• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 10
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 26
  • 12
  • 10
  • 10
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Igneous and metamorphic charnockitic rocks in the Southern Marginal Zone of the Limpopo Belt with special emphasis on the Matok Enderbitic - Granatic Suite.

Bohlender, Frank 04 June 2014 (has links)
D.Phil. (Geology) / Please refer to full text to view abstract
52

Developing a Useful Set of Proxy Elements for the Targeting and Exploration of Gold Deposits, Black Hills, South Dakota

Harp, Michael T. 13 December 2010 (has links)
No description available.
53

Tectonic evolution of Aegean metamorphic core complexes, Andros and Tinos Islands, Greece

Shin, Timothy Andrew 10 October 2014 (has links)
The Aegean is a classic setting for studying exhumation of high-pressure (HP) metamorphic rocks. Two end-member models are proposed to explain the uplift of these rocks: core-complex style extension along low-angle normal faults and extrusion-wedge uplift. Extrusion-wedge underplating is the mechanism that exhumed HP rocks on Evia whereas Tinos hosts several detachments varying in age from 30-9 Ma. Andros, situated between them, may be the geological manifestation of the interplay of these processes and provides an opportunity to test these models. Detachments on NW Tinos and on Andros and the enigmatic low-angle Makrotantalon Unit contact on Andros were insufficiently dated prior to this study. Geo- and thermochronometrycombined with structural observations from sampling transects in the transport direction from (1) lower plate Cycladic Blueschist Unit on Andros and Tinos, (2) middle plate Makrotantalon Unit on Andros, and (3) hanging wall Upper Unit address these issues. Maximum depositional ages from detrital zircon U-Pb geochronometry and structures reveal Paleocene-Eocene syn-HP metamorphism thrusting resulted in an inversed-age relationship between the Permian Makrotantalon Unit and the underlying Triassic-Eocene Cycladic Blueschist Unit on Andros. The Makrotantalon Unit has an internal inversed stratigraphy whereas the Cycladic Blueschist Unit on Andros and Tinos appear stratigraphically intact. Structures and zircon and apatite (U-Th)/He ages in transects from NW Tinos (~12-8 Ma) and central Andros Cycladic Blueschist Unit (~13-7 Ma) indicate rapid cooling due to exhumation associated with the Livada Detachment. Older cooling ages (~16-10 Ma) and structures in the Makrotantalon Unit indicate later brittle strain localization on the Makrotantalon Thrust contact is accommodated by rheologically weaker serpentinites and calc-schists, resulting in slivering of the footwall under the Livada Detachment on Andros. Estimated mean cooling slip rates of the Livada Detachment on Andros of ~3.8 (+1.2/-1.3) km/Myr and 2.1 (+0.2/-0.2) km/Myr on NW Tinos resulted in minimum vertical exhumations of 15 km and 4 km, respectively. The NCDS here accommodated ~12-25% of 60 km of HP-rock exhumation from ~30-7 Ma. We present a tectonic model to elucidate the evolution of the Makrotantalon Unit and the magnitude, temporal, and spatial variability of exhumation via detachments on these islands. / text
54

Metamorphic fluids at extreme pressure conditions and their significance for element transfer in subduction zones / A multidisciplinary study on metamorphic veins in UHP/HP eclogites from Dabieshan, China

Albrecht, Nina 05 April 2017 (has links)
No description available.
55

始生代グリ-ンストン帯の形成過程

星野, 光雄, 伊藤, 正裕, 杉谷, 健一郎 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(C)(2) 課題番号:07640638 研究代表者:星野 光雄 研究期間:1995-196年度
56

Tectonic evolution of Aegean metamorphic core complexes, Andros and Tinos Islands, Greece

Shin, Timothy Andrew 10 October 2014 (has links)
The Aegean is a classic setting for studying exhumation of high-pressure (HP) metamorphic rocks. Two end-member models are proposed to explain the uplift of these rocks: core-complex style extension along low-angle normal faults and extrusion-wedge uplift. Extrusion-wedge underplating is the mechanism that exhumed HP rocks on Evia whereas Tinos hosts several detachments varying in age from 30-9 Ma. Andros, situated between them, may be the geological manifestation of the interplay of these processes and provides an opportunity to test these models. Detachments on NW Tinos and on Andros and the enigmatic low-angle Makrotantalon Unit contact on Andros were insufficiently dated prior to this study. Geo- and thermochronometrycombined with structural observations from sampling transects in the transport direction from (1) lower plate Cycladic Blueschist Unit on Andros and Tinos, (2) middle plate Makrotantalon Unit on Andros, and (3) hanging wall Upper Unit address these issues. Maximum depositional ages from detrital zircon U-Pb geochronometry and structures reveal Paleocene-Eocene syn-HP metamorphism thrusting resulted in an inversed-age relationship between the Permian Makrotantalon Unit and the underlying Triassic-Eocene Cycladic Blueschist Unit on Andros. The Makrotantalon Unit has an internal inversed stratigraphy whereas the Cycladic Blueschist Unit on Andros and Tinos appear stratigraphically intact. Structures and zircon and apatite (U-Th)/He ages in transects from NW Tinos (~12-8 Ma) and central Andros Cycladic Blueschist Unit (~13-7 Ma) indicate rapid cooling due to exhumation associated with the Livada Detachment. Older cooling ages (~16-10 Ma) and structures in the Makrotantalon Unit indicate later brittle strain localization on the Makrotantalon Thrust contact is accommodated by rheologically weaker serpentinites and calc-schists, resulting in slivering of the footwall under the Livada Detachment on Andros. Estimated mean cooling slip rates of the Livada Detachment on Andros of ~3.8 (+1.2/-1.3) km/Myr and 2.1 (+0.2/-0.2) km/Myr on NW Tinos resulted in minimum vertical exhumations of 15 km and 4 km, respectively. The NCDS here accommodated ~12-25% of 60 km of HP-rock exhumation from ~30-7 Ma. We present a tectonic model to elucidate the evolution of the Makrotantalon Unit and the magnitude, temporal, and spatial variability of exhumation via detachments on these islands.
57

Precambrian Geology of the Cottonwood Cliffs Area, Mohave County, Arizona

Beard, Linda Sue January 1985 (has links)
A belt of Early Proterozoic rocks crops out in the Cottonwood Cliffs area, northwest Arizona. The belt contains an eastern and a western assemblage separated by the Slate Mountain fault. The western assemblage consists of mafic to felsic metavolcanic rocks, metapelites, and metaconglomerates. The eastern assemblage consists of phyllites, felsic to intermediate metavolcanic rocks, metagraywackes, and metagabbro bodies. The belt is bounded to the east by foliated granodiorite. The Valentine granite intruded the belt on the west and north. Steeply-plunging lineations and fold axes, and northeast-trending vertical foliation dominate the structural fabric. The regional elongation direction is near-vertical, as indicated by mineral and pebble lineations, and is parallel to fold axes. Although only one deformational event is evident, the intensity of that event may have obliterated evidence of any earlier deformation. Tertiary basalts and the Peach Springs Tuff locally overly the metamorphic rocks. Cenozoic normal faults in the area are mostly of minor displacement.
58

Tectonic Evolution of Central Madurai Block, Southern India and Potential Heat Source for High-Temperature Metamorphism

Rashid, Janwari Shazia AB January 2014 (has links) (PDF)
The Madurai Block is the largest granulite block in Southern Granulite Terrain which lies between Palghat-Cauvary shear zone in the North and Achankovil shear zone in the South. This terrain underwent extreme crustal metamorphism under ultrahigh-temperature metamorphic conditions which provides vital information about the tectonic process of the lower crust. Ultrahigh temperature metamorphism was defined by Harley (1998b) as a subclass of granulite facies metamorphism of crustal rocks in which peak temperature exceeds 900°C at moderate pressures (7-13 kbar) in the deep crust. However, considering the lacunae about the present understanding of ultrahigh temperature metamorphism, the study attempts to identify the heat source and role of lower crustal fluids in high temperature metamorphism. To understand the role of lower crustal fluids, a case study on migmatised metapelites from the Kodaikanal region was done where the metapelites have undergone UHT metamorphism. In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica saturated and silica under saturated restite from the same outcrop indicate three principal ages which can be linked in with the evolutionary history of these rocks. The monazite grains in leucosome sample show alteration along the rims. These altered rims are experimentally replicated in a monazite-leucosome experiment at 800°C and 200MPa. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation. Lower crustal fluids during migmatization and high temperature metamorphism from leucosome monazites signify the need for a more precise texturally-controlled geochronological determination. Considering the possible heat source of high temperature metamorphism, the role of associated rocks of charnockites/granites and ultramafics was studied from Kodaikanal and Ganguvarrpatti. The results indicate that both charnockites and granites are not the heat source of high temperature metamorphism. However, to recognize the ultramafic as the potential heat source the sapphirine-bearing high Mg-Opx bearing rock was studied from Kambam town. The sapphirine–cordierite intergrowth pods are characterized by unique texture and peraluminous sapphirine composition suggesting that these domains could represent cryptic pathways through which aluminous melts migrated. The mineral phase equilibria considerations suggest that such peraluminous melts interacted with Mg-rich orthopyroxene in the host granulite at 1025°C and 8 kbar, with subsequent isobaric cooling. The underplated mafic magma (T>1000°C) is suggested as a possible mechanism that provided the heat source for partial melting of lower crust and the UHT metamorphism. Moreover, field evidence of metapelite in direct contact with an ultramafic body was observed resulting into granulite grade metamorphism. The other evidence of ultramafic magma as heat source is though the mineral chemistry and geochemical modeling of the studied ultramafic rocks.
59

A Re-Os Study of Sulfides from the Bagdad Porphyry Cu-Mo Deposit, Northern Arizona, USA

Barra-Pantoja, Luis Fernando January 2001 (has links)
Use of Re-Os systematics in sulfides from the Bagdad porphyry Cu-Mo deposit provide information on the timing of mineralization and the source of the ore -forming elements. Analyzed samples of pyrite, chalcopyrite and molybdenite mainly from the quartz monzonite and porphyritic quartz monzonite units are characterized by a moderate to strong potassic alteration (secondary biotite and K- feldspar). Rhenium concentrations in molybdenite are between 330 and 730 ppm. Two molybdenite samples from the quartz monzonite and porphyritic quartz monzonite provide a Re-Os isotope age of 71.7 ± 0.3 Ma. A third sample from a molybdenite vein in Precambrian rocks yields an age of 75.8 ± 0.4 Ma. These molybdenite ages support previous suggestions of two mineralization episodes in the Bagdad deposit. An early event at 76 Ma and a later episode at 72 Ma. Pyrite Os and Re concentrations range between 0.008-0.016 and 3.9-6.8 ppb, respectively. Chalcopyrite contains a wide range of Os (6 to 91 ppt) and Re (1.7 to 69 ppb) concentrations and variable ¹⁸⁷Os/¹⁸⁸Os ratios that range between 0.13 to 22.27. This variability in the chalcopyrite data may be attributed to different copper sources, one of them the Proterozoic volcanic massive sulfides in the district, or to alteration and remobilization of Re and Os. Analyses from two pyrite samples yield an eight point isochron with an age of 77 ± 15 Ma and an initial ¹⁸⁷Os/¹⁸⁸Os ratio of 2.12. This pyrite Re-Os isochron age is in good agreement with the molybdenite ages. We interpret the highly radiogenic initial 1870s/188Os as an indication that the source of Os and, by inference, the ore-forming elements for the Bagdad deposit, was mainly the crust. This conclusion agrees with previous Pb and Nd isotope studies and supports the notion that a significant part of the metals and magmas have a crustal source.

Page generated in 0.5132 seconds