• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • Tagged with
  • 52
  • 52
  • 19
  • 11
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Differential modulation of glutamatergic synaptic transmission by polysialic acid

Sims-Robinson, Catrina, Suppiramaniam, Vishnu, January 2007 (has links)
Thesis (Ph. D.)--Auburn University. / Abstract. Vita. Includes bibliographical references.
42

Ratlarda diyeter ceviz alımının hipokampüs NMDA reseptör subünit konsantrasyonları üzerine etkisi /

Hiçyılmaz, Hicran. Vural, Hüseyin. January 2007 (has links) (PDF)
Tez (Tıpta Uzmanlık) - Süleyman Demirel Üniversitesi, Tıp Fakültesi, Biyokimya Anabilim Dalı, 2007. / Bibliyografya var.
43

Antidepressant treatment and cortical 5-hydroxytryptamineb2sA receptors /

Payne, Geoffrey Wallace, January 1997 (has links)
Thesis (M. Sc.)--Memorial University of Newfoundland, Faculty of Medicine, 1998. / Typescript. Bibliography: leaves 68-81.
44

A competitive NMDA receptor antagonist potentiates the effects of morphine on spatial and discrimination learning /

Miller, Laurence L. January 2005 (has links) (PDF)
Thesis (M.S.)--University of North Carolina at Wilmington, 2005. / Includes bibliographical references (Leaves: 84-89)
45

The effects of d-Cycloserine, an NMDA receptor agonist, on conditioned taste aversion learning

Davenport, Rachel A. Houpt, Thomas A. Unknown Date (has links)
Thesis (M.S.)--Florida State University, 2006. / Advisor:Thomas A. Houpt, Florida State University, College of Arts and Sciences, Dept. of Biological Science. Title and description from dissertation home page (viewed June 7, 2006). Document formatted into pages; contains vi, 37 pages. Includes bibliographical references.
46

An investigation into the neuroprotective effects of estrogen and progesterone in a model of homocysteine-induced neurodegeration /

Wu, Wing Man. January 2005 (has links)
Thesis (M. Sc. (Pharmacy))--Rhodes University, 2006.
47

Enhancement of gene silencing effects of small interfering RNAs to N-methyld-D-asparate receptors by gold nonoparticiples

Iu, Yan Yu 01 January 2013 (has links)
No description available.
48

Effect of ethanol on the Jak-Stat pathway : is this an NMDA mediated event?

Paliouras, Grigorios Nikiforos January 2002 (has links)
No description available.
49

An investigation into the neuroprotective effects of estrogen and progesterone in a model of homocysteine-induced neurodegeration

Wu, Wing Man January 2006 (has links)
Homocysteine (Hcy) is a sulfur containing amino acid and is a potent neurotoxin. It has been shown that elevated levels of Hcy, termed hyperhomocysteinemia, plays a role in the pathologies of Alzheimer’s disease (AD) and age-related cognitive decline. Hcy is a glutamate agonist, which causes in increase in Ca[superscript (2+)] influx via the activation of NMDA class of excitatory amino acid receptors, which results in neuronal cell death and apoptosis. Estrogen and progesterone are female hormones that are responsible for reproduction and maternal behaviour. However, in the last decade, it is evident that both female hormones have neuroprotective properties in many animal models of neurodegeneration. Collectively, both estrogen and progesterone reduce the consequences of the oxidative stress by enhancing the antioxidant defence mechanisms, reducing excitotoxicity by altering glutamate receptor activity and reducing the damage caused by lipid peroxidation. However, the mechanisms by which estrogen and progesterone provide such neuroprotection probably depend on the type and concentration of hormone present. Moreover, numerous studies have shown that hormone replacement therapy (HRT, estrogen and progestins) or estrogen-only replacement therapy (ERT) may prevent or delay the onset of AD and improve cognition for women with AD. Clinical trials have also shown that women taking HRT may modify the effects of Hcy levels on cognitive functioning. Oxidative stress increases in the aging brain and thus has a powerful effect on enhanced susceptibility to neurodegenerative disease. The detection and measurement of lipid peroxidation and superoxide anion radicals in the brain tissue supports the involvement of free radical reactions in neurotoxicity and in neurodegenerative disorders. The hippocampus is an important region of the brain responsible for the formation of memory. However, agents that induce stress in this area have harmful effects and could lead to dementia. This study aims to investigate and clarify the neuroprotective effects of estrogen and progesterone, using Hcy-induced neurodegenerative models. The initial studies demonstrate that estrogen and progesterone have the ability to scavenge potent free radicals. Histological studies undertaken reveal that both estrogen and progesterone protect against Hcy-induced neuronal cell death. In addition, immunohistochemical investigations show that Hcy-induced apoptosis in the hippocampus can be inhibited by both estrogen and progesterone. However, estrogen also acts at the NMDA receptor as an agonist, while progesterone blocks at the NMDA receptor. These mechanisms reduce the ability of Hcy to cause damage to neurons, since Hcy-induced neurotoxicity is dependent on the overstimulation of the NMDA receptor. SOD and GPx are important enzymatic antioxidants which can react with ROS and neutralize them before these inflict damage in the brain. Hcy can increase oxidative stress by inhibiting expression and function of these antioxidants. However, it has been shown that the antioxidant abilities of both estrogen and progesterone can up-regulate the activities of SOD and GPx. These results provide further evidence that estrogen and progesterone act as antioxidants and are free radical scavengers. The discovery of neuroprotective agents is becoming important as accumulating evidence indicates the protective role of both estrogen and progesterone in Hcy-induced neurodegeneration. Thus further work in clinical trials is needed to examine whether reducing Hcy levels with HRT can become the treatment of neurodegenerative disorders, such as Alzheimer’s disease.
50

Characterization of Tolerance and Cross-tolerance between Noncompetitive N-methyl-D-aspartate (NMDA) Antagonists in Rats Trained to Self-administer Ketamine

Ward, Amie S. (Amie Sue) 12 1900 (has links)
Ketamine and phencyclidine (PCP) are noncompetitive antagonists of the N-methyl-D-aspartate (NMDA) type of ligand-gated glutamate receptors. Both agents have high abuse liability, and may produce dependence. Tolerance to the reinforcing effects of drugs of abuse is widely regarded as a key component of the dependence process. Therefore, the present study was conducted to examine whether tolerance develops to the reinforcing effects of ketamine, and whether PCP and dizocilpine, a noncompetitive NMDA antagonist with negligible abuse liability, produce cross-tolerance to the reinforcing effects of ketamine. Further, identification of the neural mechanisms that underlie tolerance to the reinforcing effects of drugs may yield information regarding drug dependence.

Page generated in 0.0393 seconds