Spelling suggestions: "subject:"methyltransferase"" "subject:"methyltransferase1""
181 |
Toxicogenetic Studies in Drosophila: Using Fruit Flies to Study Arsenic ToxicityMuñiz Ortiz, Jorge G. 17 April 2009 (has links)
No description available.
|
182 |
Translation of the amber codon in methylamine methyltransferase genes of a methanogenic archaeonSrinivasan, Gayathri 04 February 2004 (has links)
No description available.
|
183 |
Investigation of Protein-Protein Interactions among Nicotine Biosynthetic Enzymes and Characterization of a Nicotine TransporterHildreth, Sherry B. 10 December 2009 (has links)
Alkaloids are a class of plant secondary metabolites produced in about 20% of plant families. Domesticated tobacco, Nicotiana tabacum produces nicotine as the predominant alkaloid. The biosynthesis of nicotine occurs exclusively in the roots of tobacco, yet accumulates in the leaves of tobacco where it is acts as a defense compound to deter insect herbivory. The research detailed in this dissertation addresses two aspects of nicotine physiology in tobacco: 1) an investigation of hypothesized protein-protein interactions among nicotine biosynthetic enzymes and 2) the characterization of a novel nicotine transporter.
A hypothesized metabolic channel including the two nicotine biosynthetic enzymes putrescine N-methyltransferase (PMT), N-methylputrescine Oxidase (MPO) and the S-adenosylmethionine (SAM) recycling enzyme S-adenosylhomocysteine hydrolase (SAHH) has been proposed. To further explore this hypothesis, protein-protein interactions among nicotine biosynthetic enzymes PMT, MPO and SAHH were investigated using yeast two-hybrid assays and co-immunoprecipitation experiments. The yeast two-hybrid was conducted as both a directed screen to detect interactions between the hypothesized metabolic channel members and as a library screen to detect interactions between hypothesized metabolic channel members and proteins from a tobacco root cDNA library.
Co-immunoprecipitation experiments were conducted using proteins produced in an in vitro transcription/ translation system and using native proteins from a tobacco root extract. The outcome of these experiments provided no further evidence of a nicotine metabolic channel and a discussion of the methods and outcomes of the experiments conducted is presented.
The nicotine uptake permease, NUP1, was identified in tobacco roots and was shown to preferentially transport nicotine when expressed in Schizosaccharomyces pombe. This report presents the characterization of tobacco plants and hairy roots with diminished NUP1 transcripts created by using RNAi. The NUP1-RNAi hairy roots and plants showed a decreased level of nicotine and the hairy root cultures displayed an altered distribution of nicotine from the root to the culture medium. Additionally NUP1-GFP was used to determine that NUP1 localized to the plasma membrane of tobacco BY-2 protoplasts. Potential models for the role of NUP1 in nicotine physiology will be discussed. / Ph. D.
|
184 |
Investigations into the molecular evolution of plant terpene, alkaloid, and urushiol biosynthetic enzymesWeisberg, Alexandra Jamie 09 July 2014 (has links)
Plants produce a vast number of low-molecular-weight chemicals (so called secondary or specialized metabolites) that confer a selective advantage to the plant, such as defense against herbivory or protection from changing environmental conditions. Many of these specialized metabolites are used for their medicinal properties, as lead compounds in drug discovery, or to impart our food with different tastes and scents. These chemicals are produced by various pathways of enzyme-mediated reactions in plant cells. It is suspected that enzymes in plant specialized metabolism evolved from those in primary metabolism. Understanding how plants evolved to produce these diverse metabolites is of primary interest, as it can lead to the engineering of plants to be more resistant to both biotic and abiotic stress, or to produce more complex small molecule compounds that are difficult to derive.
To that end, the first objective was to develop a schema for rational protein engineering using meta-analyses of a well-characterized sesquiterpene synthase family encoding two closely-related but different types of enzymes, using quantitative measures of natural selection on amino-acid positions previously demonstrated as important for neofunctionalization between two terpene synthase gene families. The change in the nonsynonymous to synonymous mutation rate ratio (dN/dS) between these two gene families was large at the sites known to be responsible for interconversion. This led to a metric (delta dN/dS) that might have some predictive power. This natural selection-oriented approach was tested on two related enzyme families involved in either nicotine/tropane alkaloid biosynthesis (putrescine N-methyltransferase) or primary metabolism (spermidine synthase) by attempting to interconvert a spermidine synthase to encode putrescine N-methyltransferase activity based upon past patterns of natural selection. In contrast to the HPS/TEAS system, using delta dN/dS metrics between SPDS and PMT and site directed mutagenesis of SPDS did not result in the desired neofunctionalization to PMT activity.
Phylogenetic analyses were performed to investigate the molecular evolution of plant N-methyltransferases involved in three alkaloid biosynthetic pathways. The results from these studies indicated that unlike O-MTs that show monophyletic origins, plant N-MTs showed patterns indicating polyphyletic origins.
To provide the foundation for future molecular-oriented studies of urushiol production in poison ivy, the complete poison ivy root and leaf transcriptomes were sequenced, assembled, and analyzed. / Ph. D.
|
185 |
DYNAMICS OF SUBSTRATE INTERACTIONS IN tRNA (m1G37) METHYLTRANSFERASE: IMPLICATIONS FOR DRUG DISCOVERYPalesis, Maria Kiouppis 14 February 2012 (has links)
The bacterial enzyme t-RNA (m1G37) methyltransferase (TrmD) is an ideal anti-microbial drug target since it is found in all eubacteria, serves an essential role during protein synthesis, and shares very little sequence or structural homology with its eukaryotic counterpart, Trm5. TrmD, a homodimeric protein, methylates the G37 nucleotide of tRNA using S-adenosyl-L-methionine (SAM) as the methyl donor and thus enables proper codon-anticodon alignment during translation. The two deeply buried binding sites for SAM seen in X-ray crystallography suggest that significant conformational changes must occur for substrate binding and catalytic turnover. Results from molecular dynamics simulations implicate a flexible loop region and a halo-like loop which may be gating the entrance to the active site. Analysis of simulation trajectories indicates an alternating pattern of active site accessibility between the two SAM binding sites, suggesting a single site mechanism for enzyme activity. Isothermal titration calorimetry (ITC), demonstrates that binding of SAM to TrmD is an exothermic reaction resulting from sequential binding at two sites. A similar mode of binding at higher affinities was observed for the product, S-adenosyl-L-homocysteine (SAH) suggesting that product inhibition may be important in vivo. ITC reveals that tRNA binding is an endothermic reaction in which one tRNA molecule binds to one TrmD dimer. This further supports the hypothesis of a single site mechanism for enzyme function. However, mutational analysis using hybrid mutant proteins suggests that catalytic integrity must be maintained in both active sites for maximum enzymatic efficiency. Mutations impeding flexibility of the halo loop were particularly detrimental to enzyme activity. Noncompetitive inhibition of TrmD was observed in the presence of bis-ANS, an extrinsic fluorescent dye. In silico ligand docking of bis-ANS to TrmD suggests that dye interferes with mobility of the flexible linker above the active site. Because SAM is a ubiquitous cofactor in methyltransferase reactions, analogs of this ligand may not be suitable for drug development. It is therefore important to investigate allosteric modes of inhibition. These experiments have identified key, mobile structural elements in the TrmD enzyme important for activity, and provide a basis for further research in the development of allosteric inhibitors for this enzyme.
|
186 |
TRBP recrute une 2’O-méthyltransférase au niveau de l’ARN du Virus de l’Immunodéficience Humaine de type 1 (VIH-1) : mécanisme d’échappement au système immunitaire inné / TRBP recruits a 2’O-methyltranferase on Human Immunodeficiency Virus type 1 RNA : mechanism of innate immunity escapeRingeard, Mathieu 14 November 2013 (has links)
TRBP (TAR RNA Binding Protein), est un facteur activateur de la réplication du Virus de l'Immunodéficience Humaine de type 1 (VIH-1). Cette protéine cellulaire qui interagit avec les ARN double brins est connue pour son rôle crucial dans la voie des miRNA. Isolée pour sa capacité à interagir avec la séquence leader TAR présente à l'extrémité 5' de tous les ARN du VIH-1, TRBP favorise la réplication du VIH-1 au niveau post-transcriptionnel, en partie via l'inhibition de la PKR (Protéine Kinase ARN dépendante).Dans le but de mieux comprendre les mécanismes moléculaires par lesquels TRBP facilite la réplication du VIH-1, le complexe protéique associé à TRBP a été purifié par immunoprécipitation par double affinité et identifié par spectrométrie de masse. En plus des facteurs déjà connus, un nouveau partenaire à activité ARN 2'-O-méthyltransférase (2'-OMTase) potentielle a été copurifié : la protéine FTSJ3. Chez les eucaryotes supérieurs, deux 2'-OMTases permettent la méthylation des ARNm cellulaires au niveau de la position ribose 2'-O- du premier (coiffe 1) et du deuxième nucléotide (coiffe 2). Cette coiffe 1/2 est une signature moléculaire permettant de discriminer les ARNm endogènes et exogènes. Dans la cellule, MDA5, un senseur cytoplasmique, reconnait les ARN exogènes non coiffés et déclenche la production d'interférons (IFNs) de type I pour établir un état antiviral. Pour échapper à la réponse immune innée, certains virus ont développé des mécanismes leur permettant de mimer une coiffe 1/2.Le VIH ne code pas pour une activité 2'-OMTase. Cependant FTSJ3, de par son interaction avec TRBP, se retrouve à proximité de l'extrémité 5' de l'ARN viral. Cette 2'-OMTase méthyle l'ARN TAR in vitro, qui, transfecté dans les cellules monocytaires humaines U937 n'induit plus la production d'IFNs de type I. A l'inverse, le virus VIH-1 produit en l'absence de FTSJ3 déclenche une induction de l'expression des IFNs de type I dépendante de MDA5 dans les cellules U937. L'expression de ce virus est atténuée suite à un défaut d'import nucléaire. Ainsi, ces travaux montrent que la protéine FTSJ3, recrutée au niveau de l'extrémité 5' de l'ARN du VIH-1 par TRBP, facilite la réplication du VIH-1 en assurant la synthèse d'une coiffe 1/2 qui permet au VIH-1 d'échapper à la reconnaissance par le senseur MDA5 et à l'induction des IFNs de type I. Cette étude met en évidence un nouveau mécanisme permettant au VIH-1 d'échapper à la détection par le système d'immunité innée cellulaire. / TRBP (TAR RNA Binding Protein) is a cellular RNA binding protein that facilitates the replication of Human Immunodeficiency Virus type 1 (HIV-1). Isolated for its ability to bind HIV-1 TAR sequence present at the 5' end of all HIV-1 RNA, TRBP promotes HIV-1 replication at a post-transcriptional level by counteracting the antiviral activity of the protein kinase R (PKR).To gain more insight on how TRBP enhances HIV-1 replication, TRBP associated factors were purified using tandem immunoaffinity purification and identified by mass spectrometry. In addition to already known associated factors, a new protein with a putative RNA 2'-O-methyltransferase activity (2'OMTases) was copurified: FTSJ3. In higher eukaryotes, cellular mRNA are methylated on 2'-O ribose position on the first (Cap 1) and second nucleotide (Cap 2). This capping provides a molecular signature for the discrimination of endogenous versus exogenous mRNA. In the cell, MDA5, a cytoplasmic sensor, recognizes exogenous uncapped RNA and activate type I interferons (IFNs) production to establish an antiviral state. To evade innate immune response, some viruses have evolved mechanisms to mimics cap 1/2.HIV-1 does not encode a 2'O-MTase activity. However, owing to its interaction with TRBP, FTSJ3 is recruited at the 5' end of the viral genome and methylates TAR RNA in vitro. When capped by FTSJ3, TAR does not induce type I IFNs anymore when transfected in monocytic cell line U937. Conversely, HIV-1 viruses produced in FTSJ3 knock-down cells triggers type I IFNs expression through MDA5 sensing. This virus is attenuated, expressed in low amounts because of a block at the level of HIV-1 nuclear import. This study shows that FTSJ3 is recruited to HIV-1 5' end TAR sequence by TRBP and facilitates HIV-1 replication. HIV-1 RNA capping allows HIV-1 escape from MDA5 sensing and type I IFN induction. This study highlights a new way of HIV-1 escape from innate immune system.
|
187 |
Extraction, Purification and Evaluation of PRMT5-Inhibitory Phytochemical Compounds for the Treatment of Prostate AdenocarcinomaRichmond, Oliver H., III 20 May 2019 (has links)
The development and advancement of prostate cancer is supported by a plethora of genetic and proteomic abnormalities, including events of post-translational modifications. The protein arginine methyltransferase 5 (PRMT5) enzyme regulates epigenetic events of histone modifications and protein post-translational modifications within protein signaling pathways. PRMT5 functions by catalyzing the symmetric dimethylation of terminal arginine residues on target protein substrates. Under abnormal conditions of overexpression and upregulation, PRMT5 methyltransferase activity constitutively drives the growth and proliferation of dysregulated cells. Overexpression or upregulation of PRMT5 correlates with disease progression as observed among numerous cancer types, including breast, colorectal, leukemia, lung, melanoma and prostate cancers. We demonstrated previously that PRMT5 knockdowns attenuated both growth and proliferation of lung and prostatic tumors, in vitro and in vivo. Plants naturally produce chemical toxins as mechanisms of defense against microbial and other biological threats. Human exploitation, consumption and application of agents isolated from plants for therapeutic intervention dates back throughout the millennia. In this study, we extracted, purified and evaluated natural, small, chemical compounds from plant products that antagonize PRMT5 activity in prostate cancer cells. We found that crude and purified extracts of Dendrobium aurantiacum var. denneanum (D. denneanum) plants attenuated prostate tumor growth and proliferation by selective inhibition of PRMT5 methyltransferase activity. These findings establish the first set of natural PRMT5-specific inhibitors reported.
|
188 |
Estudo da função do gene kerV de Pseudomonas aeruginosa / Function of Pseudomonas aeruginosa kerV geneMeireles, Diogo de Abreu 08 September 2011 (has links)
P. aeruginosa PA14 é uma linhagem isolada de queimadura que apresenta vários fatores de patogenicidade comuns no quadro de infecção de hospedeiros filogeneticamente distintos (plantas, mamíferos ou invertebrados). O gene kerV foi revelado numa busca por mutantes atenuados em virulência em uma biblioteca de mutantes por transposons da linhagem PA14 (Rahme et al., 1997). A caracterização da linhagem D12, mutante em kerV, confirmou sua virulência atenuada (Apidianakis et al., 2005 e An et al., 2009) e resultados do transcriptoma mostraram alteração na expressão de mais de 500 genes, sendo alguns relacionados com o sistema de \"quorum sensing\" (Rahme et al, dados não publicados). O gene kerV está próximo à montante ao gene gloB, envolvido em detoxificação de metilglioxal, e à jusante aos genes rnhA e dnaQ, que codificam proteínas envolvidas na replicação e reparo do DNA. Este trabalho teve como objetivo estudar a função molecular do produto de kerV e a expressão dos genes do lócus kerV-rnhA-dnaQ. Análises de bioinformática indicam que a proteína KerV é uma metiltransferase dependente de S-adenosil-metionina (SAM), apresentando um domínio conservado de ligação a SAM e uma arquitetura de domínio compatível com a organização em fitas-beta e hélices-alfa alternadas descritas para a família das metiltransferases dependentes de SAM. Ela não apresenta outros domínios conservados que indiquem seu substrato de metilação. A expressão heteróloga desta proteína em E. coli, mostrou que ela é expressa de maneira parcialmente solúvel quando co-expressa com as chaperoninas GroEL/GroES em baixas temperaturas ou quando fusionada a MBP ou GST. A purificação desta proteína mostra que ela é co-eluída com a chaperonina GroEL sugerindo que para atingir sua conformação nativa ela necessita dessas proteínas acessórias. MBP-KerV purificado foi usado para ensaios \"in vitro\" de atividade de metiltransferase e ligação a SAM, que não foram conclusivos, pois não há certeza do seu correto estado de enovelamento. Ensaios de duplo-híbrido mostraram que KerV não interage com os produtos de rnhA e dnaQ, sugerindo que KerV não está diretamente relacionado com suas funções. A freqüência de mutação na linhagem D12 está levemente aumentada (aproximadamente quatro vezes), o que sugere que KerV não está diretamente envolvida no reparo de DNA do tipo ´mismatch repair`. Os ensaios usados para detectar metilação do DNA, proteínas e rRNAs não revelaram que KerV estaria envolvido com a metilação destes substratos. Os inícios de transcrição dos genes kerV, rnhA e dnaQ foram determinados. A deleção de kerV causa um efeito polar na transcrição do gene rnhA, que não se reflete nos níveis da proteína. A deleção também afeta a expressão de dnaQ, sugerindo que KerV seja importante para sua regulação. Os ensaios de complementação da virulência em modelos invertebrados e de células epiteliais de pulmão mostram que apenas a presença dos três genes e seus produtos em níveis normais são capazes de reverter a maioria dos fenótipos atenuados. KerV se mostrou essencial para a inibição da translocação de NF-kB para o núcleo das células, comprovando que esta proteína é relevante para a virulência de PA14, contribuindo com o silenciamento da resposta imune do hospedeiro. O conjunto dos resultados indicam uma complexa inter-relação entre a expressão dos genes kerV, rnhA e dnaQ e seu papel na biologia de P. aeruginosa. / P. aeruginosa PA14 is a burn isolate multi-host pathogen strain. The screening for virulence attenuated mutants in a PA14 transposon mutant library revealed the kerV gene (Rahme et al., 1997). The characterization of D12 strain, a kerV mutant, confirmed the attenuated virulence phenotype (Apidianakis et al., 2005 and An et al., 2009) and transcriptome analysis showed the expression of more than 500 genes are affected in D12, some of these genes are related with quorum sensing (Rahme et al, unpublished data). kerV is upstream of the gloB gene, related with methylglioxal detoxification and downstream of the rnhA and dnaQ genes, both related with DNA replication and repair. The purpose of this work was to study the molecular function of KerV product and the expression of kerV-rnhA-dnaQ locus. Bioinformatics analysis indicated that KerV is a SAM dependent methyltransferase that have a conserved SAM binding domain with architecture compatible with classic alternating β-stranded and α-helical regions. KerV does not show any other conserved motif that could indicate its methylation substrate. Heterologous expression in E. coli showed that KerV is partially soluble only when co-expressed with GroeL/GroES chaperones at low temperatures or when KerV is in fusion with MBP or GST tag. During the purification process KerV was copurified with GroEL chaperone suggesting that this association may be required for the correct folding of KerV. Methyltransferase activity and SAM binding assays were done with purified MBPKerV and the results were not conclusive since the proper conformation of MBP-KerV cannot be verified. Yeast two-hybrid assays indicated that RNaseH and DnaQ are not interaction partners of KerV, suggesting that their functions are not directly related. The mutation frequency of D12 strain increased only about four times in relation to PA14, suggesting that KerV is not directly involved with DNA mismatch repair. The assays to detect methylation in DNA, RNAs and proteins do not show that KerV is involved with methylation of these substrates. The transcription start sites of kerV, rnhA and dnaQ genes were mapped through 5\'-RACE- and primer extension experiments. The kerV deletion causes a polar effect on the transcription of rnhA gene, which is not reflected on RNaseH protein levels. The kerV deletion also affects dnaQ expression, suggesting that KerV is important for its regulation.The virulence complementation assays in flies and lung epithelial cells showed that the fully rescue of the wild type phenotype was achieved only when the entire locus is present. KerV was essential to inhibit the NF-kB nucleus translocation, demonstrating that KerV is relevant to PA14 virulence, contributing for the silencing of host immune system. Altogether, these data showed a complex inter-relation among kerV, rnhA and dnaQ genes and its role in P. aeruginosa biology
|
189 |
Mapeamento de proteínas alvo para novos antifúngicos na fração microssomal e citosólica do patógeno humano Aspergillus fumigatus / Mapping target proteins for new antifungals in the microsomal and cytosolic fraction of the human pathogen Aspergillus fumigatusIvy Ortega Medeiros Zanon da Silva 21 March 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A incidência de infecções fúngicas invasivas vem aumentando nos últimos anos. Estas infecções, em geral, apresentam altas taxas de mortalidade. A profilaxia com antifúngicos ainda é a estratégia mais comum na contenção da mortalidade e prevenção contra infecções fúngicas invasivas, porém, apresenta baixa eficiência, e relatos de resistência às drogas. Além disso, a terapia antifúngica é limitada a um pequeno grupo de drogas, como os polienos, azóis e equinocandinas. Desta forma, a busca de novos alvos de drogas é fundamental para o desenvolvimento de novos antifúngicos. Estudos in silico indicaram quatro genes como potenciais alvo de drogas em fungos patogênicos. Neste contexto, o objetivo deste trabalho foi verificar a expressão das proteínas codificadas por dois destes possíveis genes alvo, a proteína erg6, na fração microssomal, e trr1, na fração citosólica, em hifas de A. fumigatus. Visando alcançar este objetivo, foram primeiramente padronizadas todas as etapas de fracionamento celular visando isolar estas duas subfrações celulares de A. fumigatus. Posteriormente, foi otimizado o protocolo de extração e reidratação de proteínas microssomais bem como reidratação de proteínas citosólicas. Estes extratos foram submetidos a diferentes protocolos de fracionamento proteico em um sistema de eletroforese OFFGEL (OGE). Os resultados de Western immunoblot mostraram que estas duas proteínas, erg6 e trr1, são de fato expressas na fase filamentosa de A. fumigatus. O extrato proteico da fração microssomal submetido ao OGE em doze subfrações apresentou três subunidades da proteína erg6, reconhecidas pelo anticorpo monoclonal, com massas moleculares e pI distintos: uma subunidade de aproximadamente 79 kDa com pI entre 5,91 e 6,49, e outras duas subunidades de aproximadamente 35 kDa e 32 kDa, ambas com pI entre 6,49 e 7,08. A enzima erg6 foi descrita como um homotetrâmero em outros fungos. Porém, nossos resultados sugerem que, em A. fumigatus, a erg6 possui uma estrutura heterotetramérica. Quanto à proteína trr1, tanto no extrato total quanto nas frações resultantes do fracionamento em OGE, uma banda única de aproximadamente 40 kDa, com pI na faixa de 4,79 e 5,33, foi reconhecida pelo anticorpo policlonal. Desta forma, esta proteína parece ter uma estrutura homodimérica, assim como descrito em outros micro-organismos. / The invasive fungal infections incidence has increased in recent years. These infections usually presents high mortality rates. Antifungal prophylaxis remains the most common clinical strategy to decrease mortality and prevent invasive fungal infections, however, it has low efficiency and drug resistance reports. Furthermore, antifungal therapy is limited to a small group of drugs such as polyenes, azoles, and echinocandins. Thus, the search for new drug targets is imperative for the new antifungal agents development. In silico studies have indicated four genes as potential drug target in pathogenic fungi. In this context, our aim was to investigate the expression of two proteins encoded by two putative target genes, erg6 in the microsomal fraction, and trr1 in the cytosolic fraction of A. fumigatus hyphae. To achieve this goal, we first standardized all steps of cell fractionation to isolate these two fractions of A. fumigatus hyphae. Subsequently, was optimized the protein extraction and rehidratation protocols of these two subfractions, such as cytosolic proteins rehidratation. These extracts were submitted to different protocols for protein fractionation in an OFFGEL electrophoresis system (OGE). The Western immunoblot results showed that these two proteins, erg6 and trr1, are expressed in filamentous phase of A. fumigatus. The microsomal protein extract submitted to the OGE in twelve fractions, showed three erg6 protein subunits recognized by monoclonal antibody, with distincts molecular weight and pI: a subunit with approximately 79 kDa, with pI in the range of 5,91 and 6,49, and others two subunits with 35 kDa and 32 kDa, both with pI between 6,49 and 7,08. The enzyme erg6 was described as a homotetramer in other fungi, however, our results suggest that in A. fumigatus the erg6 has a heterotetrameric structure. Regarding trr1 protein, in both, total and fractionated (OGE) extracts, a single band of approximately 40 kDa, with pI in the range of 4.79 and 5.33, was recognized by the polyclonal antibody, suggesting that this protein appears to have a homodimeric structure, as described in other microorganisms.
|
190 |
Pancreatic Endocrine Tumors and GIST - Clinical Markers, Epidemiology and TreatmentEkeblad, Sara January 2007 (has links)
Pancreatic endocrine tumors and gastrointestinal stromal tumors are rare. Evidence regarding prognostic factors, and in the former also treatment, is scarce. We evaluated the survival and prognostic factors in a consecutive series of 324 patients with pancreatic endocrine tumors treated at a single institution. Radical surgery, WHO classification, TNM stage, age and Ki67 ≥2% emerged as independent prognostic factors. Having a non-functioning tumor was not an independent prognostic marker, and neither was hereditary tumor disease. We present the first evaluation of the newly proposed TNM staging system for these patients. A separate analysis of well-differentiated neuroendocrine carcinomas is reported, suggesting tumor size ≥5cm and Ki67 ≥2% as negative prognostic markers in this group. The first 36 patients with advanced neuroendocrine tumors treated with temozolomide at our clinic were evaluated. The median time to progression was seven months. Fourteen percent showed partial regression and 53% stabilization of disease. Side effects were generally mild. Investigation of O6-methylguanine DNA methyltransferase revealed a low expression in a subset of tumors. Four out of five patients responding to treatment had tumors with low expression. Concomitant expression of the orexigen ghrelin and its receptor in pancreatic endocrine tumors is demonstrated. No significant difference in mean plasma ghrelin between patients and controls were found, but elevated plasma ghrelin was seen in five patients. We provide the first report of expression of ghrelin and its receptor in gastrointestinal stromal tumors. Concomitant expression was frequent, indicating the presence of an autocrine loop. The tumors also expressed the neuroendocrine marker synaptic vesicle protein 2. Together, these findings are suggestive of neuroendocrine features.
|
Page generated in 0.0639 seconds