• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 10
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ALTERNATIVE METHODS FOR DETERMINING THE BIOCHEMICAL METHANE POTENTIAL OF MUNICIPAL SOLID WASTES

2015 October 1900 (has links)
The biochemical methane potential (BMP) of a substance is a measure of the volume of methane gas produced per unit mass of that substance, through the process of anaerobic biodegradation. As the socio-economic consequences of climate change have become more apparent, the ability to predict the long-term cumulative environmental impact of various human activities has become more necessary. Landfills can be a substantial source of methane (a greenhouse gas) to the atmosphere, and consequently BMP is an important tool for predicting the potential cumulative long-term impacts of a landfill to the environment. From a strictly economic perspective, the practice of landfill methane extraction for industrial uses is becoming much more common. In this case, BMP is an important tool for predicting the economic feasibility of such a project. Current methods for determining the BMP of municipal solid wastes (MSW) are both time-consuming and inconsistent. A review of literature on the topic yields many different descriptions of the test, with large variations in sample sizes, incubation times, procedures, etc. Most of these methods also require expensive, and specialized equipment. This thesis describes a simple approach to the BMP test that might be carried out in a variety of laboratory settings, such as an on-site lab equipped with basic, simple, and inexpensive equipment. The method relies on a much larger than typical sample mass to produce large volumes of gas that are measured for composition multiple times over the course of the test. The volume and composition data is then used to produce a cumulative methane potential curve which can be fitted to a first-order decay model in order to predict an ultimate BMP value. The taking of multiple measurements on large volumes of gas, allows for the use of a portable field instrument called the GEMTM2000 to measure gas composition. By fitting the data to a curve in order to determine ultimate methane potential, individual measurement errors are averaged out and the final result has a precision similar to more traditional BMP methods, which rely on bulky and expensive gas chromatographs. Testing has been conducted on MSW samples from 3 separate sites. The method used involved comparatively large samples of waste (~200 g) and no limit was set on incubation time. The use of large waste samples produces large quantities of gas that must be collected and analyzed often. The method provided favourable results, consistent within acceptable limits of variability when compared with other BMP methods. There is even some evidence suggesting that the use of large waste samples improves the accuracy of the test, despite the use of equipment which provides less precise measurements of gas concentration. Given the long duration required for testing, the results were also evaluated for possible correlations between loss on ignition data and specific gravity measurements; two simple tests that can be conducted rapidly. Both data sets show a rough correlation with BMP, and may be used to quickly estimate ultimate BMP values, but the loss on ignition relationship provides the better correlation. Lastly, initial steps were taken in the development of what has been dubbed the Biochemical CO2 Potential (BCP) test, taking advantage of the relatively quicker rate of aerobic degradation. There are preliminary indications that the BCP method may be a viable alternative to the BMP, but the data set so far is small and further research is required to confirm that hypothesis.
2

Anaerobic Digestion Kinetics of Batch Methanogenic and Electrogenic Systems

January 2020 (has links)
abstract: Eighty-two percent of the United States population reside in urban areas. The centralized treatment of the municipal wastewater produced by this population is a huge energy expenditure, up to three percent of the entire energy budget of the country. A portion of this energy is able to be recovered through the process of anaerobic sludge digestion. Typically, this technology converts the solids separated and generated during the wastewater treatment process into methane, a combustible gas that may be burned to generate electricity. Designing and optimizing anaerobic digestion systems requires the measurement of degradation rates for waste-specific kinetic parameters. In this work, I discuss the ways these kinetic parameters are typically measured. I recommend and demonstrate improvements to these commonly used measuring techniques. I provide experimental results of batch kinetic experiments exploring the effect of sludge pretreatment, a process designed to facilitate rapid breakdown of recalcitrant solids, on energy recovery rates. I explore the use of microbial electrochemical cells, an alternative energy recovery technology able to produce electricity directly from sludge digestion, as precise reporters of degradation kinetics. Finally, I examine a fundamental kinetic limitation of microbial electrochemical cells, acidification of the anode respiring biofilm, to improve their performance as kinetic sensors or energy recovery technologies. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
3

Methane potential of sewage sludge to increase biogas production.

Rodriguez Chiang, Lourdes Maria January 2011 (has links)
Sewage sludge is treated with the biological process of anaerobic digestion in which organic material of a substrate is degraded by microorganisms in the absence of oxygen. The result of this degradation is biogas, a mixture mainly of methane and carbon dioxide. Biochemical Methane Potential tests are used to provide a measure of the anaerobic degradability of a given substrate. This study aims to determine the methane potential in Sjöstadsverket’s sludge this will moreover determine the viability of recycling the digested sludge back into the anaerobic system for further digestion. Batch digestion tests were performed in both Sjöstadsverket’s (S1) and Henriksdal’s (H2) sludge, for a reliable comparison. An inoculum to substrate ratio of 2:1 based on VS content was used and BMP tests presented results that S1 and H2 in the 20 days of incubation produced 0.29 NLCH4/gVS and 0.33 NLCH4/gVS respectively. A second experiment considering the same amount of substrate (200ml) and inoculum (200ml) for each sample, showed that Control S1 had a higher methane potential than Control H2, 0.31 NL/gVS and 0.29 NL/gVS respectively. All the samples containing Sjöstadsverket’s inoculum presented a higher volume of total accumulated gas (measured in Normal Liters), however methane potentials are low. Results demonstrated that methane production in samples S1 and Control S1 was originating from the grams of VS in the inoculum itself after depletion of all the soluble organic material in the substrate. This suggested that Sjöstadsverket’s sludge can endure a higher organic load rate and that the digested sludge still has potential to produce biogas, hence the recycling of this can enhance the biogas production in the digestion system.
4

Potential Biogas Production from Fish Waste and Sludge.

Shi, Chen January 2012 (has links)
In order to decrease the pollution of the marine environment from dumping fish waste and by-catch, alternative use for co-digestion with sludge in anaerobic condition was studied. The purpose of this project is to optimize the methane potential from adjustment of the proportion among mixed substrates. Ten groups of different proportions among fish waste, by-catch and sludge were conducted with AMPTS II instrument under mesophilic condition (37 ± 0.5 ºC), by means of the principle of BMP test. The ratio of inoculums and mixed substrate was set as 3:2. The optimal MP obtained after an experiment with 13 days digestion was 0.533 Nm3 CH4/kg VS from the composition of sludge, by-catch and fish waste as 33 %, 45 % and 22 %. It was improved by 6 % and 25.6 %, to compare with the previous studies by Almkvist (2012) and Tomczak-Wandzel (personal communication, February 2012) respectively.
5

Enhanced Biodegradation in Landfills

Shearer, Brad David 29 May 2001 (has links)
The objective of this paper is to evaluate the effectiveness of leachate recirculation and bioreactor landfills at enhancing biodegradation, and to optimize the operation of a bioreactor. Waste Management has been examining leachate recirculation landfills for several years. Samples of Municipal Solid Waste (MSW) from existing leachate recirculation (LR) landfills were collected and analyzed for several physical and biochemical properties. These parameters of interest were moisture content, pH, density, temperature, volatile solids, cellulose/lignin ratios, and biological methane potential (BMP). Leachate recirculation increased the dry density 55% faster and decreased the BMP 125% more rapidly. Moisture content was the biggest factor influencing overall degradation. Therefore, leachate reciculation effectively increases biodegradation of MSW in landfills. Waste Management built a pilot-scale bioreactor in Franklin, WI, which was sampled for one year. It contained a bioreactor side and a control side. The volatile solids, cellulose, and BMP degradation rates for the bioreactor were increased by 56%, 87%, and 271% versus the control, respectively. Moisture content was the biggest factor influencing overall degradation. The column study is designed to optimize three parameters under the control of an operator: moisture content, initial aeration period, and biosolids addition. The optimum moisture content is above 45%, but it is not safe to operate heavy equipment on refuse with greater than 45% moisture. Initial aeration did not speed up the overall degradation, but it did shorten the acidogenic phase. Finally, biosolids did not have a significant effect on degradation rates. The columns maintained an average temperature of 70oF. / Master of Science
6

Etude de l'utilisation de la spectroscopie proche infrarouge pour la prédiction du potentiel méthane de déchets solides / Study of the use of the near infrared spectroscopy for predicting the methane potential of solid waste

Lesteur, Mathieu 07 December 2010 (has links)
La digestion anaérobie est un moyen de traitement des déchets solides produisant de l'énergie sous forme de biogaz (méthane et dioxyde de carbone). L'optimisation de la production de méthane passe par une sélection des déchets à fort potentiel méthane. Actuellement, la mesure du potentiel méthane est réalisée par le test BMP (Biochemical Methane Potential), qui repose sur une fermentation pouvant durer plus de 30 jours, ce qui est trop long pour une installation industrielle. Une méthode rapide de détermination du potentiel méthane est donc nécessaire. Le BMP est lié uniquement à la quantité et à la qualité de la matière organique. Cette méthode doit donc réaliser une analyse globale et rapide de la matière organique. L'objectif de la thèse a été d'identifier et d'étudier une méthode rapide d'analyse de la matière organique de déchets solides permettent de prédire le potentiel méthane. Suite au travail bibliographique, la spectroscopie proche infrarouge s'est révélée la méthode la plus appropriée: analyse globale et rapide, non destructive, préparation d'échantillon réduite, possibilité d'utiliser des fibres optiques pour déporter la mesure. Nous avons ensuite étudié des étalonnages pour prédire le potentiel méthane d'un ensemble homogène de 74 déchets. Un coefficient de corrélation de 0,76 et un écart standard de prédiction (RMSEP) de 28 ml CH4.g-1 MV ont été obtenus. Ensuite, les coefficients du modèle ont été analysés par rapport aux molécules présentes et rapprochés des variables sélectionnées par algorithme génétique afin de valider ce modèle d'un point de vue chimique. Enfin, la robustesse de ce modèle vis à vis de l'origine des échantillons et de l'humidité a été testée. Les résultats montrent clairement le fort potentiel de la spectroscopie proche infrarouge pour la prédiction du potentiel méthane. Pour une utilisation industrielle, il ressort qu'une attention particulière doit être portée sur l'ensemble d'étalonnage, qui doit être le plus exhaustif possible. / Anaerobic digestion is a solution to process solid waste, while producing energy by biogas production (methane and carbon dioxide). Methane production could be optimized by selecting only wastes with high methane potential. Currently, the BMP (Biochemical Methane Potential) test is conducted to predict the methane potential. This test is based on a fermentation process. It is time consuming, sometimes, lasting over 30 days, which is too long from an industrial point of view. A rapid method for determining the methane potential is therefore urgently needed. The BMP value depends only on the quantity and the quality of the organic matter, so a method capable of determining the quality and quantity of organic matter is searched for. The objective of this thesis was to identify and study such a method. First, a bibliographic study led us to chose the near infrared (NIR) spectroscopy method: fast and global analysis of the organic matter, non-destructive method, few or no sample preparation, and remote monitoring by use of fiber optics. Second, a calibration for predicting the BMP of and homogenous sample set has been built based on a 74-waste sample set. A correlation coefficient of R² = 0,76 and a standard error of prediction (RMSEP = 28 ml CH4.g-1 VS). Then, the regression coefficients (called b coefficients) were analysed with regard to the molecules in the waste and were compared to the variables selected from the spectrum, in order to validate the model from a chemical point of view. Finally, the robustness of the model, regarding the waste origins and the moisture was tested with heterogeneous samples set. Results show the potential of the near infrared spectroscopy to predict the methane potential quickly, but attention must be paid on the calibration data set when an industrial implementation is dealt with..
7

Investigation of biochemical methane potential in Thái Nguyên city and Sông Công city in Vietnam

Deo, Anurag, Axelsson Bjerg, Mette January 2017 (has links)
Currently Vietnam is facing several problems with waste handling. For instance, a lot of the municipal organic solid waste is dumped at landfills, which contributes to environmental difficulties such as greenhouse gas emissions. Anaerobic digestion has proven to be an adequate method for solving environmental problems such as waste treatment, where biogas can be produced. The methane content in the biogas can subsequently be used as a prosperous energy source for heating, electricity and vehicle fuel. The production and utilization of biogas in Vietnam is in a developing face. However, there are issues that should be tackled to improve and expand the biogas production and use. In Vietnam the main substrate used for anaerobic digestion is animal manure as most of the biogas digesters are placed on farms. The purpose of this master thesis was to identify additional potential substrates for biogas production, with focus on Thái Nguyên city and Sông Công city in the Thái Nguyên province. In order to find suitable substrates, interviews and literature research were carried out in Vietnam. Subsequently biochemical methane potential (BMP) tests were performed for the identified and acquired substrates. The BMP-tests were first performed at Thái Nguyên University but as the results were inconclusive, further experiments were performed at Linköping University (Sweden) where eight substrates from the Thái Nguyên province were investigated. The identified substrates used for the BMP-tests were three types of beer waste from the Vicoba brewery in Thái Nguyên city, food waste from different restaurants in Sông Công city, fruit waste from the fruit market in Thái Nguyên and household vegetable waste. The highest methane yield could be observed for household vegetable waste (543 Nml/g VS) followed by beer waste (yeast) with a methane potential of 497 Nml/g VS. Beer waste (hops boiling) had the lowest methane potential with a value of 230 Nml/g VS. Estimation of the total methane potential in both cities together from food waste from restaurants, beer waste and sewage sludge from the upcoming waste water treatment plant (WWTP) in Thái Nguyen city were made by combining data from interviews, literature values and the BMP-results. The estimation showed that from Thái Nguyên City and Sông Công city about 137,500 m3 CH4/year can be produced from food waste from restaurants, about 1.7 millionCH4 m3/year can be produced from sludge from the WWTP in Thái Nguyên city (under construction) and there is also a possibility to produce about 10,700 m3 CH4/year from the beer brewery in Thái Nguyên city. Thus, the total estimated methane potential sums up to 1.8 million m3 CH4/year. The results show that Thái Nguyên city and Sông Công city have potential wastes that preferably could be used as substrates for biogas production which could add on to the biogas produced currently at farm level in the Thái Nguyên region. / I dagsläget står Vietnam inför svåra problem med rådande avfallshantering. En stor del av det organiska avfallet deponeras. Detta bidrar till miljöproblem som exempelvis utsläpp av växthusgaser. Kontrollerad rötning har visat sig vara en bra metod för avfallshantering av organiskt avfall, eftersom biogasen som produceras exempelvis kan användas som energikälla för matlagning, elektricitet och fordonsbränsle, samtidigt som avfallsmängden kraftigt reduceras. Utvecklingen av kommersiell biogasproduktion i Vietnam är fortfarande i ett inledande stadie. De främsta substraten för biogassubstratet som används i landet i nuläget är olika typer av gödsel med anledning av att de flesta rötkammare är placerade på bondgårdar. Syftet med denna studie är att undersöka kompletterande potentiella substrat som kan användas för biogasproduktion i städerna Thái Nguyên och Sông Công som är belägna i provinsen Thái Nguyên. För att identifiera möjliga biogassubstrat genomfördes intervjuer på plats tillsammans med litteraturundersökningar. Vidare genomfördes metanpotentialbestämningar (BMP) för identifierade, utvalda och, erhållna substrat. Det visade sig ej vara möjligt inom tidsramen för besöket att genomföra BMP-testerna på ett fullgott sätt vid Thái Nguyêns universitet med anledning av begränsningar i metodförutsättningar, varför BMP-tester även genomfördes på Linköpings universitet. Totalt testades metanpotentialen för åtta olika substrat från städerna Thái Nguyên och Sông Công. De identifierade substraten som användes i BMP-studien var tre typer av bryggeriavfall från Vicoba bryggeri i Thái Nguyên, matavfall från olika restauranger i Sông Công, fruktavfall från fruktmarknaden i Thái Nguyên och hushållsavfall från ett hushåll i Thái Nguyên. Det högsta metanutbytet kunde observeras för matavfall från hushåll (543 Nml/g VS) följt av bryggeriavfall i form av jäst (497 Nml/g VS). Ölavfall från vörtkokning påvisade det lägsta metanutbytet av samtliga testade substrat motsvarande 230 Nml/g VS. En uppskattning av den totala metanpotentialen i de båda städerna från matavfall från restauranger, bryggeriavfall samt avloppsslam från reningsverket som är under uppbyggnad i Thái Nguyên genomfördes baserat på intervjuer, litteraturvärden samt genomförda metanpotentialtester (BMP). Uppskattningen visade att cirka 137 500 m3 CH4/år skulle kunna produceras från matavfall från restauranger, cirka 1,7 miljoner CH4 m3/år från avloppsreningsverksslam samt från ölbryggeriet i Thái Nguyên är det möjligt att producera cirka 10 700 CH4 m3/år. Sammantaget indikerar det en uppskattad metanpotential motsvarande ca 1,8 miljoner CH4 m3/år. Slutsatsen av den här studien visar att det finns stor potential för biogasproduktion i Thái Nguyên och Sông Công. / Developing strategies and methods for participatory planning in Thái Nguyên and Linköping
8

Codigestão anaeróbia de dejeto suíno e carcaça suína: produção de biogás e inativação de patógenos / Anaerobic co-digestion of swine manure and carcass: biogas yield and pathogens inactivation

Tápparo, Deisi Cristina 16 February 2017 (has links)
Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2017-08-30T13:20:01Z No. of bitstreams: 2 Deisi_Tapparo2017.pdf: 1334800 bytes, checksum: e1f7fae75650df8c87e6f134d2dad8cf (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-08-30T13:20:01Z (GMT). No. of bitstreams: 2 Deisi_Tapparo2017.pdf: 1334800 bytes, checksum: e1f7fae75650df8c87e6f134d2dad8cf (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-02-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The swine breeding stands out on worldwide due to its constant growth. However, environmental problems have increased as the activity gains recognition, consequently, planning and management of waste produced have been required in the systems. Animal carcasses disposal inside or outside the animal rearing farms is under concern and object of discussion about good practices to do it considering biosecurity aspects. One alternative is the swine manure and swine carcass co-digestion in order to improve biogas production. At the same time, it is known that animal carcass has some pathogenic microorganisms of zoonotic importance. In this context, this research aimed at studying swine carcass co-digestion and swine manure as well as its implications on biogas yield and digestate sanitation. This study was carried out under mesophilic temperature (37 ºC) and triplicate tests. Biogas volume was measured using eudiometer tubes, according to VDI 4630. The trials used the carcass sample digestion in a separate way and loading rates of carcass/manure were 3, 7.5 and 15kg.m-3manure, which represented 1, 2.5 and 5 times of mortality/manure production rates on typical swine farms (Mortality rate of 7% .year-1 for matrices). The inactivation trials were carried out in separated. Then it was evaluated the inactivation of the following microorganisms models (E. coli, Salmonella enterica serovar Senftenberg, PCV2, and bacteriophage MS2 and PhiX-174). Four inactivation strategies were carried out at two temperatures (24 ºC and 37 ºC) and two swine carcass/swine manure ratios were also studied (3kgcarcass.m-3manure and 15 kgcarcass.m-3manure). The swine carcass presented biochemical methane potential (BMP) of 1076 ± 48 LNbiogas.kgSVadic-1, and its co-digestion with swine manure increases biogas production potential when compared to manure monodigestion. The model microorganisms such as E. coli, S. Senftenberg and PCV2 (37°C) were completely inactivated until 30 days, while PCV2 (24°C), MS2 and PhiX-174 were more resistant. The temperature of co-digestion process influences the time required for microorganisms’ inactivation. Inactivation results suggest that, during co-digestion at 37°C, there is a greater pathogen reduction when compared to the same process at 24° C. It is recommended to use a pre-treatment process to biodigestor without heating system and under mesophilic temperature to ensure biosafety. / A suinocultura se destaca no cenário mundial devido ao seu constante crescimento. Todavia, os problemas ambientais aumentam à medida que a atividade ganha reconhecimento, por isso, são necessários planejamento e gestão dos resíduos produzidos nos sistemas. Um dos desafios da atividade é a destinação de animais mortos, logo, são necessárias alternativas que aliem proteção do meio ambiente e saúde pública bem como opções de baixo custo. Uma das alternativas é realizar a codigestão de carcaça suína com dejeto suíno para melhorar a produção de biogás. Ao mesmo tempo, é de conhecimento que a carcaça animal possui micro-organismos patogênicos de importância zoonótica. Nesse contexto, o objetivo desta pesquisa foi estudar a codigestão de dejeto suíno e carcaça suína, suas implicações sobre a produção de biogás e sanitização do digestato. Os estudos de digestão foram conduzidos em batelada, sob condições mesofílicas (37ºC) e em triplicata. Foram utilizados tubos eudiômetros para mensurar o biogás produzido, conforme norma VDI 4630. Os experimentos envolveram a digestão de amostras de carcaça em separado e das relações de mistura entre carcaça e dejeto nas seguintes proporções: 3; 7,5 e 15 kgcarcaça.m-3dejeto, as quais representaram 1; 2,5 e 5 vezes a mortalidade encontrada em granjas comerciais (mortalidade de 7%.ano-1 para matrizes). Os experimentos de inativação de patógenos foram conduzidos em separado. Avaliou-se a inativação de micro-organismos modelos (E. coli, Salmonella entérica serovar Senftenberg, PCV2, MS2 e PhiX-174). Quatro estratégias de inativação foram estudadas: duas temperaturas (24ºC e 37ºC) e duas relações de carcaça suína/dejeto suíno (3kg.m-3 e 15kg.m-3). Os resultados mostraram que a carcaça suína tem um potencial de 1076 ± 48 LNbiogás.kgSVadic-1, e a sua codigestão com dejeto suíno aumenta o potencial de produção de biogás comparando com a monodigestão do dejeto. Os micro-organismos modelo E. coli, S. Senftenberg e PCV2 (37 ºC) foram totalmente inativados em 30 dias, enquanto o PCV2 (24 ºC), MS2 e PhiX -174 foram mais resistentes. A temperatura do processo de codigestão influencia no tempo necessário para a inativação dos micro-organismos. Os resultados de inativação sugerem que, durante a codigestão a 37 ºC, ocorre maior redução de patógenos quando comparada ao mesmo processo a 24 ºC. Recomenda-se a utilização de processo de pré-tratamento para biodigestores sem sistema de aquecimento e em temperaturas mesofílicas, a fim de garantir a biossegurança.
9

Optimering och effektivisering av biogasprocessen vid biogasanläggningen Kungsängens gård / Optimization and potentiation of the biogasprocess at the biogas plant Kungsängens gård

Frid, Sara January 2012 (has links)
Under år 2008 användes globalt en energimängd motsvarande nästan 144 000 TWh ochav dessa stod fossila bränslen för 81 %. I Sverige uppgick energitillförseln under år2010 till totalt 616 TWh och av detta stod råolja/oljeprodukter för 30,4 %. Vidförbränning av fossila bränslen frigörs koldioxid, en gas som bidrar till att förstärkaväxthuseffekten. År 2000 uppmättes halten av koldioxid i atmosfären till 370 ppmv ochför att den globala temperaturen inte ska öka med mer än 2°C bör halten stanna på 450ppmv innan år 2100. Ett sätt att minska andelen av fossila bränslen är att öka andelen avförnybara energikällor, som t.ex. biogas, som i Sverige uppskattas kunna ge enenergimängd motsvarande 10-15 TWh/år i framtiden.Vid biogasanläggningen Kungsängens gård, Uppsala, samrötas slakteriavfall samtorganiskt avfall från hushåll och livsmedelsindustri i en termofil rötningsprocess. Underår 2011 producerades ca 3 400 000 Nm3 biogas och den största andelen uppgraderadestill fordonsgas. Behovet fordonsgas i Uppsala ökar och i detta examensarbete utreddestvå sätt att effektivisera processen och öka gasproduktionen. Dels undersöktes om enökad belastning skulle ge en ökad biogasproduktion utan att riskera processensstabilitet. Detta gjordes i två labskalereaktorer där belastningen ökades gradvis i denena. Dels studerades möjligheten att minska energiförbrukningen på anläggningengenom att byta hygieniseringsmetod. Innan substratet matas in i rötkamrarna måste dethygieniseras, vilket i dagsläget görs genom pastörisering (upphettning till 70oC under entimme). Då detta är väldigt energikrävande finns det planer på att byta metod ochistället låta substratet hygieniseras i rötkamrarna (52°C) i minst 10 timmar. Det är dockviktigt att beakta huruvida metanpotentialen för pastöriserat och opastöriserat materialskiljer sig åt, varför detta utreddes i sk satsvisa utrötningsförsök.Genom hela belastningsökningen (från 3 till 6 kg VS/m3,d) ökade biogasproduktionenoch vid den högsta belastningen var ökningen 100 % jämfört med dagens nivå. Andraviktiga processparametrar, så som specifik gasproduktion, kvoten CO2/CH4, pH,halterna av fettsyror och utrötningsgraden, låg på en jämn nivå under försöket, vilkettyder på att processen var stabil trots den ökade belastningen. Utrötningsförsöket visadeatt pastöriseringen inte hade någon effekt på metanproduktionen, troligtvis eftersomsubstratet redan var lättnedbrytbart. Beräkningen av energiförbrukning visade attenergianvändningen skulle minska med ca 33 % vid byte av hygieniseringsmetod. / During 2008 an amount of energy equivalent to almost 144,000 TWh was used globally,of which fossil fuels accounted for 81 %. In Sweden, during 2010, an amount of energyequivalent to 616 TWh was used, of which crude oil/oil products accounted for 30.4 %.Carbon dioxide, a gas that contributes to the global warming, is produced during thecombustion of fossil fuels. In 2000 the levels of carbon dioxide in the atmosphere wasmeasured to be 370 ppmv and if the global temperature is not to increase with morethan 2°C, the levels should stay at 450 ppmv by 2100. One way of decreasing the use offossil fuels is to increase the use of renewable energy, such as biogas. In the futurebiogas can, approx., provide with energy equivalent to 10-15 TWh/year in Sweden.At the biogas plant Kungsängens gård, in Uppsala, slaughterhouse byproducts are codigestedwith source separated household waste and waste from the food processingindustry in a thermophilic process. During the year 2011 approximately 3,400,000 Nm3of biogas was produced at the plant, of which most was upgraded to vehicle fuel. Theconsumption of vehicle fuel is increasing in Uppsala and thus there is a need forincreased biogas production. The aim of this master thesis was to investigate two waysto increase the efficiency and consequently the gas production at the biogas plant atKungsängens gård. Firstly, it was studied if an increased organic loading rate (OLR)would give an increased biogas production, without disturbing the process. This wasdone in two lab scale reactors, where the load was increased gradually in one. Secondly,the possibility to decrease the energy consumption by means of a change of sanitizationmethod was studied. The substrate has to be sanitized before it is fed to the digesters,currently this is done by pasteurization. This process is, however, energy-demandingand there are plans to change the method of sanitization. It is, however, important toconsider whether the methane potential differs for the pasteurized and the nonpasteurizedsubstrate. This was studied in small scale biogas batch reactors.Through all stages of increased OLR (from 3 to 6 kg VS/m3, d) the biogas productionincreased, and at the largest load the increase was 100 % compared to the present level.Other important process parameters, such as specific methane production, CO2/CH4-ratio, pH, levels of fatty acids and degree of digestion, were at regular levels and thisindicates that the process was maintained stable in spite of the increased load. The testin the small scale biogas batch reactors showed that pasteurization of the substrate hadno effect on the methane potential, probably due to that the substrate already is readilybiodegradable. The estimation of the energy consumption showed that the use of energyshould decrease with approx. 33 % if the sanitization was replaced.
10

Anaerobic Treatment Of Opium Alkaloid Wastewater And Effect Of Gamma-rays On Anaerobic Treatment

Ozdemir, Recep Tugrul 01 October 2006 (has links) (PDF)
In this study, anaerobic treatability of opium alkaloid wastewater and the effect of radiation pretreatment (gamma-rays) on anaerobic treatability were investigated. Biochemical Methane Potential (BMP) assay was performed with alkaloid wastewater having initial COD values of 2400, 6000 and 9600 mg/L with and without basal medium (BM). The highest anaerobic treatment efficiency of 77% was obtained in the BMP reactor containing alkaloid wastewater with initial COD of 9600 mg/L and BM. Co-substrate use was investigated by using BMP assay. Alkaloid wastewater having initial COD concentrations of 9000, 13000 and 18000 mg/L were used with glucose, acetate and glucose-acetate as co-substrates. Results revealed that co-substrate use did not improve alkaloid removal efficiency significantly but it abrogated the acclimation period of anaerobic bacteria to alkaloid wastewater. Continuous reactor experiments were carried out in Upflow Anaerobic Sludge Blanket (UASB) reactors. Highest overall efficiencies (above 80%) were obtained in the reactor fed with co-substrate (R2) for all initial COD concentrations. Up to 78% removal efficiency was obtained in R1 (fed with alkaloid wastewater only) at initial COD concentration of 19 g/L. Effect of radiation was sought by using BMP assay with two initial COD concentrations of 14 and 25 g/L, and two radiation doses 40 and 140 kGy. At 14 g/L COD, there was no effect of radiation on gas production for both doses. However at initial COD of 25 g/L, reactors containing wastewater dosed with 140 and 40 kGy produced gas with higher rates above certain point with respect to raw wastewater.

Page generated in 0.1142 seconds