• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 15
  • 8
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 157
  • 157
  • 38
  • 18
  • 18
  • 16
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The effect of prewetting on the residence time distribution and hydrodynamic parameters in trickle bed reactors

Wales, Nadine Jenifer 04 September 2008 (has links)
Residence time distributions have become an important analytical tool in the analysis of many types of flow systems. Residence time distributions have proven to be effective for analysing trickle bed reactors, as it allows determination of parameters under operating conditions allowing no interference of these conditions. By studying the residence time distribution a great amount of information can be obtained and therefore used to determine a number of hydrodynamic parameters. Due to recent findings that prewetting has a tremendous effect on a number of hydrodynamic parameters such as holdup, wetting efficiency and pressure drop, it is therefore the aim of this study to investigate the effect of trickle flow morphology or prewetting on a trickle bed reactor. The residence time distribution is obtained whereby hydrodynamic parameters are determined and therefore the effect the flow morphology has on various hydrodynamic parameters is highlighted. A number of methods were used to determine these parameters, namely that of the best-fit method, whereby the PDE model was used, and the method of moments. Operating conditions included varying gas and liquid flow rates for porous and non-porous catalyst particles at atmospheric pressure. The different prewetting procedures used during this work included the following: <ul><li>Non-wetted </li> <li>Levec-wetted </li> <li>Super-wetted</li></ul> From this investigation the following conclusions were made: <li>Prewetting has a great effect on the hydrodynamic parameters of trickle bed reactors</li> <li>The differences in prewetting can be attributed to differing flow morphologies for the different prewetted beds i.e. the dominant flow morphology for a non-wetted bed is that of rivulets and for prewetted beds that of film flow</li> <li>It was also found that at low liquid flow rates the flow morphology in prewetted beds changes from film flow to a combination of rivulet and film flow</li> <li>The different flow morphologies for prewetted and non prewetted beds was confirmed by the residence time distributions and various parameters obtained there from</li> <li>At low liquid flow rates the flow morphology becomes a more predominant factor in creating the tailing effect present in residence time distribution for prewetted beds</li> <li>The tailing effect in residence time distributions is a result of both internal diffusion and liquid flow morphology, where the liquid flow morphology is the more dominant factor</li> <li>The use of residence time distributions to determine a number of hydrodynamic parameters proved to be very useful and accurate by means of different methods, i.e. method of moments and best-fit method</li> <li>Differences in the liquid holdup determined from the method of moments and the weighing method confirmed that different flow morphologies exist for different prewetted beds</li> <li>An increase in the dispersion coefficient with prewetting was observed indicating that the amount of micro mixing is different for the different prewetted beds</li> <li>Differences in residence times and high values for the dynamic holdup, for the porous packing, confirmed that the PDE model does not model well the porous packing response curves due to the lack of internal diffusion and internal holdup in this model</li> <li>The dynamic-static mass transfer showed that film flow, as in prewetted beds, results in slower mass transfer as opposed to rivulet flow and therefore it is concluded that prewetting results in different flow morphologies.</li></ul> Following this study it is recommended that a residence time distribution model be used or developed that incorporates the effects of internal diffusion and internal holdup as present in porous catalyst particles. In addition, it was found that very few correlations could accurately predict hydrodynamic parameters due to the absence of the effect of prewetting and therefore it is recommended that correlations be developed that incorporate the effect of prewetting. / Dissertation (MEng)--University of Pretoria, 2008. / Chemical Engineering / unrestricted
112

Analýza vývoje spotřeby domácností v závislosti na výši daně z přidané hodnoty / Analysis of household consumption expenditure with respect to VAT

Čížek, Pavel January 2014 (has links)
The constant increase in public sector spending in the advanced economies, increases pressure on the revenue side of public budgets. The primary sources of public budgets are taxes. This raises a question of what type of tax instrument to choose in respect to meet the high efficiency in sourcing public budgets restriction and at the same time, to minimize the negative impact on the private sector and households. As generally effective tax is considered a consumption tax. But what is the real effect of this tax in the short run and long run? The aim of this thesis is to analyze the influence of value -- added tax (VAT) on household expendictures in the short and long run. At first I provide empirical test of the short-term effect of VAT on household spending using quarter panel data for Visegrad fore countries, as I am focused mostly on the Czech Republic and Slovakia. Then construct a broader set of data for 14 EU countries, in purpose to test the long-term effect. For testing, I use several estimation techniques for panel data, taking into account the dynamic nature of these data sets.
113

Méthodologie de modélisation et de simulation numérique pour l'optimisation en compatibilité électromagnétique du blindage des chaines de traction électrique automobiles / Modeling and numerical simulation methodology for the electromagnetic compatibility optimization of the shielding for automotive electric powertrains

Vincent, Morgan 26 January 2017
Pour répondre aux exigences réglementaires de plus en plus sévères au regard des émissions de CO2, l'industrie automobile voit poindre l'émergence des chaînes de traction électrique dans des structures véhicules en matériaux composites. Dans ce manuscrit, le point de vue du constructeur automobile est considéré. En effet, pour répondre aux exigences automobiles en compatibilité électromagnétique (CEM) pour l'homologation et la protection de la santé des personnes vis-à-vis des champs électriques et magnétiques, le blindage électromagnétique est l'une des solutions de conception les plus utilisées. Afin d'évaluer les meilleurs concepts à moindre coût et réduire autant que possible les délais de prototypage, la modélisation et la simulation numérique doivent encore se développer et être déployées. Les chapitres de ce manuscrit illustrent, étape par étape, la modélisation, la simulation et la validation expérimentale du blindage d'une architecture de chaîne de traction électrique. Dans un premier temps,l'influence d'un matériau composite à savoir l'époxy renforcé en fibres de carbone est étudié sur les émissions conduites et rayonnées en présence d'un câble blindé. Dans un deuxième temps, une méthodologie de modélisation des câbles blindés et des raccords de masse est proposée dans un environnement électromagnétique où la théorie des lignes de transmission classique ne s'applique pas. Pour valider les deux précédentes parties, des bancs de mesure sont proposés et développés. Les résultats expérimentaux sont comparés à la simulation numérique. La dernière partie considère une chaîne de traction électrique simplifiée en présence de boîtiers métalliques, de câbles de puissance blindés, de raccords de blindage et de raccords de masse dans une structure multi-matériaux dans la bande de fréquences 10 kHz - 300 MHz. Les émissions conduites et rayonnées sont analysées en portant une attention particulière à la perturbation de la réception radio. / To reach the increasingly stringent regulatory requirements for CO2 emissions, the automotive industry is improving the electric powertrains in car bodies with composite materials. In this thesis report, the point of view of the car manufacturer is considered. The electromagnetic shielding is one of the most important design solutions to respect the electromagnetic compatibility (EMC) requirements for the homologation and the protection of human health with respect to electrical and magnetic fields. In order to evaluate the best concepts at lower costand to minimize prototyping delays, modeling and numerical simulation still need to be developed and deployed.The chapters of this thesis report illustrate, step by step, the modeling, the simulation and the experimentalvalidation of the shielding applied to an electric powertrain. In a first step, the influence of a composite material such as the carbon fiber reinforced epoxy is studied on the conducted and the radiated emissions in presence of a shielded cable. In a second step, a methodology to model shielded cables and the grounding connectionsis proposed in an electromagnetic environment where classical transmission line theory cannot be applied. Tovalidate the two previous parts, measurement setups are proposed and developed. The experimental results arecompared with the numerical simulation. The last part considers a simplified electric powertrain with metal housings, shielded power cables, shielding connections and grounding connections in a multi-material structurein the 10 kHz - 300 MHz frequency band. The conducted and radiated emissions are analyzed with a particular attention to the disturbance of the radio reception.
114

Numerische Berechnung elektromagnetischer Felder - Erweiterung einer Hybridmethode aus Momentenmethode und Einheitlicher Geometrischer Beugungstheorie um die Verallgemeinerte Multipoltechnik

Balling, Stefan 16 May 2007 (has links)
Drei numerische Feldberechnungsverfahren - die Momentenmehtode, die Einheitliche Geometrische Beugungstheorie und die Verallgemeinerte Multipoltechnik - werden schrittweise zu einer Erweiterten Hybridmethode (EHM) kombiniert. Dabei wird jeder einzelne Kombinationsschritt anschaulich anhand von Beispielen erläutert, die den Vorteil der EHM verdeutlichen: Mit diesem Verfahren lassen sich bestimmte Anordnungen äußerst effektiv analysieren.
115

Numerical study of sooting flames: from strain rate sensitivity to turbulence-chemistry interaction models

Quadarella, Erica 31 October 2022 (has links)
Soot prediction from combustion systems is still a major challenge in high-fidelity simulations of reactive flows, especially in turbulent conditions. Among the critical aspects, due to its slow characteristic formation times, soot sensitivity to strain rate and turbulence-chemistry interaction models for combustion closure can be found. Starting from the laminar problem, Soot Formation (SF) and Soot Formation Oxidation (SFO) counterflow flames are studied, allowing assessment of the roles of the different underlying phenomena concurring at soot formation with varying strain rates, depending on their relevance in each configuration. Attention is devoted to the inception model, which always regulates the onset of soot formation, and entirely determines the soot sensitivity to strain rate in the SF configuration through nucleation and condensation. Besides, surface growth and oxidation are analyzed in the SFO configuration, where they are predominant. The corresponding models are fine-tuned and generalized, and improved predictions are obtained in both configurations. Afterwards, a 2-points flame-controlling continuation method with soot module inclusion is developed to build a tool capable of flamelets generation inclusive of soot effects on the gas phase. The implementation is first tested discussing general features of the S-curve and verifying the consistency with previous works. The tool is finally used to compute the S-curve of ethylene pressurized sooting flames. The models and tools developed are incorporated into an OpenFOAM-based solver to perform Computational Fluid Dynamic (CFD) simulations of sooting turbulent flames. These are studied in pressurized, highly turbulent environments, to validate the soot model at a fundamental level but with practically relevant operative conditions. The numerical results are found to satisfactorily depict the soot volume fraction (SVF) formation, even though a few quantitative and qualitative discrepancies are discussed. Furthermore, soot intermittency and pressure scaling are analyzed. Finally, an alternative turbulence-chemistry interaction model for combustion closure is explored. A generalized partially-stirred reactor model is developed which accounts for all chemical times in a consistent manner. While the applicability of available models is confined to specific turbulence-chemistry interaction regimes, the incorporation of detailed chemistry description in the proposed approach improves synergistic predictions of all species and makes it suitable for systems with characteristic times very different from each other, such as soot and NOx.
116

Analysis and solutions for RFID tag and RFID reader deployment in wireless communications applications. Simulation and measurement of linear and circular polarised RFID tag and reader antennas and analysing the tags radiation efficiency when operated close to the human body.

Al Khambashi, Majid S. January 2012 (has links)
The aim of this study is to analysis, investigate and find out the solutions for the problems associated with the implementations of antennas RFID Reader and Tag for various applications. In particular, the efficiency of the RFID reader antenna and the detection range of the RFID tag antenna, subject to a small and compact antenna¿s design configuration have been studied. The present work has been addressed directly to reduce the cost, size and increase the detection range and communication reliability of the RFID framework antennas. Furthermore, the modelling concept of RFID passive tags mounted on various materials including the novel design of RFID reader antenna using Genetic Algorithm (GA) are considered and discussed to maintain reliable and efficient antenna radiation performances. The main benefit of applying GA is to provide fast, accurate and reliable solutions of antenna¿s structure. Therefore, the GA has been successfully employed to design examples: meander-line, two linear cross elements and compact Helical- Spiral antennas. In addition, a hybrid method to model the human body interaction with RFID tag antenna operating at 900MHz has been studied. The near field distribution and the radiation pattern together with the statistical distribution of the radiation efficiency and the absorbed power in terms of cumulative distribution functions for different orientation and location of RFID¿s tag antenna on the human body have been demonstrated. Several tag antennas wi th symmetrical and unsymmetrical structure configurations operating in the European UHF band 850-950 MHz have been fabricated and tested. . The measured and simulated results have been found to be in a good agreement with reasonable impedance matching to the typical input impedance of an RFID integrated circuit chip and nominal power gain and radiation patterns.
117

Antenna design using optimization techniques over various computaional electromagnetics. Antenna design structures using genetic algorithm, Particle Swarm and Firefly algorithms optimization methods applied on several electromagnetics numerical solutions and applications including antenna measurements and comparisons

Abdussalam, Fathi M.A. January 2018 (has links)
Dealing with the electromagnetic issue might bring a sort of discontinuous and nondifferentiable regions. Thus, it is of great interest to implement an appropriate optimisation approach, which can preserve the computational resources and come up with a global optimum. While not being trapped in local optima, as well as the feasibility to overcome some other matters such as nonlinear and phenomena of discontinuous with a large number of variables. Problems such as lengthy computation time, constraints put forward for antenna requirements and demand for large computer memory, are very common in the analysis due to the increased interests in tackling high-scale, more complex and higher-dimensional problems. On the other side, demands for even more accurate results always expand constantly. In the context of this statement, it is very important to find out how the recently developed optimization roles can contribute to the solution of the aforementioned problems. Thereafter, the key goals of this work are to model, study and design low profile antennas for wireless and mobile communications applications using optimization process over a computational electromagnetics numerical solution. The numerical solution method could be performed over one or hybrid methods subjective to the design antenna requirements and its environment. Firstly, the thesis presents the design and modelling concept of small uni-planer Ultra- Wideband antenna. The fitness functions and the geometrical antenna elements required for such design are considered. Two antennas are designed, implemented and measured. The computed and measured outcomes are found in reasonable agreement. Secondly, the work is also addressed on how the resonance modes of microstrip patches could be performed using the method of Moments. Results have been shown on how the modes could be adjusted using MoM. Finally, the design implications of balanced structure for mobile handsets covering LTE standards 698-748 MHz and 2500-2690 MHz are explored through using firefly algorithm method. The optimised balanced antenna exhibits reasonable matching performance including near-omnidirectional radiations over the dual desirable operating bands with reduced EMF, which leads to a great immunity improvement towards the hand-held. / General Secretariat of Education and Scientific Research Libya
118

Modelling and analysis of complex electromagnetic problems using FDTD subgridding in hybrid computational methods. Development of hybridised Method of Moments, Finite-Difference Time-Domain method and subgridded Finite-Difference Time-Domain method for precise computation of electromagnetic interaction with arbitrarily complex geometries

Ramli, Khairun N. January 2011 (has links)
The main objective of this research is to model and analyse complex electromagnetic problems by means of a new hybridised computational technique combining the frequency domain Method of Moments (MoM), Finite-Difference Time-Domain (FDTD) method and a subgridded Finite-Difference Time-Domain (SGFDTD) method. This facilitates a significant advance in the ability to predict electromagnetic absorption in inhomogeneous, anisotropic and lossy dielectric materials irradiated by geometrically intricate sources. The Method of Moments modelling employed a two-dimensional electric surface patch integral formulation solved by independent linear basis function methods in the circumferential and axial directions of the antenna wires. A similar orthogonal basis function is used on the end surface and appropriate attachments with the wire surface are employed to satisfy the requirements of current continuity. The surface current distributions on structures which may include closely spaced parallel wires, such as dipoles, loops and helical antennas are computed. The results are found to be stable and showed good agreement with less comprehensive earlier work by others. The work also investigated the interaction between overhead high voltage transmission lines and underground utility pipelines using the FDTD technique for the whole structure, combined with a subgridding method at points of interest, particularly the pipeline. The induced fields above the pipeline are investigated and analysed. FDTD is based on the solution of Maxwell¿s equations in differential form. It is very useful for modelling complex, inhomogeneous structures. Problems arise when open-region geometries are modelled. However, the Perfectly Matched Layer (PML) concept has been employed to circumvent this difficulty. The establishment of edge elements has greatly improved the performance of this method and the computational burden due to huge numbers of time steps, in the order of tens of millions, has been eased to tens of thousands by employing quasi-static methods. This thesis also illustrates the principle of the equivalent surface boundary employed close to the antenna for MoM-FDTD-SGFDTD hybridisation. It depicts the advantage of using hybrid techniques due to their ability to analyse a system of multiple discrete regions by employing the principle of equivalent sources to excite the coupling surfaces. The method has been applied for modelling human body interaction with a short range RFID antenna to investigate and analyse the near field and far field radiation pattern for which the cumulative distribution function of antenna radiation efficiency is presented. The field distributions of the simulated structures show reasonable and stable results at 900 MHz. This method facilitates deeper investigation of the phenomena in the interaction between electromagnetic fields and human tissues. / Ministry of Higher Education Malaysia and Universiti Tun Hussein Onn Malaysia (UTHM)
119

Equity Returns and Economic Shocks: A Survey of Macroeconomic Factors and the Co-movement of Asset Returns

Forrester, Andrew C. 01 December 2017 (has links)
No description available.
120

LES/PDF approach for turbulent reacting flows

Donde, Pratik Prakash 15 February 2013 (has links)
The probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of turbulent reacting flows. In this approach, the joint-PDF of all reacting scalars is estimated by solving a PDF transport equation, thus providing detailed information about small-scale correlations between these quantities. The objective of this work is to further develop the LES/PDF approach for studying flame stabilization in supersonic combustors, and for soot modeling in turbulent flames. Supersonic combustors are characterized by strong shock-turbulence interactions which preclude the application of conventional Lagrangian stochastic methods for solving the PDF transport equation. A viable alternative is provided by quadrature based methods which are deterministic and Eulerian. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a new approach called semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach. For soot modeling in turbulent flows, an LES/PDF approach is integrated with detailed models for soot formation and growth. The PDF approach directly evolves the joint statistics of the gas-phase scalars and a set of moments of the soot number density function. This LES/PDF approach is then used to simulate a turbulent natural gas flame. A Lagrangian method formulated in cylindrical coordinates solves the high dimensional PDF transport equation and is coupled to an Eulerian LES solver. The LES/PDF simulations show that soot formation is highly intermittent and is always restricted to the fuel-rich region of the flow. The PDF of soot moments has a wide spread leading to a large subfilter variance. Further, the conditional statistics of soot moments conditioned on mixture fraction and reaction progress variable show strong correlation between the gas phase composition and soot moments. / text

Page generated in 0.0861 seconds