• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 421
  • 42
  • Tagged with
  • 463
  • 460
  • 457
  • 455
  • 455
  • 455
  • 80
  • 59
  • 44
  • 36
  • 28
  • 28
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Effects of loading mechanisms and texture on ore breakage – A multidimensional study

Semsari Parapari, Parisa January 2020 (has links)
In comminution machines, the product properties (particle size distribution, mineral liberation characteristics) and process consumables (energy for size reduction, wear) are affected by various parameters. On the one hand, understanding and optimizing these parameters can provide an energy efficient process and a specified product. On the other hand, a fundamental understanding of the breakage process can even be used for designing new or improved comminution machines. In this thesis, breakage fundamentals are analyzed and set against the principles of various comminution machines. The study of the breakage fundamentals is crucial for a better understanding of the effect of different comminution environments on ore types and their textures in order to achieve a desired product size and liberation. This work defines three main areas of breakage processes with breakage fundamentals, namely “loading mechanism”, “breakage mechanism” and “breakage mode”. The “loading mechanism” is defined as the physical action that is applied to a particle or several particles in order to introduce mechanical stress. The resulting pattern of the particle failure is named “breakage mechanism”. Finally, the “breakage mode” defines the particle breakage in terms of being random or non‐random. Non‐random breakage depends on the ore texture, which can be categorized as preferential breakage and phase boundary breakage. Promoting the breakage mode to the phase boundary breakage could help to increase the liberation degree. Various studies have assessed the effect of ore texture and operational parameters on mineral liberation. While ore texture is related to the particle inherent characteristics, operational conditions such as loading mechanism are related to the comminution environment. In all these investigations, little attempt has been made to explore the combined effects of loading mechanism and quantitative ore texture features on breakage mode and mineral liberation. In addition, a lack of fundamental understanding of the breakage process and mineral liberation can be seen. Accordingly, a more fundamental study of the causes behind the effects of loading mechanism and texture is required in order to optimize the comminution process in terms of mineral liberation. The objective of this work is, therefore, to investigate the effects of different loading mechanisms on particle breakage and breakage mode. In order to achieve this goal, work has started with using two methods including three‐dimensional deformation and two‐dimensional crack quantification. The former method involved X‐ray computed micro‐tomography (XCT) imaging and Digital Volume Correlation (DVC) measurements which determiners the breakage mode in terms of being random or non-random. Whereas the latter was done using an image processing code in MATLAB to quantify cracks in terms of random and non-random breakage (preferential or phase boundary) from Scanning Electron Microscopy (SEM) images. In addition, XCT 3D imaging was used in order to track the propagated cracks in the third dimension. Moreover, phase boundary breakage in magnetite grains was studied qualitatively based on optical microscopy images in order to identify and characterize the propagated cracks.
312

Designing a Heat Treatment to Achieve Ductile Advanced High Strength Steels

Laarich, Abdellatif January 2020 (has links)
Heat treatment is a way to significantly change materials properties. When presented with materials that lack certain mechanical properties, it is possible to change its chemical properties and microstructures by applying heat. This can help achieve better yield strength, ductility and toughness. This project discusses the effects of multiple distinct heat treatment methods for several materials in order to improve ductility and elongation without diminishing strength. The materials in question are High Aluminum Steel and Strenx 700MC steel, the first being under development and the second being a commercially available steel. These steels show promise to be used as high ductility, high strength, and 3rd generation steels. The heat treatments can change the mechanical proprieties of the base materials in order to optimize these steels for applications in vertical access solutions. The heat treatments in this project were Quenching and Partitioning (QP), Quenching and Tempering (QT), Austempering (AUST), Intercritical Heat Treatment (IHT) and other usual heat treatments such as Double normalizing (D-Norm). First, the most beneficial type of the above mentioned heat treatments was selected for each steel and series of heat treatments were performed in order to identify and optimize the best method for each steel. Then, heat treated samples underwent a series of tests to numerically quantify their properties and compare them to the existing steels in Alimak’s applications. The results show that Quenching and Partitioning is the most promising heat treatment for optimizing strength and ductility in High Aluminum Steel, with elongation values up to 19% together with yield strengths of 700 MPa. For Strenx 700MC a combination of temperature and time was found that gave an elongation of above 25% with a yield strength of 450 MPa. The explanation for the good properties was partly grain refinement and phase transformations during heat treatments.
313

Innerytans inverkan på utmattningshållfasthet i bergborrstänger

Hållström, Erik January 2022 (has links)
Top hammer drilling uses a percussive force at the top combined with a rotational energy that transmits through a rod to a drill bit that crushes rock. It is a drilling method that is preliminary used in mining, construction and operations under ground. Fatigue strength plays an important role in the drill rods life span. A top hammer drill rod has a through hole in the center called a flush hole used to flush up the drilling cuttings. The flush hole is a weak spot in the rod. In this preliminary study the purpose was to investigate if, and how, the surface in the flush hole affects the fatigue strength in rock drill rods. Four test methods; Refined inner surface, lathed core, without lubricant and sealed hollow bar. With three samples of each method that affected the surface of the flush hole, were used in the manufacturing of the rods and compared to references. Different tests were applied to measure the quality of the flush hole and of the rods. The material used were fatigue tested under a pulsating pull-pull condition with flushing water. Finally, the fracture surfaces were studied. The fatigue test showed that refined inner surface had supreme fatigue strength, the other methods exhibit approximately 10% more cycles than the references. In conclusion the inner surface affects the fatigue strength. The parameter with the most distinct correlation to the fatigue test was surface roughness. Other parameters that seems to affect were oxidation, hardness and scratches. To obtain statistical certainty more samples are needed.
314

Developing a supervised machine learning model for an optimised aluminium addition based on historical data analytics, for clean steelmaking

Thakur, Arun Kumar January 2022 (has links)
De-oxidation is an important process in clean steelmaking. Al (Aluminium) is mainly used as de-oxidant and controls the final oxygen content and impact the sulphur removal in steel. Adding optimum amount of Al is critical for steel cleanliness and to reduce cost. Unfortunately, recovery of Al is not repeatable due to inherent variation in factors like amount of slag carryover, total oxygen content, tapping weight and so on. To address this challenge, statistical modeling is used to develop a supervised machine learning model to predict Al addition for secondary de-oxidation. Data analytics is used on historical data from production database to gain insights from data on secondary de-oxidation practice, observe patterns, trends and understand correlation among critical process parameters. Simple and multiple linear regression models have been developed with prediction accuracy of 58 and 66% respectively. These models have been trained, tested and cross validated using standard procedures like k-fold cross validation and grid search. To deploy multiple linear regression model into production, a Microsoft Excel based dashboard containing prediction tool, pivot charts, line, and bar graphs for analysing the process is developed. This model when tested in shadow deployment environment perform well on steel grades containing dissolved C (Carbon) up to 0.15% after tapping. In shadow deployment mode the new model can be utilised in parallel to existing tool. For %C greater than 0.15%, prediction accuracy stands at 46%. This is due to nonlinear relationship between oxygen content and added Al. With our model, in process window containing 0 to 0.15 % C after tapping in steel melt, we believe that we can in future achieve better steel quality and repeatability in de-oxidation process, improve productivity in terms of time and resources and facilitates decision making when the model is ready for use in real production environment. Future work in this direction would be to further develop this model for other steel grades. / Deoxidation är en viktig process vid ren ståltillverkning. Al (aluminium) används huvudsakligen som deoxidationsmedel och kontrollerar den slutliga syrehalten och påverkar avlägsnandet av svavel i stålet. Det är viktigt att tillsätta en optimal mängd Al för att stålet ska bli rent och för att minska kostnaderna. Alumiumåterhämtningen är tyvärr inte repeterbar på grund av varierande faktorer som slaggöverföring, total syrehalt, tappvikt och så vidare. För att ta itu med denna utmaning används statistisk modellering för att utveckla en övervakad maskininlärningsmodell för att förutsäga Al-tillsats för sekundär deoxidering. Dataanalys används på historiska data från produktionsdatabasen för att få insikt i data om sekundär deoxidering, observera mönster, trender och förstå korrelationen mellan kritiska processparametrar. Enkla och multipla linjära regressionsmodeller har utvecklats med en prediktionsnoggrannhet på 58 respektive 66 %. Dessa modeller har tränats, testats och korsvaliderats med hjälp av standardförfaranden som k-fold korsvalidering och grid search. För att använda den multipla linjära regressionsmodellen i produktionen har man utvecklat en Microsoft Excel-baserad instrumentpanel som innehåller ett prognosverktyg, pivotdiagram, linje- och stapeldiagram för analys av processen. När denna modell testades i en skuggmiljö fungerade den bra på stålsorter som innehåller upplösta C (kol) på upp till 0,15 % efter tappning. I en skuggbaserad miljö kan den nya modellen användas parallellt med det befintliga verktyget. För % C över 0,15 % är förutsägelsenoggrannheten 46 %. Detta beror på det icke-linjära förhållandet mellan syrehalt och tillsatt Al. Med vår modell, i processfönstret som innehåller 0-0,15 % C efter tappning i stålsmältan, tror vi att vi i framtiden kan uppnå bättre stålkvalitet och repeterbarhet i deoxidering processen, förbättra produktiviteten när det gäller tid och resurser och underlätta beslutsfattandet när modellen är redo att användas i en verklig produktionsmiljö. Framtida arbete i denna riktning skulle vara att vidareutveckla denna modell för andra stålsorter.
315

A Study in How Welding Parameters Affect the Porosity in Laser Welded High Pressure Die Cast AM50 Magnesium Alloy

Bergstedt, Edwin January 2017 (has links)
There are a need for reducing the weight of vehicles, one solution is to implement cast lightweight materials such as the high pressure die cast AM50 magnesium alloy. The weldability of this cast alloy is poor and to implement the use of the alloy commercially a welding process is needed that limits the porosity of the weld. The aim of this thesis is to study the effect of the welding parameters on the porosity in the weld, for three laser welding methods. The welding methods examined are single spot and twin spot laser using either a beam splitter or separate optics. The microstructure of the base material are also examined in order to evaluate relations between the components of the microstructure and the porosity in the weld. It was concluded that the hydrogen in the base material was the main reason for the observed porosity in the weld and that the material contains high pressure gas. The welding parameters did not influence the porosity for the single beam laser process, however, for the dual beam processes the welding parameters could affect the amount of pores. It was found that a double weld reduced the amount of pores and that the size and distribution of the secondary phase particles would benefit from the treatment. The cleaning of the samples prior to welding increased the porosity, however, non-cleaned samples contained more oxide inclusions. The results indicate that a twin beam process could reduce the porosity in the weld of the AM50 alloy. / Det finns ett behov av att reducera vikten på fordon, en lösning är att implementera gjutna lätta material såsom formsprutad AM50-magnesiumlegering. Svetsbarheten hos denna gjutna legering är dålig och för att kommersiellt kunna använda legeringen krävs en svetsprocess som begränsar svetsens porositet. Syftet med detta examensarbete är att studera svetsparametrarnas effekt på svetsens porositet för tre lasersvetsmetoder. De svetsmetoder som undersöks är enkelpunkts och dubbelpunktslaser där antingen en stråldelare eller separat optik använts. Basmaterialets mikrostruktur undersöks också för att utvärdera sambandet mellan mikrostrukturen och porositeten i svetsen. Man drog slutsatsen att väte i basmaterialet var huvudorsaken till den observerade porositeten i svetsen och att materialet innehåller gas under högt tryck. De undersökta svetsparametrarna påverkade inte porositeten för processen med en laserstråle, men för dubbelstråleprocesserna kan svetsparametrarna påverka mängden porer. Det visade sig att en svets utförd med två strålar minskade mängden porer och att storleken och fördelningen av sekundärfaspartiklarna gynnas av behandlingen. Prover som rengjordes före svetsning hade ökad porositet, men icke-rengjorda prover innehöll mer oxidinneslutningar. Resultaten indikerar att en dubbelstråleprocess kan minska porositeten då AM50-legeringen lasersvetsas.
316

Extraction Replicas of Common Engineering Alloys for Analysis of Small Precipitates

Rolinska, Monika January 2020 (has links)
Characterization of small precipitates is important for development of new alloys. One inherent  difficulty  in  characterisation  of  small  precipitates  with  electron microscopy techniques  while  the  particles  are  embedded  in  the  matrix,  is  that the surrounding bulk material will contribute to the analysed signal- limiting, for example, the quantification of the composition of particles.  In order to avoid the matrix contribution, the extraction replica technique was developed in the 1950's. Extraction replicas are made by extracting only the particles from a material onto a thin film for further analysis by scanning or transmission electron microscopy. Different types of particles can be examined by this technique, including various carbides, nitrides, oxides and borides, as well as many intermetallic phases.  In this work, direct replication techniques were compared to two-stage replication for low-alloyed steel, concluding that both are suitable for qualitative analysis, but direct replication is preferred for quantitative analysis.  Successful replication of the zirconium-based Zirlo and the stainless steel 254 SMO was performed, where the precipitated phases were isolated and the composition quantified.   Particle extraction was successful also for the zirconium-based Zircaloy-2 and two types of  aluminium  alloys,  but  no  quantification of  composition  could  be  made  due to different problems associated with etching of each alloy, showing that properchoice of etchant is crucial for the quality of the replicas. / Karaktärisering av små utskiljningar är viktigt för utveckling av nya legeringar. En svårighet  vid  karaktärisering  av  små  utskiljningar  med elektronmikroskopi när partiklarna  sitter  kvar  i  matrisen  är  att  matrisen kommer  ge  ett  bidrag till den analyserade signalen,  därför är t.ex.   möjligheterna för kvantifiering av sammansättning begränsade. För att undvika bidraget från matrisen utvecklades extraktionsrepliker  på  1950-talet.  Extraktionsrepliker  tillverkas  genom  att extrahera partiklar från ett material till en tunn film som sedan kan analyseras med hjälp av svep- eller transmissionselektronmikroskopi. Olika sorters partiklar kan  undersökas  med hjälp  av  denna  metod.     Dessa  inkluderar  olika  typer av  karbider, nitrider, borider, oxider  och  många  olika  sorters  intermetalliska partiklar. I  detta arbete  jämfördes direkta  metoder  med  tvåstegsrepliker  på låglegerat  stål. Slutsatsen  blev  att  båda metoderna  lämpar  sig  för  kvalitativ analys av små partiklar, men direkta metoder är att föredra för kvantitativ analys. Lyckade repliker tillverkades även av zirkoniumlegeringen Zirlo och det rostfria stålet  254  SMO,  där  utskiljningarna  kunde isoleras  och sammansättningen kvantifieras.   Extraktion  av  partiklar  var  lyckad  även  för zirkoniumlegeringen Zircaloy-2  samt  två  typer  av  aluminiumlegeringar, men ingen  kvantifiering  av sammansättningen  kunde  göras  på  grund  av  olika problem  relaterade  till  den valda etsmetoden för varje legering, vilket visar att valet av etsmedel ar avgörande för kvaliteten av replikerna.
317

Determining the Influence of the Type of Shielding Gas during Additive Manufacturing of an Aluminum Alloy by Monitoring the Process Qualitatively and Analyzing Process Byproducts Quantitatively

Kleemeyer, Stefanie Desiree January 2021 (has links)
This thesis analyzes the influence of process gases on the formation and the characteristics of process byproducts that emerge during additive manufacturing of an aluminum alloy belonging to the 2000 series.  In order to address the influence, four pure gases, argon, nitrogen, helium, and carbon dioxide, were used as a shielding gas on the same parameter sets.  The interaction of the laser beam with the powder bed under each shielding condition was recorded by a camera.  The humidity, particle size distribution, and chemistry of the spatters produced after each job was analyzed.  The chemistry of small cylinders printed, was determined.  The density of the produced cubic samples was determined following the Archimedes principle, as well as through the analysis of the  cross-section.   Lastly,  the  embedded  and  polished  samples  were  etched,  and  the penetration depth of the laser was determined.  Under argon and nitrogen shielding, the process looked the same and the produced spatters show similar results.  Under helium shielding, less incandescent spatters were seen, and the particle size distribution is smaller than under argon or nitrogen. Carbon dioxide resulted in the highest number of incandescent particles and a change of the color of the rays from red to yellow.  The chemical analysis shows that a slight increase of nitrogen in the spatters and the bulk material can be seen under nitrogen shielding.  Oxygen and hydrogen content was sim- ilar under argon, nitrogen, and helium shielding.  Carbon dioxide shielding resulted in the highest oxygen content in the spatter and the bulk material. The density is highest under helium shielding, and lowest under carbon dioxide shielding.  Under argon and nitrogen shielding, the density was similar.  The study concluded that the choice of a process gas is not an arbitrary one but should be selected with care. / Denna avhandling analyserar processgasernas påverkan på bildandet och egenskaperna hos process biprodukter som uppstår vid additiv tillverkning av en aluminiumlegering som tillhör 2000-serien. För att hantera inflytandet användes fyra rena gaser, argon, kväve,  helium  och  koldioxid  som  skyddsgas  på  samma  parameteruppsättningar. Interaktionen mellan  laserstrålen och  pulverbädden under  varje skärmningsförhållande registrerades  av  en  kamera.  Fuktigheten, partikelstorleksfördelningen  och  kemin  hos stänkarna som producerades efter varje jobb analyserades. Kemien hos de små cylindrarna  som  trycktes  bestämdes. Densiteten  hos  de  producerade  kubikproven  bestämdes enligt Archimedes princip, liksom genom analys av tvärsnittet. Slutligen etsades de inbäddade och polerade proverna och laserns penetrationsdjup bestämdes. Under argon- och kväveavskärmning såg processen likadan ut och de producerade stänkarna visar liknande resultat. Under heliumskärmning sågs mindre glödande stänk och partikelstorleksfördelningen är mindre än under argon eller kväve. Koldioxid resulterade i det högsta antalet glödande partiklar och en förändring av strålarnas färg från rött till gult. Den kemiska analysen visar att en liten ökning av kväve i stänkarna och bulkmaterialet kan ses under kväveavskärmning. Syre- och väteinnehållet var liknande under argon-,  kväve-  och  heliumskärmning. Koldioxidavskärmning  resulterade  i  det  högsta syreinnehållet i stänk och bulkmaterial. Densiteten är högst under heliumskärmning och lägst under koldioxidskärmning. Under argon- och kväveavskärmning var densiteten densamma. Studien drog slutsatsen att valet av en processgas inte är godtyckligt utan bör väljas med omsorg.
318

Linkage of Macro- and Micro-scale Modelling Tools for Additive Manufacturing

Sjöström, Julia January 2020 (has links)
Additive manufacturing methods for steel are competing against commercial production in an increasing pace. The geometry freedom together with the high strength and toughness due to extreme cooling rates make this method viable to use for high-performance components. The desirable material properties originate from the ultrafine grain structures. The production is often followed by a post hardening heat treatment to induce precipitation of other phases. The printing process does however bring several challenges such as cracking, pore formation, inclusions, residual stresses and distortions. It is therefore important to be able to predict the properties such as temperature evolution and residual stresses of the resulting part in order to avoid time consuming trial-and-error and unnecessary material waste. In order to link different parts and length scales of the process, the integrated computational materials engineering framework can be used where linkage tools couples results of different length scales. 18Ni300 maraging steel is a material that has been used extensively to produce parts by additive manufacturing, but there is still a wide scope for optimising the process and properties. In this thesis, the integrated computational materials engineering inspired framework is applied to link the process to the microstructure, which dictates the properties. Temperature evolution strongly influences the material properties, residual stresses and distortion in additive manufacturing. Therefore, simulations of temperature evolution for a selective laser melted 18Ni300 maraging steel have been performed by Simufact Additive and linked with the microstructure prediction tools in Thermo-Calc and DICTRA. Various printing parameters have been examined and resulting temperatures, cooling rates, segregations and martensitic start temperatures compared for different locations of the build part. Additionally, residual stresses and distortions were investigated in Simufact. It was found that higher laser energy density caused increased temperatures and cooling rates which generally created larger segregations of alloying elements and lower martensitic start temperatures at the intercellular region. There is however an impact from cooling rate and temperature independent of the energy density which makes energy density not an individual defining parameter for the segregations. By decreasing the baseplate temperature, lower temperatures below the martensitic start temperature were reached, enhancing martensite transformation. Primary dendrite arm spacing calculations were used to validate the cooling rates. The cell size corresponded well to literature of <1 μm. Distortions and residual stresses were very small. The calibration was based according to literature and need experimental values to be validated. The integrated framework demonstrated in this thesis provides an insight into the expected properties of the additively manufactured part which can decrease and replace trial-and-error methods. / dditiva tillverkningsmetoder för stål tävlar mot kommersiell produktion i en ökande takt. Geometrifriheten tillsammans med hög styrka och slagseghet på grund av extrema kylhastigheter gör den här metoden intressant att använda för högpresterande komponenter. De önskvärda materialegenskaperna härstammar från den ultrafina mikrostrukturen. Processen följs ofta av en värmebehandlande härdning för att inducera utskiljningar av andra faser. Printing processen innebär dock flertalet utmaningar som exempelvis sprickbildning, porer, inneslutningar, restspänningar och förvrängningar. Det är därför intressant och viktigt att förutspå egenskaper såsom temperaturutveckling och restspänningar av den slutgiltiga komponenten för att minska tidskrävande ”trial-and-error” och onödigt materialsvin. För att länka ihop olika delar och längdskalor av processen kan ”the integrated computational materials engineering” strukturen användas där länkverktyg kopplar ihop resultat av olika längdskalor. 18Ni300 maraging stål är ett material som har använts till additivt tillverkade produkter i hög utsträckning men det finns fortfarande mycket utrymme för optimering av processen och egenskaperna. I den här avhandlingen, den ”integrated computational materials engineering” inspirerade tillvägagångssättet används för att länka processen med mikrostrukturen, vilken bestämmer egenskaperna. Temperaturutveckling påverkar kraftigt materialegenskaper, restspänningar och deformation vid additiv tillverkning. Förutsägelse av temperatur för ett selektivt lasersmält 18Ni300 stål har därför genomförts i Simufact Additive och länkats med mikrostruktursförutsägande redskapen Thermo-Calc och DICTRA. Olika maskinparametrar har undersökts och efterföljande temperaturer, kylhastigheter, segregeringar och martensitiska starttemperaturer jämförts för olika delar av geometrin. Tilläggningsvis var även restspänningar och deformationer undersökta i Simufact. Det konstaterades att högre energidensitet för lasern orsakade högre temperaturer och kylhastighet vilket generellt skapade mer segregeringar av legeringsämnen och lägre martensitisk starttemperatur i de intercellulära områdena. Det är däremot en gemensam påverkan av kylhastighet och temperatur vilket gör att energidensitet inte är den enskilda bestämmande parametern över segregeringarna. Genom att sänka temperaturen på basplattan uppnåddes lägre temperaturer under den martensitiska starttemperaturen vilket förenklar den martensistiska omvandlingen. Beräkningar av primär dendritisk armlängd användes för att validera kylhastigheterna. Cellstorleken överensstämde bra med litteraturen på <1 μm. Deformationer och restspänningar var väldigt små. Kalibreringarna baserades på litteraturvärden och kräver experimentella värden för att valideras. Den integrerade strukturen  som demonstreras i den här avhandlingen förser en insikt i de förväntade egenskaperna av en additivt tillverkad del vilket kan minska och ersätta ”trial-and-error” metoder.
319

High-Temperature Corrosion-Fatigue of Cast Alloys for Exhaust Manifolds

Xiang, Shengmei January 2018 (has links)
The introduction of gas-driven Otto engine and the corresponding usage of bio-fuels in heavy-duty engines will render the exhaust atmosphere more corrosive and bring a higher working temperature to exhaust manifolds. The current service material, a ferritic ductile cast iron called SiMo51, will soon meet its upper temperature limit set by the ferrite-austenite transformation at 860ºC. Three alternative materials, as well as SiMo51 serving as reference, are investigated in the present thesis emphasizing on high-temperature corrosion fatigue.  The first aim of this study is to obtain material data and give a quantitative ranking of the materials’ performance. Low-cycle fatigue (LCF) tests at 800ºC in a synthetic exhaust gas (5%O2-10%CO2-5%H2O-1ppmSO2-N2 bal.) are conducted to evaluate the materials’ performance in simulated real working scenarios, where high-temperature, corrosive atmosphere and fatigue conditions during testings are similar to the conditions experienced by the exhaust manifolds. To evaluate the individual effect from high-temperature fatigue and isolate the impact from corrosion, the materials are tested under the same settings but in an argon atmosphere. To evaluate the individual effect from high-temperature corrosion and isolate the impact from mechanical deformation, oxidation tests are carried out at 800ºC in the same synthetic exhaust gas. The second aim is to identify and understand different oxidation behavior and failure mechanisms in the materials, realized by considerable characterizations of the tested specimens. From the fatigue tests, it is found that the austenitic stainless steel HK30 has the highest fatigue resistance, followed by the austenitic cast iron Ni-resist D5S, and the ferritic ductile cast irons SiMo1000 and SiMo51, a ranking valid in both atmospheres. In the exhaust atmosphere, for instance, the improvement in fatigue strength at 15,000 cycles relative to SiMo51 are 260%, 194% and 26%, respectively. Different crack initiation and propagation mechanisms are found for the various combinations of materials and atmospheres. In the exhaust atmosphere, for instance, crack initiation is assisted by oxide intrusion in SiMo51 and crack propagation is affected by crack branching in HK30, mechanisms not observed in argon. By comparing the S-N fatigue curves in the two atmospheres, the influence of oxidation on fatigue life is evaluated. The fatigue life of the cast irons are surprisingly found to be higher in the exhaust atmosphere. Several explanations are suggested for this, considering their very different oxidation behaviors.  This study provides accurate test data that can be used to help industry avoid over-dimensioned design. The investigation of the failure mechanisms promotes better understanding of the correlation between microstructure and mechanical properties. Moreover, the combination of fatigue tests in argon, fatigue tests in exhaust and oxidation tests in exhaust, shows how corrosion and fatigue individually and synergistically affect the materials’ performance at high temperature. / <p>QC 20180917</p>
320

Influence of microstructure on fatigue and ductility properties of tool steels

Randelius, Mats January 2008 (has links)
Fatigue and ductility properties in various tool steels, produced by powder metallurgy, spray forming or conventionally ingot casting, have been analysed experimentally and successfully compared to developed models. The models are able to predict the fatigue limit and cause for fatigue fracture, and strain- and stress-development until fracture during the ductile fracture process respectively. Total fracture in a tool steel component, both in fatigue and ductility testing, is caused by a propagating crack initiated by particles, i.e. carbides or non-metallic inclusions. The models are based on experimentally observed size distributions. The axial fatigue strength at two million cycles was determined for various tool steels. The fracture surface of each test bar broken was examined in SEM to determine the cause for fatigue failure, i.e. a single carbide or inclusion particle or a cluster of carbides, and the size of the particle. The particles act as stress concentrators where a crack is easily initiated when the material is subjected to alternating stresses. The developed models calculate the probability that at least one particle will be present in the material which is larger than the threshold level for crack initiation at a certain stress range. The ductility testing was performed on various tool steels by four-point bending under static load. The load and displacement until total fracture were recorded and the maximum strain and stress acting in the material were calculated. The fracture surface of each broken test bar was examined in SEM, though the crack initiating area appears different compared to a fatigue failure. Ductile fracture is caused by a crack emanating from voids nucleated around many particles in a joint process and then linked together. By finite element modelling of void initiation and propagation in 2D of an experimentally observed carbide microstructure for each tool steel, successful comparisons with experiments were performed. Carbides were modelled as cracked when larger than a certain size, based on fracture surface observations, and the matrix cracked above a pre-defined plastic deformation level. The stresses and strains at total failure were in good agreement between model and experiments when evaluated. The use of these developed models could be a powerful tool for optimisation of fatigue and ductility properties for tool steels. With good fatigue and ductility properties normal failures appearing during operation of a tool steel product could be minimised. By theoretical tests in the developed models of various carbide microstructures the optimum mechanical properties could be achieved with a minimum of experiments performed. / QC 20101119

Page generated in 0.0519 seconds