• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 23
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 107
  • 55
  • 32
  • 22
  • 19
  • 14
  • 14
  • 14
  • 12
  • 11
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Stereocomplex poly (methyl methacrylate) fibers and self-reinforced composites and structural color of butterflies and beetles - characterization, replication and mimicry

Crne, Matija 12 May 2009 (has links)
Stereocomplex poly(methyl methacrylate) (PMMA) fibers for the purpose of reinforcing PMMA materials were developed. These kinds of composites are known as "self-reinforced" composites. We were successful in producing stereocomplex PMMA fibers with three different methods - wet spinning, gel spinning and electrospinning. Gel spinning and electrospinning produced the most crystalline fibers. Steroecomplex PMMA fibers were further shown to be resistant to high temperature and also to hot monomer solvent during bulk polymerization. We further describe our efforts in characterization, replication and mimicry of structural color features of butterflies and beetles. We have developed a simple method of characterizing the bidirectional reflectance distribution function of microscopic objects such as butterfly wing scales. We used this method to characterize nanometer sized structural color features resulting from the replication of butterfly Morpho rhetenor, mimickry of butterfly Papilio palinurus and also the native structural color features of iridescent beetle Chrysina gloriosa, which were shown to be cholesteric focal conic defects lined on the surface.
72

Design, Synthesis, Processing, and Thermal Analysis of Nanocomposites with Tunable Properties

Kim, Mu Seong 01 January 2012 (has links)
Polymer composites containing nanosized fillers have generated explosive interest since the early 1980's. Many recent studies have been conducted incorporating nano-fillers into polymer matrices to design and synthesize materials with tunable mechanical, thermal, and optical properties. Conventional filled polymers, where the reinforcement is on the order of microns, have been replaced by composites with discrete nanosized fillers. Gradually, theories that predicted that composite properties are independent of particle size in the micron range were challenged by nanocomposites. Rather, nanocomposite properties are greatly influenced by the surface area of the. All of this is complicated by the fact that nanoparticles are inclined to aggregate or migrate to interfaces. Much effort has been devoted to optimize dispersion of nanofillers in the polymer matrices, as polymer-nanoparticle interactions and adhesion greatly influence performance of the material. A well- dispersed composite system with various noncovalent interactions such as those that arise from hydrogen bonding, electrostatic attractions and π-π interactions between the filler and the matrix, can transfer stress and the interface will stop the development of cracks and impede stress concentrations. Overall, large reinforcement increases are noted at low nanoparticle loadings. Additionally, functional properties such as thermal, electrical conductivity and porosity can be tailored for specific applications. The design of high performance composites requires optimizing dispersion, nanoparticle-polymer noncovalent interactions and the chemistry of the materials. Therefore polymer composites with different types of nanofillers were investigated to prove various noncovalent interaction and to improve the mechanical, thermal and electrical properties in this study. Poly (methyl methacrylate) (PMMA) with BaTiO3 and Bi2O3 composites were fabricated by two different methods; sonication of fillers in PMMA and in situ polymerization. Samples were irradiated in air via a JL Shepherd Mark I cesium-137 source. The dose rate was 985 rads/min and the total dose was 2.0 Mrad. The polymer sonication (PSON) method has a greater effect than in situ polymerization on sample uniformity. With the PSON method there was a slight improvement in rad hardness in the barium titanate composites. This is the case with and without MWNTs and coupling agents. The storage modulus and loss modulus were measured via Dynamic Mechanical Analyzer (DMA) under the tension film mode using a heating rate of 5 °C min-1 from -150 °C to 200 °C and a scanning frequency range of 1-100 Hz. Scanning electron microscopy (SEM) provided images of the polymer-nanocomposites. An aliphatic isocyanate, polyether, polyol thermoplastic polyurethane, Tecoflex® SG-85A, was solution processed with the varying amounts of silica nanowire. A new grade polyurethane, Tecoflex®, was synthesized from the aliphatic 4,4-methylene dicyclohexyl diisocyanate (H12MDI) with polytetramethylene ether glycol. Despite Tecoflex®'s longevity and wide use, this polymer's dielectric behavior has not been widely studied. Therefore, the dielectric response of neat PU, Tecoflex®, and PU composites with silica nanowire from -150 to 150 °C is presented. The mechanism of nanowire growing with diameters ranging from 50 to 500 nm has been established to follow the vapour liquid solid (VLS) model via the PtSi phase acting as the catalyst. Our previous thermal stability study of PU nanowire composites have yielded increased heat stability to 330 °C. In comparison, neat PU only maintains thermal stability in temperatures that range to 250 °C. The onset of decomposition temperature was measured by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) provided images of the polymer-nanocomposites. A series of PMMA-dodecyloxy NB and PHEMA-dodecyloxy NB composites were synthesized in situ and characterized. The dodecyl groups significantly alter the solubility of the nanoballs, imparting hydrophobicity to the surface of the nanoball. A comparison study was made between the PMMA-NB and PHEMA-NB nanocomposites. Structure property relations are discussed in terms of interactions between the polymer matrices and nanoball surfaces and interiors. These OC12 NB and the hydroxyl NB polymer composites are the first studies to date that probe relaxations and conductivity in discrete polyhedral metal-organic polymer composites. A novel ultra-flexible polycarbonate-polyurethane (PCPU) was synthesized with methylene bis(4-cyclohexylisocyanate), 1,4 butanediol as a chain extender and a polycarbonate polyol containing 1,6-hexanediol and 3-methyl-1,5-pentanediol. Through the techniques of water coagulation, the synthesis of self-healing PCPU with various concentrations of SWNT (Single-Walled Nanotubes) is possible. The resulting features of this synthesized rubber-like substance are to be evaluated to determine glass transition temperature. This novel type of polyurethane material targets growing markets for biocompatible polymers. Also, a secondary goal of this project is to obtain information useful to determining whether PCPU-carbon nanotube composites would be good candidates for use as a gel electrolyte in polymer batteries. All nanocomposites were characterized by differential scanning calorimetry (DSC) to determine glass transition temperatures. The dielectric permittivity (ε’) and loss factor (ε”) were also measured via Dielectric Analysis (DEA) in the frequency range 1Hz to 100 kHz and between the proper temperatures in all polymer composite. The electric modulus formalism was used to reveal structural relaxations including conductivity relaxation. The activation energies for the relaxations are presented.
73

Estudo morfol?gico da blenda polim?rica poli(metacrilato de metila)/poli(tereftalato de etileno) reciclado (PMMA/PET)

Dantas, Rosanne de Lima Filgueira 17 November 2011 (has links)
Made available in DSpace on 2014-12-17T14:07:01Z (GMT). No. of bitstreams: 1 RosanneLFD_DISSERT.pdf: 2030152 bytes, checksum: fac9b7e6c23b892eb3fd86ea5b5f43bc (MD5) Previous issue date: 2011-11-17 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET / Entre as op??es de modifica??o de pl?sticos mais convenientes, tanto do ponto de vista t?cnico-cient?fico como econ?mico, encontra-se o desenvolvimento de blendas polim?ricas por meio de processamento no estado fundido. Este trabalho foi dividido em dois est?gios, tendo como objetivo o estudo da morfologia de fases da blenda bin?ria PMMA/PET e desta compatibilizada pela adi??o do copol?mero poli(metacrilato de metila-co-metacrilato de glicidila-co-acrilato de etila) (MMA-GMA-EA). No primeiro est?gio analisou-se a morfologia da blenda e avaliou-se o efeito do compatibilizante, onde foi usado o PET grau garrafa em um re?metro de torque Haake. J? no segundo est?gio a blenda foi processada empregando desta vez o PET reciclado em uma extrusora monorosca, e posteriormente, moldada por inje??o em forma de corpos de prova para ensaios mec?nicos. Nos dois est?gios utilizou-se a microscopia eletr?nica de transmiss?o (MET) para observar as morfologias das amostras e um analisador de imagens para caracteriz?-las. No segundo estagio, al?m da an?lise por MET, foi realizado ensaio de tra??o, microscopia eletr?nica de varredura (MEV) e microscopia de for?a at?mica (MFA), buscando correlacionar a morfologia com as propriedades mec?nicas. As amostras utilizadas nas an?lises morfol?gicas foram fatiadas por meio da t?cnica crio-ultramicrotomia para na an?lise por MET e para as an?lises por MEV e por MFA, foi utilizada a face plana do tarugo p?s-corte criog?nico. Verificou-se que o tamanho da fase dispersa diminui em fun??o da adi??o do copol?mero MMA-GMA-EA nas blendas preparadas no re?metro Haake. No ensaio de tra??o, os valores de resist?ncia m?xima sob tra??o e m?dulo de elasticidade mantiveram-se em um patamar entre o valor de PMMA puro e do PET puro, enquanto que o alongamento na ruptura mostrou-se influenciada pela composi??o em massa de PMMA na mistura. O agente compatibilizante corroborou nos resultados apresentados da blenda PMMA/PETrec /MMA-MGA-EA (80/15/5), obtidos por MET, MFA e MEV. Concluiu-se que as t?cnicas morfol?gicas utilizadas apresentaram uma boa correla??o e corroboraram para an?lise final das caracter?sticas morfol?gicas das blendas PMMA/PET
74

Processamento e caracteriza??o da blenda poli (metacrilato de metila) (PMMA) elastomerico e poli (tereftalato de etileno) (PET) p?s-consumo

Reinaldo, Jucikl?cia da Silva 23 August 2013 (has links)
Made available in DSpace on 2014-12-17T14:07:12Z (GMT). No. of bitstreams: 1 JucikleciaSR_DISSERT.pdf: 18878091 bytes, checksum: 13af0d90d6b4b0980975e46b7393cd8c (MD5) Previous issue date: 2013-08-23 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp) / Neste trabalho ? estudada a blenda imisc?vel poli(metacrilato de metila) (PMMA) elastom?rico com poli(tereftalato de etileno) (PET) grau garrafa com e sem o uso do agente compatibilizante, poli(metacrilato de metila-co-metacrilato de glicidilaco- acrilato de etila) (MGE). As caracteriza??es de reometria de torque, medida de ?ndice de fluidez (MFI), determina??o da densidade e do grau de cristalinidade por picnometria, ensaio de tra??o uniaxial, m?todo do trabalho essencial fratura (EWF), microscopia eletr?nica de varredura (MEV) e microscopia eletr?nica de transmiss?o (MET), foram realizadas nos pol?meros puros e nas blendas PMMA/PET. Os resultados reol?gicos apresentaram ind?cios de rea??o qu?mica entre o grupo ep?xi do MGE com os grupos finais de cadeias do PET e, tamb?m, com a fase elastom?rica do PMMA. O aumento na concentra??o de PET reduziu o torque e a adi??o do MGE aumentou o torque da blenda PMMA/PET. Os resultados de MFI mostraram tamb?m que, o PMMA elastom?rico apresentou menor fluidez e, consequentemente, maior viscosidade que o PET. Nos resultados de picnometria observou-se que, o aumento da porcentagem de PET proporcionou um aumento na densidade e no grau de cristalinidade das blendas PMMA/PET. Os ensaios de tra??o mostraram que, o aumento da porcentagem de PET proporcionou um aumento na resist?ncia m?xima e no m?dulo de elasticidade e uma diminui??o no alongamento na ruptura. Entretanto, na invers?o de fase, onde a blenda apresentou ind?cios de uma morfologia cocont?nua e tamb?m, com 30% de fase dispersa PET e compatibilizada com 5% de MGE, verificaram-se resultados expressivos de alongamento na ruptura em rela??o ao PMMA elastom?rico. A aplicabilidade do m?todo do trabalho essencial de fratura mostrou-se poss?vel para a maioria das formula??es. Observou-se ainda que, com o aumento do PMMA elastom?rico nas formula??es das blendas, ocorreu uma melhoria nos valores do trabalho essencial espec?fico de fratura (We) e uma redu??o nos valores do trabalho n?o essencial espec?fico de fratura (βWp)
75

Projeto conceitual de implante bioativo com gradiente de estrutura funcional em poli (metacrilato de metila) e hidroxiapatita. Análises: in vitro e in vivo / Conceptual design of bioactive implant with functional gradient structure in PMMA and HA. Analysis: in vitro and in vivo

Thaís Helena Samed e Sousa 17 June 2009 (has links)
Foram desenvolvidos e manufaturados compósitos porosos com estrutura de gradiente funcional em Poli (metacrilato de metila) (PMMA) e Hidroxiapatita (HAp) aplicáveis como implantes ósseos. O PMMA é largamente utilizável e aceito como material de implante tem boas propriedades mecânicas, baixo custo, fácil manufatura, porém é considerado bioinerte. A HAp é uma cerâmica comprovadamente bioativa, porém de baixas propriedades mecânicas, alto custo e de difícil manufatura. O PMMA com estrutura funcional e HAp apresentou valores próximos a 50 MPa, mas com potencial de melhoria. O objetivo deste desenvolvimento é produzir um implante com a sua superfície porosa e bioativa, para que este possa ser osteointegrado em um tempo menor ao tecido hospedeiro, melhorando a relação: material implantado/leito receptor. O conceito é baseado em uma estrutura de núcleo denso em PMMA e camada superficial porosa com superfície bioativa. A camada de PMMA porosa foi desenvolvida utilizando-se o carboximetilcelulose (CMC) como agente porogênico e HAp como agente bioativador da matriz polimérica. Foram elaboradas análises de bicompatibilidade, resistência mecânica, macro e microestrutura. Para testar a biocompatibilidade foram realizados inicialmente testes in vitro com cultura de células VERO, visando investigar a toxicidade dos materiais constituintes, a influência do novo biomaterial em atividades celulares e o comportamento destes em condições próximas daquelas a serem encontradas no ambiente de implantação. Em seguida, os testes in vivo realizados em coelhos averiguaram a interação tecido-material (bioatividade), a biocompatibilidade do material, e a potencialidade do uso do material em aplicação à superfícies (osteointegração). Foi realizada análise histológica dos tecidos explantados, onde os resultados basearam-se na análise da morfologia geral dos componentes teciduais encontrados junto ao implante. A caracterização da superfície foi realizada por testes de rugosidade, por microscopia ótica e eletrônica de varredura. Foram realizados ensaios mecânicos de compressão para analisar a resistência mecânica do biomaterial. Os resultados in vitro mostraram que os materiais utilizados não apresentaram qualquer indício de toxicidade. Através das imagens realizadas em MEV (Microscopia Eletrônica de Varredura) pode se observar o crescimento de células VERO na superfície do material e em direção aos poros da matriz. A análise macroestrutural dos poros também obtida por MEV demonstrou em uma caracterização inicial do material que este apresentou características biomiméticas como poros em formato oblongo e interconectados. A média obtida do tamanho dos poros foi de aproximadamente 250 \'mü\'m. Os resultados dos ensaios mecânicos de compressão mostraram que o PMMA denso é o que mais se aproximou do tecido ósseo cortical com 101 MPa. Por fim, os resultados histológicos apontam para a biocompatibilidade do compósito, tornando-o assim aplicável como camada superficial de implantes. / Were developed and manufactured porous composite with functional gradient structure in Polymethylmethacrylate (PMMA) and hydroxyapatite (HAp) applicable as bone implants. PMMA is widely used and accepted as implant material, has good mechanical properties, low cost, easy manufacturing and considered a bioinert biomaterial, the Hap is a demonstrably bioactive ceramic with poor mechanical properties, high cost and difficult to manufacture. The PMMA functional structure and HAp had values close to 50 MPa, but with potential for improvement. The objective of this development was produced an implant with a porous surface and bioactive to be osteointegrated in a less time, improving the relationship: implanted material/receiver bed. The concept is based on a dense structure core of PMMA and a porous bioactive surface layer. The porous PMMA was developed using the carboxymethylcellulose (CMC) as a porogenic agent and hap to bioactive the PMMA matrix. Biocompatibility tests, mechanical strength tests and macro and microstructure analisys were carried out. To evaluated the biocompatibility of this material were made primarily in vitro tests, the VERO cells were used in vitro analysis aimed investigate the toxicity of the constituent materials, the influence of the new biomaterial in cellular activities and behavior in these conditions close to those to be found in the environment of deployment. Then, in vivo tests conducted in rabbits evaluated the interaction with tissue-material (bioactivity), the biocompatibility of the material, and the potential use of the material in the application areas (osseointegration). Were performed histological analysis of tissues, where the results were based on the analysis of the general morphology of the tissue components found near the implant. The surface characterization was performed by roughness tests, optical microscopy and SEM. Mechanical tests were conducted to examine the compressive strength of biomaterial. Results in vitro showed that the materials did not present any evidence of toxicity. The samples were analyzed by SEM where the growth of cells can be observed in the surface of the material and towards to the pores. The macrostructural analysis also obtained by SEM showed in an initial characterization of the material that presented bone biomimetics characteristics with oblong pores with interconnected. The average pore size obtained was approximately 250 \'mü\'m. The results of mechanical tests showed that the compression of PMMA is the densest approached the cortical bone tissue near 101 MPa. Finally, the histological results point to the biocompatibility of the composite, thus making it applicable to the surface layers of implants.
76

Kinetics Of Photo Initiated Organic And Polymer Reactions

Vinu, R 04 1900 (has links) (PDF)
Photo-initiated reactions involve the use of ultraviolet (UV) or visible light radiation to effect chemical transformations. Some of the advantages of photo-initiated reactions over thermal or high pressure reactions include mild reaction conditions like ambient temperature and pressure, good control over the reaction by the simple switching on/off the light source, and faster reaction kinetics. Usually, semiconductor photocatalysts or oxidizing agents are used to enhance the rate of photo reactions. “Photocatalysis” involves the generation of valence band holes and conduction band electrons by the band gap excitation of a semiconductor photocatalyst. These charge carriers produce reactive hydroxyl and superoxide radicals, which mediate oxidation and reduction reactions. However, the oxidizing agents are decomposed by the incident radiation to generate reactive radicals, which accelerate the photo reaction. Today, photocatalysis and photo-oxidative reactions are widely being practiced for environmental pollution abatement, synthesis of fine chemicals, synthesis of polymers, generation of hydrogen as a clean energy carrier, and in anti-fogging and self-cleaning surface treatments. The present investigation focuses on elucidating the mechanism and kinetics of environmentally and synthetically relevant photo-initiated reactions for a better understanding of the fundamental aspects of the photo processes. The different photo-initiated reactions studied in this dissertation can be grouped under the broad categories of (i) photocatalytic degradation of organic compounds like dyes and phenols, and reduction of metal ions, (ii) photocatalytic degradation of polymers, (iii) selective photocatalytic oxidation of cyclohexane, (iv) sonophotocatalytic degradation of dyes, (v) photopolymerization, and (vi) sonophotooxidative degradation of polymers. Nano-sized TiO2, synthesized by solution combustion technique (henceforth denoted as CS TiO2), was used as the photocatalyst for most of the above reactions, except for the last two polymer reactions, where organic initiators were used. Invariably, the photocatalytic activity of CS TiO2 was compared with the commercially available Degussa P-25 TiO2 (DP25). Based on the experimental results, detailed mechanisms were proposed for the different reactions, kinetic models were derived, and the rate coefficients signifying the importance of the underlying reaction steps were evaluated. Pd2+ substituted and Pd0 impregnated TiO2 were synthesized by solution combustion and reduction techniques, respectively, and characterized by powder XRD, XPS, TEM, BET surface area, UV/visible, TGA, FT-IR and photoluminescence measurements. While the above catalysts are known to be more active compared to CS TiO2 for the gas phase NO reduction and NO decomposition reactions, it was found in this study, that these catalysts exhibit lower activity for the degradation of organic compounds like dyes, phenol and 4-chlorophenol, in the aqueous phase. The decrease in activity was correlated with a reduction in surface area and photoluminescence intensity of these catalysts, compared to CS TiO2. Ag+ substituted (Ag sub) and Ag0 impregnated (Ag imp) nano-TiO2 were synthesized by solution combustion and reduction techniques, respectively, and characterized by the above standard measurements. These catalysts were used for the photodegradation of dyes, and the selective photooxidation of cyclohexane to cyclohexanone. For the photocatalytic degradation of dyes, unsubstituted CS TiO2 exhibited the highest activity, followed by 1% Ag imp and 1% Ag sub. However, for the photooxidation of cyclohexane, the total conversion of cyclohexane and the selectivity of cyclohexanone followed the order: 1% Ag sub > DP-25 > CS TiO2 > 1% Ag imp. The kinetics of photodegradation of the dyes and the photooxidation of cyclohexane was modeled using Langmuir-Hinshelwood rate equation, and a free radical mechanism, respectively. This study proves that the photoactivity of a catalyst is not solely determined by a single physical property, but rather by a number of variables including the surface area, band gap, surface hydroxyl content, oxide ion vacancy and surface charge of the catalyst. The photocatalytic degradation of five anionic, eight cationic and three solvent dyes, containing different functional groups, was evaluated. The degradation of the dyes was quantified using the initial rate of decolorization and overall percent mineralization. The decolorization of the anionic dyes with CS TiO2 followed the order: Indigo Carmine > Eosin Y > Amido Black 10B > Alizarin Cyanine Green > Orange G. The decolorization of the cationic dyes with DP-25 followed the order: Malachite Green > Pyronin Y > Rhodamine 6G > Azure B > Nile Blue Sulfate > Auramine O ≈ Acriflavine ≈ Safranin O. CS TiO2 exhibited higher rates of decolorization and mineralization for all the anionic dyes, while DP-25 was better in terms of decolorization for most of the cationic dyes. The solvent dyes exhibited adsorption dependent decolorization. The observed results were rationalized based on the molecular structure and degradation pathway of the dyes. The simultaneous photocatalytic degradation of phenolic compounds like phenol and 4-nitrophenol, and the reduction of metal ions like copper (Cu2+) and chromium (Cr6+) were studied. It was found that the presence of phenol accelerated the reduction of Cu2+ to Cu+, and the presence of phenol and 4-nitrophenol accelerated the adsorption of Cr6+ onto CS TiO2. A detailed dual-cycle, multi-step reaction mechanism was proposed for the simultaneous degradation and reduction, and a model was developed using the network reduction technique. The kinetic rate constants in the model were evaluated for the systems studied. The simultaneous UV and ultrasound (US) degradation of anionic dyes was carried out in presence of CS TiO2. The rates of degradation and mineralization of the dyes were higher for the sonophotocatalytic process compared to the individual photo-and sonocatalytic processes. The effect of dissolved gases and US intensity on the sonophotocatalytic degradation of the dyes was evaluated. A dual-pathway network mechanism of sonophotocatalytic degradation was proposed for the first time, and the rate equations were modeled using the network reduction technique. The kinetic rate coefficients of the individual steps were evaluated for all the systems by fitting the model with the experimental data. Eosin Y and Fluorescein dye sensitized visible light degradation of phenol, 4chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol was studied. A detailed mechanism of sensitized degradation was proposed, and a mechanistic model for the rate of degradation of the phenolic compound was derived by using the pyramidal network reduction technique to evaluate the rate coefficients. An important conclusion of this study indicates that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The different phenolic and dye intermediates that were formed during degradation were identified by mass spectrometry, and a most probable pathway of degradation was proposed. The solution photopolymerization of methyl-, ethyl-, butyl-and hexylmethacrylates in presence of benzoyl peroxide as the initiator was studied. The effect of initiator and monomer concentrations on the time evolution of polymer concentration, number average molecular weight (Mn) and polydispersity (PDI) was examined. The reversible chain addition and β-scission, and primary radical termination steps were included in the mechanism along with the classical initiation, propagation and termination steps. The rate equations were derived using continuous distribution kinetics and solved numerically to fit the experimental data. The model predicted the instantaneous increase of Mn and PDI of the polymers to steady state values. The rate coefficients exhibited a linear increase with the size of the alkyl chain of the alkyl methacrylates. Poly(acrylamide-co-acrylic acid) copolymers of different compositions were synthesized and characterized. The copolymers were statistical with a relatively high percentage of acrylamide units, as determined by 13C-NMR. The aqueous phase photolytic and photocatalytic degradation of the copolymers and the homopolymers was conducted. The degradation was modeled using continuous distribution kinetics. The degradation followed a two step mechanism, wherein the rapid first step comprised of the scission of weak acrylic acid units along the chain, which was followed by the breakage of the relatively strong acrylamide units. The rate constants for the weak and strong links followed a linear trend with the percentage of acrylic acid and acrylamide in the copolymer, respectively. The photocatalytic degradation of the copolymers of methyl methacrylate with butyl methacrylate (MMA-BMA), ethyl acrylate (MMA-EA) and methacrylic acid (MMA-MAA) was carried out in toluene. The copolymers and the corresponding homopolymers degraded randomly along the chain. The degradation rate coefficient was determined using continuous distribution kinetics. The time evolution of the hydroxyl and hydroperoxide stretching vibration in the FT-IR spectra of the copolymers indicated that the degradation rate follows the order: MMA-MAA > MMA-EA > MMA-BMA. The photodegradation rate coefficients were compared with the activation energy of pyrolytic degradation. The observed contrast in the order of thermal stability compared to the photostability of these copolymers was attributed to the two different mechanisms governing the scission of the polymers and the evolution of the products. The mechano-chemical degradation of poly(methyl methacrylate), poly(ethyl methacrylate) and poly(n-butyl methacrylate) using US and UV radiation, in presence of benzoin as the photoinitiator, was carried out. A degradation mechanism that included the decomposition of the initiator, generation of polymer radicals by hydrogen abstraction of the initiator radicals, and reversible chain transfer between the stable polymer and the polymer radicals, was proposed. The mechanism assumed mid-point chain scission due to US and random chain scission due to UV radiation. The steady state evolution of PDI was successfully predicted by the continuous distribution kinetics model. The rate coefficients of polymer scission due to US and UV radiation exhibited a linear increase and decrease with the size of the alkyl group of the poly(alkyl methacrylate)s, respectively.
77

Síntese e caracterização de nanocompósitos de PMMA/NTC para aplicações em células fotovoltaicas orgânicas / Synthesis and characterization of PMMA nanocomposites / NTC for applications in organic photovoltaic cells

Cecci, Ricardo Rodrigo Ramos 22 August 2018 (has links)
Orientadores: Júlio Roberto Bartoli, Elizabeth Grillo Fernandes / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-22T08:51:19Z (GMT). No. of bitstreams: 1 Cecci_RicardoRodrigoRamos_M.pdf: 4182332 bytes, checksum: 4424cc557c439a1602d15a95921a2b25 (MD5) Previous issue date: 2013 / Resumo: Nanotubos de carbono (NTCs) apresentam características interessantes para aplicações em eletrodos transparentes. Quando dispersos em escala nanométrica são transparentes ao espectro da luz visível e são capazes de conduzir eletricidade após atingirem percolação em matrizes poliméricas isolantes. Neste trabalho, é descrito o uso de nanotubos de carbono de camadas múltiplas (NTCMs) na produção de filmes poliméricos flexíveis transparentes e condutores como alternativa ao uso do óxido de índio dopado com estanho (ITO) em células solares orgânicas. Os nanotubos foram dispersos e purificados em solução aquosa de dodecil sulfato de sódio (SDS) pelos processos de sonicação e centrifugação, e a dispersão monitorada por espectroscopia UV-Vis e potencial ?. Os nanocompósitos foram produzidos via polimerização in situ do monômero metacrilato de metila (MMA) na presença de 0 a 1% p/p NTCs e os filmes depositados através da técnica de revestimento por rotação a alta velocidade (spin coating). A reação de polimerização foi acompanhada pela calorimetria exploratória diferencial (DSC). Verificou-se que na presença de NTCs, a taxa de conversão do monômero é acelerada. A cinética de degradação térmica foi avaliada pelo método de Broido utilizando a análise termogravimétrica (TGA). Foi observado que os NTCs aumentam a estabilidade térmica do PMMA, retardando a degradação por despolimerização. Estudos por espectroscopia FT-IR mostraram uma banda de absorção em 1601 cm-1, (C=C), a qual não é característica do PMMA, indicando que os NTCs participam da polimerização do PMMA. Para concentrações de até 1% p/p de NTCs, os filmes PMMA/NTC apresentaram excelentes propriedades ópticas. Ou seja, baixo coeficiente de absorção, na ordem de 103 cm-1, altos valores de gap óptico (Eopt), entre 3,2 e 4,14 eV, e alta transparência por todo espectro visível, entre 88 e 93%. Nas mesmas concentrações, foi observada uma diminuição substancial na resistividade elétrica dos filmes em 8 ordens de grandeza (de 1016 para 108 ?/quadrado), comparados ao filme de PMMA puro. Entretanto, a faixa de resistividade alcançada ainda é típica de materiais isolantes. Estudos de otimização poderiam originar filmes PMMA/NTC como uma alternativa promissora para ITO em OPVs / Abstract: Carbon nanotubes (CNTs) have interesting features for applications in transparent electrodes. When dispersed at the nanoscale, they become transparent within the visible range and are able to conduct electricity after reaching the percolation threshold in an insulating polymer matrix. In this work, the use of multi-walled carbon nanotubes (MWCNTs) is described for the production of flexible transparent conducting polymer films as an alternative to the use of indium-tin oxide (ITO) in organic solar cells. The nanotubes were dispersed and purified in an aqueous solution of sodium dodecyl sulfate (SDS) by the process of sonication and centrifugation, and the dispersion monitored by UV-Vis spectroscopy and ? potential. The nanocomposites were produced via in situ polymerization of the monomer methyl methacrylate (MMA) in the presence of 0 to 1 %wt. of CNTs. The films were deposited by the spin-coating technique. The polymerization reaction was monitored by differential scanning calorimetry (DSC). It was found that in the presence of CNTs, the conversion rate of the monomer is accelerated. The kinetics of thermal degradation was measured according to the Broido's method by using thermogravimetric analysis (TGA). It was observed that CNTs increase the thermal stability of PMMA, slowing degradation by depolymerization. FT-IR data showed an absorption band at 1601 cm-1 (C = C), which is not characteristic of PMMA, indicating that the CNTs takes place in the polymerization of PMMA. For concentrations up to 1wt% of CNTs, the PMMA/CNT films had excellent optical properties, i.e., a low absorption coefficient in the order of 103 cm-1, wide optical gap (Eopt) between 3.2 and 4.14 eV, and high transparency within the whole visible range, between 88 and 93%. In the same concentrations, the electrical resistivity of the films dropped by 8 orders of magnitude (from 1016 to 108 ?/sqr), compared to the pure PMMA film. Even though this electrical resistivity value is typical of insulating materials, further optimization studies could provide PMMA/CNT films as a promising alternative to ITO in OPV / Mestrado / Ciencia e Tecnologia de Materiais / Mestre em Engenharia Química
78

Vliv strukturních a procesních parametrů na vlastnosti polymerních nanokompozitů / Effects of structural and processing parameters on th eproperties of polymer nanocomposites

Zárybnická, Klára January 2017 (has links)
The work deals mainly with preparation protocol of nanocomposites. The task of this work is to study structural and procedural parameteres that control the dispersion of nanoparticles in polymer solution to be able to prepare desired spatial organization of nanoparticles. The work resolves the effect of various components such as polymer matrices, nanoparticles and solvent, in which matrices and nanoparticles are blended. Used components control final dispersion state of nanoparticles and it influences also properties of investigated materials such as glass transition temperature, stiffness and rheological properties.
79

Biosensor based on immobilized amine transaminase for detection of amphetamine

Öh, Clara January 2020 (has links)
Amine transaminases (ATA) catalyse the transfer of an amino group from one molecule and replaces a ketone or aldehyde with the amino group, the amino group on the amino-donor is replaced with a ketone or aldehyde. This enzyme, ATA from Chromobacterium violaceum, has previously been used to catalyse the reaction involving amphetamine, therefore, it might be possible to use this enzyme to convert amphetamine and the product absorbs in the UV spectrum and can therefore be measured spectrophotometrically. The aim of the project was to explore the possibility of using ATA in a portable biosensor for the detection of amphetamine. A literature study of commercially available portable biosensors was performed, activity of the free enzyme was tested against two substrates, methylbenzylamine (MBA) and amphetamine. Research on immobilization techniques, materials, and surface functionalization was done to chose suitable methods for immobilizing ATA. Two immobilization methods were suggested and one of the methods, ionic immobilization through His-tag towards Ni2+ on the surface, was tested for enzyme activity toward MBA. The enzyme activity of the free enzyme in solution towards MBA was comparable to previously reported enzyme activity, however, no enzyme activity towards amphetamine was observed. No activity was observed for the immobilized enzyme, but it might be due to the experimental design, more experiments need to be performed to draw conclusions. / Amintransaminaser (ATA) katalyserar överförandet av en amingrupp från en molekyl och ersätter en keton eller aldehyd med den amingruppen, amingruppen på amin-donatorn ersätts med en keton eller aldehyd. Det här enzymet, ATA från Chromobacterium violaceum (CvATA), har tidigare använts för att katalysera en reaktion som involverar amfetamin, därför skulle detta enzym kunna användas på amfetamin. Produkten av reaktionen absorberar i UV spektrumet och kan mätas med en spektrofotometer. Målet med projektet var att utforska möjligheten av att använda CvATA i en biosensor för att detektera amfetamin. En litteraturstudie på kommersiellt tillgängliga bärbara biosensorer genomfördes, aktiviteten av det fria enzymet testades mot två substrat, metylbenzylamin (MBA) och amfetamin. Information samlades om immobiliseringstekniker, material, och ytfunktionalisering gjordes för att välja ut lämpliga metoder för immobilisering av CvATA. Två immobiliseringsmetoder föreslogs och en av metoderna, immobilisering via enzymets His6-tagg och Ni2+ joner på ytan, testades för enzymaktivitet mot MBA. Enzymaktiviteten av det fria enzymet i lösning mot MBA var i samma storleksordning som tidigare rapporterad enzymaktivitet, men ingen enzymaktivitet mot amfetamin kunde observeras. Ingen aktivitet kunde observeras för det immobiliserade enzymet, men det kan vara på grund av designen på experimentet, fler experiment behöver göras för att kunna dra några fler slutsatser.
80

Dynamic Modelling and Optimization of Polymerization Processes in Batch and Semi-batch Reactors. Dynamic Modelling and Optimization of Bulk Polymerization of Styrene, Solution Polymerization of MMA and Emulsion Copolymerization of Styrene and MMA in Batch and Semi-batch Reactors using Control Vector Parameterization Techniques.

Ibrahim, W.H.B.W. January 2011 (has links)
Dynamic modelling and optimization of three different processes namely (a) bulk polymerization of styrene, (b) solution polymerization of methyl methacrylate (MMA) and (c) emulsion copolymerization of Styrene and MMA in batch and semi-batch reactors are the focus of this work. In this work, models are presented as sets of differential-algebraic equations describing the process. Different optimization problems such as (a) maximum conversion (Xn), (b) maximum number average molecular weight (Mn) and (c) minimum time to achieve the desired polymer molecular properties (defined as pre-specified values of monomer conversion and number average molecular weight) are formulated. Reactor temperature, jacket temperature, initial initiator concentration, monomer feed rate, initiator feed rate and surfactant feed rate are used as optimization variables in the optimization formulations. The dynamic optimization problems were converted into nonlinear programming problem using the CVP techniques which were solved using efficient SQP (Successive Quadratic Programming) method available within the gPROMS (general PROcess Modelling System) software. The process model used for bulk polystyrene polymerization in batch reactors, using 2, 2 azobisisobutyronitrile catalyst (AIBN) as initiator was improved by including the gel and glass effects. The results obtained from this work when compared with the previous study by other researcher which disregarded the gel and glass effect in their study which show that the batch time operation are significantly reduced while the amount of the initial initiator concentration required increases. Also, the termination rate constant decreases as the concentration of the mixture increases, resulting rapid monomer conversion. The process model used for solution polymerization of methyl methacrylate (MMA) in batch reactors, using AIBN as the initiator and Toluene as the solvent was improved by including the free volume theory to calculate the initiator efficiency, f. The effects of different f was examined and compared with previous work which used a constant value of f 0.53. The results of these studies show that initiator efficiency, f is not constant but decreases with the increase of monomer conversion along the process. The determination of optimal control trajectories for emulsion copolymerization of Styrene and MMA with the objective of maximizing the number average molecular weight (Mn) and overall conversion (Xn) were carried out in batch and semi-batch reactors. The initiator used in this work is Persulfate K2S2O8 and the surfactant is Sodium Dodecyl Sulfate (SDS). Reduction of the pre-batch time increases the Mn but decreases the conversion (Xn). The sooner the addition of monomer into the reactor, the earlier the growth of the polymer chain leading to higher Mn. Besides that, Mn also can be increased by decreasing the initial initiator concentration (Ci0). Less oligomeric radicals will be produced with low Ci0, leading to reduced polymerization loci thus lowering the overall conversion. On the other hand, increases of reaction temperature (Tr) will decrease the Mn since transfer coefficient is increased at higher Tr leading to increase of the monomeric radicals resulting in an increase in termination reaction.

Page generated in 0.0656 seconds