SINGLE-ATOMIC MAGNET. FV-MAGNETISM. 80 4.1. DFT description of Ln|MgO 85 4.2. Ho|MgO system: ab initio calculations 92 4.3. Magnetic properties of lanthanides with FV magnetism 99 4.4. Generalized ligand field and spin Hamiltonians for FV systems. 101 CHAPTER 5. FV-MAGNETISM IN [Ln2+] METALLOCENE COMPLEXES 107 5.1. TbII(CpiPr5)2 DFT-model 108 5.2. FV-interaction in terms of ab initio multiconfigurational approach 113 5.3. Point-charge model 115

Page generated in 0.0781 seconds