• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 3
  • 2
  • 1
  • Tagged with
  • 42
  • 42
  • 16
  • 15
  • 13
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Diversification and Generalization for Metric Learning with Applications in Neuroimaging

Shi, Bibo January 2015 (has links)
No description available.
12

Theory and algorithms for learning metrics with controlled behaviour / Théorie et algorithmes pour l'apprentissage de métriques à comportement contrôlé

Perrot, Michaël 13 December 2016 (has links)
De nombreux algorithmes en Apprentissage Automatique utilisent une notion de distance ou de similarité entre les exemples pour résoudre divers problèmes tels que la classification, le partitionnement ou l'adaptation de domaine. En fonction des tâches considérées ces métriques devraient avoir des propriétés différentes mais les choisir manuellement peut-être fastidieux et difficile. Une solution naturelle est alors d'adapter automatiquement ces métriques à la tâche considérée. Il s'agit alors d'un problème connu sous le nom d'Apprentissage de Métriques et où le but est principalement de trouver les meilleurs paramètres d'une métrique respectant des contraintes spécifiques. Les approches classiques dans ce domaine se focalisent habituellement sur l'apprentissage de distances de Mahalanobis ou de similarités bilinéaires et l'une des principales limitations est le fait que le contrôle du comportement de ces métriques est souvent limité. De plus, si des travaux théoriques existent pour justifier de la capacité de généralisation des modèles appris, la plupart des approches ne présentent pas de telles garanties. Dans cette thèse nous proposons de nouveaux algorithmes pour apprendre des métriques à comportement contrôlé et nous mettons l'accent sur les propriétés théoriques de ceux-ci. Nous proposons quatre contributions distinctes qui peuvent être séparées en deux parties: (i) contrôler la métrique apprise en utilisant une métrique de référence et (ii) contrôler la transformation induite par la métrique apprise. Notre première contribution est une approche locale d'apprentissage de métriques où le but est de régresser une distance proportionnelle à la perception humaine des couleurs. Notre approche est justifiée théoriquement par des garanties en généralisation sur les métriques apprises. Dans notre deuxième contribution nous nous sommes intéressés à l'analyse théorique de l'intérêt d'utiliser une métrique de référence dans un terme de régularisation biaisé pour aider lors du processus d'apprentissage. Nous proposons d'utiliser trois cadres théoriques différents qui nous permettent de dériver trois mesures différentes de l'apport de la métrique de référence. Ces mesures nous donnent un aperçu de l'impact de la métrique de référence sur celle apprise. Dans notre troisième contribution nous proposons un algorithme d'apprentissage de métriques où la transformation induite est contrôlée. L'idée est que, plutôt que d'utiliser des contraintes de similarité et de dissimilarité, chaque exemple est associé à un point virtuel qui appartient déjà à l'espace induit par la métrique apprise. D'un point de vue théorique nous montrons que les métriques apprises de cette façon généralisent bien mais aussi que notre approche est liée à une méthode plus classique d'apprentissage de métriques basée sur des contraintes de paires. Dans notre quatrième contribution nous essayons aussi de contrôler la transformation induite par une métrique apprise. Cependant, plutôt que considérer un contrôle individuel pour chaque exemple, nous proposons une approche plus globale en forçant la transformation à suivre une transformation géométrique associée à un problème de transport optimal. D'un point de vue théorique nous proposons une discussion sur le lien entre la transformation associée à la métrique apprise et la transformation associée au problème de transport optimal. D'un point de vue plus pratique nous montrons l'intérêt de notre approche pour l'adaptation de domaine mais aussi pour l'édition d'images / Many Machine Learning algorithms make use of a notion of distance or similarity between examples to solve various problems such as classification, clustering or domain adaptation. Depending on the tasks considered these metrics should have different properties but manually choosing an adapted comparison function can be tedious and difficult. A natural trend is then to automatically tailor such metrics to the task at hand. This is known as Metric Learning and the goal is mainly to find the best parameters of a metric under some specific constraints. Standard approaches in this field usually focus on learning Mahalanobis distances or Bilinear similarities and one of the main limitations is that the control over the behaviour of the learned metrics is often limited. Furthermore if some theoretical works exist to justify the generalization ability of the learned models, most of the approaches do not come with such guarantees. In this thesis we propose new algorithms to learn metrics with a controlled behaviour and we put a particular emphasis on the theoretical properties of these algorithms. We propose four distinct contributions which can be separated in two parts, namely (i) controlling the metric with respect to a reference metric and (ii) controlling the underlying transformation corresponding to the learned metric. Our first contribution is a local metric learning method where the goal is to regress a distance proportional to the human perception of colors. Our approach is backed up by theoretical guarantees on the generalization ability of the learned metrics. In our second contribution we are interested in theoretically studying the interest of using a reference metric in a biased regularization term to help during the learning process. We propose to use three different theoretical frameworks allowing us to derive three different measures of goodness for the reference metric. These measures give us some insights on the impact of the reference metric on the learned one. In our third contribution we propose a metric learning algorithm where the underlying transformation is controlled. The idea is that instead of using similarity and dissimilarity constraints we associate each learning example to a so-called virtual point belonging to the output space associated with the learned metric. We theoretically show that metrics learned in this way generalize well but also that our approach is linked to a classic metric learning method based on pairs constraints. In our fourth contribution we also try to control the underlying transformation of a learned metric. However instead of considering a point-wise control we consider a global one by forcing the transformation to follow the geometrical transformation associated to an optimal transport problem. From a theoretical standpoint we propose a discussion on the link between the transformation associated with the learned metric and the transformation associated with the optimal transport problem. On a more practical side we show the interest of our approach for domain adaptation but also for a task of seamless copy in images
13

Data Mining Techniques to Understand Textual Data

Zhou, Wubai 04 October 2017 (has links)
More than ever, information delivery online and storage heavily rely on text. Billions of texts are produced every day in the form of documents, news, logs, search queries, ad keywords, tags, tweets, messenger conversations, social network posts, etc. Text understanding is a fundamental and essential task involving broad research topics, and contributes to many applications in the areas text summarization, search engine, recommendation systems, online advertising, conversational bot and so on. However, understanding text for computers is never a trivial task, especially for noisy and ambiguous text such as logs, search queries. This dissertation mainly focuses on textual understanding tasks derived from the two domains, i.e., disaster management and IT service management that mainly utilizing textual data as an information carrier. Improving situation awareness in disaster management and alleviating human efforts involved in IT service management dictates more intelligent and efficient solutions to understand the textual data acting as the main information carrier in the two domains. From the perspective of data mining, four directions are identified: (1) Intelligently generate a storyline summarizing the evolution of a hurricane from relevant online corpus; (2) Automatically recommending resolutions according to the textual symptom description in a ticket; (3) Gradually adapting the resolution recommendation system for time correlated features derived from text; (4) Efficiently learning distributed representation for short and lousy ticket symptom descriptions and resolutions. Provided with different types of textual data, data mining techniques proposed in those four research directions successfully address our tasks to understand and extract valuable knowledge from those textual data. My dissertation will address the research topics outlined above. Concretely, I will focus on designing and developing data mining methodologies to better understand textual information, including (1) a storyline generation method for efficient summarization of natural hurricanes based on crawled online corpus; (2) a recommendation framework for automated ticket resolution in IT service management; (3) an adaptive recommendation system on time-varying temporal correlated features derived from text; (4) a deep neural ranking model not only successfully recommending resolutions but also efficiently outputting distributed representation for ticket descriptions and resolutions.
14

Apprentissage de métrique temporelle multi-modale et multi-échelle pour la classification robuste de séries temporelles par plus proches voisins / Multi-modal and multi-scale temporal metric learning for robust nearest neighbors classification

Do, Cao Tri 06 May 2016 (has links)
La définition d'une métrique entre des séries temporelles est un élément important pour de nombreuses tâches en analyse ou en fouille de données, tel que le clustering, la classification ou la prédiction. Les séries temporelles présentent naturellement différentes caractéristiques, que nous appelons modalités, sur lesquelles elles peuvent être comparées, comme leurs valeurs, leurs formes ou leurs contenus fréquentielles. Ces caractéristiques peuvent être exprimées avec des délais variables et à différentes granularités ou localisations temporelles - exprimées globalement ou localement. Combiner plusieurs modalités à plusieurs échelles pour apprendre une métrique adaptée est un challenge clé pour de nombreuses applications réelles impliquant des données temporelles. Cette thèse propose une approche pour l'Apprentissage d'une Métrique Multi-modal et Multi-scale (M2TML) en vue d'une classification robuste par plus proches voisins. La solution est basée sur la projection des paires de séries temporelles dans un espace de dissimilarités, dans lequel un processus d'optimisation à vaste marge est opéré pour apprendre la métrique. La solution M2TML est proposée à la fois dans le contexte linéaire et non-linéaire, et est étudiée pour différents types de régularisation. Une variante parcimonieuse et interprétable de la solution montre le potentiel de la métrique temporelle apprise à pouvoir localiser finement les modalités discriminantes, ainsi que leurs échelles temporelles en vue de la tâche d'analyse considérée. L'approche est testée sur un vaste nombre de 30 bases de données publiques et challenging, couvrant des images, traces, données ECG, qui sont linéairement ou non-linéairement séparables. Les expériences montrent l'efficacité et le potentiel de la méthode M2TML pour la classification de séries temporelles par plus proches voisins. / The definition of a metric between time series is inherent to several data analysis and mining tasks, including clustering, classification or forecasting. Time series data present naturally several characteristics, called modalities, covering their amplitude, behavior or frequential spectrum, that may be expressed with varying delays and at different temporal granularity and localization - exhibited globally or locally. Combining several modalities at multiple temporal scales to learn a holistic metric is a key challenge for many real temporal data applications. This PhD proposes a Multi-modal and Multi-scale Temporal Metric Learning (M2TML) approach for robust time series nearest neighbors classification. The solution is based on the embedding of pairs of time series into a pairwise dissimilarity space, in which a large margin optimization process is performed to learn the metric. The M2TML solution is proposed for both linear and non linear contexts, and is studied for different regularizers. A sparse and interpretable variant of the solution shows the ability of the learned temporal metric to localize accurately discriminative modalities as well as their temporal scales.A wide range of 30 public and challenging datasets, encompassing images, traces and ECG data, that are linearly or non linearly separable, are used to show the efficiency and the potential of M2TML for time series nearest neighbors classification.
15

Learning similarities for linear classification : theoretical foundations and algorithms / Apprentissage de similarités pour la classification linéaire : fondements théoriques et algorithmes

Nicolae, Maria-Irina 02 December 2016 (has links)
La notion de métrique joue un rôle clef dans les problèmes d’apprentissage automatique tels que la classification, le clustering et le ranking. L’apprentissage à partir de données de métriques adaptées à une tâche spécifique a suscité un intérêt croissant ces dernières années. Ce domaine vise généralement à trouver les meilleurs paramètres pour une métrique donnée sous certaines contraintes imposées par les données. La métrique apprise est utilisée dans un algorithme d’apprentissage automatique dans le but d’améliorer sa performance. La plupart des méthodes d’apprentissage de métriques optimisent les paramètres d’une distance de Mahalanobis pour des vecteurs de features. Les méthodes actuelles de l’état de l’art arrivent à traiter des jeux de données de tailles significatives. En revanche, le sujet plus complexe des séries temporelles multivariées n’a reçu qu’une attention limitée, malgré l’omniprésence de ce type de données dans les applications réelles. Une importante partie de la recherche sur les séries temporelles est basée sur la dynamic time warping (DTW), qui détermine l’alignement optimal entre deux séries temporelles. L’état actuel de l’apprentissage de métriques souffre de certaines limitations. La plus importante est probablement le manque de garanties théoriques concernant la métrique apprise et sa performance pour la classification. La théorie des fonctions de similarité (ℰ , ϓ, T)-bonnes a été l’un des premiers résultats liant les propriétés d’une similarité à celles du classifieur qui l’utilise. Une deuxième limitation vient du fait que la plupart des méthodes imposent des propriétés de distance, qui sont coûteuses en terme de calcul et souvent non justifiées. Dans cette thèse, nous abordons les limitations précédentes à travers deux contributions principales. La première est un nouveau cadre général pour l’apprentissage conjoint d’une fonction de similarité et d’un classifieur linéaire. Cette formulation est inspirée de la théorie de similarités (ℰ , ϓ, τ) -bonnes, fournissant un lien entre la similarité et le classifieur linéaire. Elle est convexe pour une large gamme de fonctions de similarité et de régulariseurs. Nous dérivons deux bornes de généralisation équivalentes à travers les cadres de robustesse algorithmique et de convergence uniforme basée sur la complexité de Rademacher, prouvant les propriétés théoriques de notre formulation. Notre deuxième contribution est une méthode d’apprentissage de similarités basée sur DTW pour la classification de séries temporelles multivariées. Le problème est convexe et utilise la théorie des fonctions (ℰ , ϓ, T)-bonnes liant la performance de la métrique à celle du classifieur linéaire associé. A l’aide de la stabilité uniforme, nous prouvons la consistance de la similarité apprise conduisant à la dérivation d’une borne de généralisation. / The notion of metric plays a key role in machine learning problems, such as classification, clustering and ranking. Learning metrics from training data in order to make them adapted to the task at hand has attracted a growing interest in the past years. This research field, known as metric learning, usually aims at finding the best parameters for a given metric under some constraints from the data. The learned metric is used in a machine learning algorithm in hopes of improving performance. Most of the metric learning algorithms focus on learning the parameters of Mahalanobis distances for feature vectors. Current state of the art methods scale well for datasets of significant size. On the other hand, the more complex topic of multivariate time series has received only limited attention, despite the omnipresence of this type of data in applications. An important part of the research on time series is based on the dynamic time warping (DTW) computing the optimal alignment between two time series. The current state of metric learning suffers from some significant limitations which we aim to address in this thesis. The most important one is probably the lack of theoretical guarantees for the learned metric and its performance for classification.The theory of (ℰ , ϓ, τ)-good similarity functions has been one of the first results relating the properties of a similarity to its classification performance. A second limitation in metric learning comes from the fact that most methods work with metrics that enforce distance properties, which are computationally expensive and often not justified. In this thesis, we address these limitations through two main contributions. The first one is a novel general framework for jointly learning a similarity function and a linear classifier. This formulation is inspired from the (ℰ , ϓ, τ)-good theory, providing a link between the similarity and the linear classifier. It is also convex for a broad range of similarity functions and regularizers. We derive two equivalent generalization bounds through the frameworks of algorithmic robustness and uniform convergence using the Rademacher complexity, proving the good theoretical properties of our framework. Our second contribution is a method for learning similarity functions based on DTW for multivariate time series classification. The formulation is convex and makes use of the(ℰ , ϓ, τ)-good framework for relating the performance of the metric to that of its associated linear classifier. Using uniform stability arguments, we prove the consistency of the learned similarity leading to the derivation of a generalization bound.
16

Reading Faces. Using Hard Multi-Task Metric Learning for Kernel Regression / Analyse de visages à l'aide d'une régularisation multi-tâches contrainte pour un apprentissage de métrique adaptée à un régresseur par noyaux

Nicolle, Jérémie 08 March 2016 (has links)
Recueillir et labelliser un ensemble important et pertinent de données pour apprendre des systèmes de prédiction d'informations à partir de visages est à la fois difficile et long. Par conséquent, les données disponibles sont souvent de taille limitée comparée à la difficultés des tâches. Cela rend le problème du sur-apprentissage particulièrement important dans de nombreuses applications d'apprentissage statistique liées au visage. Dans cette thèse, nous proposons une nouvelle méthode de régression de labels multi-dimensionnels, nommée Hard Multi-Task Metric Learning for Kernel Regression (H-MT-MLKR). Notre méthode a été développée en focalisant sur la réduction du phénomène de sur-apprentissage. La méthode Metric Learning for Kernel Regression qui a été proposée par Kilian Q. Weinberger en 2007 vise à apprendre un sous-espace pour minimiser l'erreur quadratique d'un estimateur de Nadaraya-Watson sur la base d'apprentissage. Dans notre méthode, on étend la méthode MLKR pour une régression de labels multi-dimensionnels en ajoutant une nouvelle régularisation multi-tâches qui réduit les degrés de liberté du modèle appris ainsi que le sur-apprentissage. Nous évaluons notre méthode pour deux applications différentes, à savoir la localisation de points caractéristiques et la prédiction de l'intensité des Action Units. Nous présentons aussi un travail sur la prédiction des émotions en espace continu basé aussi sur l'estimateur de Nadaraya-Watson. Deux des systèmes proposés nous ont permis de remporter deux premières places à des concours internationaux, à savoir le Audio-Visual Emotion Challenge (AVEC'12) et le Facial Expression Recognition and Analysis challenge (FERA'15). / Collecting and labeling various and relevant data for training automatic facial information prediction systems is both hard and time-consuming. As a consequence, available data is often of limited size compared to the difficulty of the prediction tasks. This makes overfitting a particularly important issue in several face-related machine learning applications. In this PhD, we introduce a novel method for multi-dimensional label regression, namely Hard Multi-Task Metric Learning for Kernel Regression (H-MT-MLKR). Our proposed method has been designed taking a particular focus on overfitting reduction. The Metric Learning for Kernel Regression method (MLKR) that has been proposed by Kilian Q. Weinberger in 2007 aims at learning a subspace for minimizing the quadratic training error of a Nadaraya-Watson estimator. In our method, we extend MLKR for multi-dimensional label regression by adding a novel multi-task regularization that reduces the degrees of freedom of the learned model along with potential overfitting. We evaluate our regression method on two different applications, namely landmark localization and Action Unit intensity prediction. We also present our work on automatic emotion prediction in a continuous space which is based on the Nadaraya-Watson estimator as well. Two of our frameworks let us win international data science challenges, namely the Audio-Visual Emotion Challenge (AVEC’12) and the fully continuous Facial Expression Recognition and Analysis challenge (FERA’15).
17

Metric Learning via Linear Embeddings for Human Motion Recognition

Kong, ByoungDoo 18 December 2020 (has links)
We consider the application of Few-Shot Learning (FSL) and dimensionality reduction to the problem of human motion recognition (HMR). The structure of human motion has unique characteristics such as its dynamic and high-dimensional nature. Recent research on human motion recognition uses deep neural networks with multiple layers. Most importantly, large datasets will need to be collected to use such networks to analyze human motion. This process is both time-consuming and expensive since a large motion capture database must be collected and labeled. Despite significant progress having been made in human motion recognition, state-of-the-art algorithms still misclassify actions because of characteristics such as the difficulty in obtaining large-scale leveled human motion datasets. To address these limitations, we use metric-based FSL methods that use small-size data in conjunction with dimensionality reduction. We also propose a modified dimensionality reduction scheme based on the preservation of secants tailored to arbitrary useful distances, such as the geodesic distance learned by ISOMAP. We provide multiple experimental results that demonstrate improvements in human motion classification.
18

Apprentissage et exploitation de représentations sémantiques pour la classification et la recherche d'images / Learning and exploiting semantic representations for image classification and retrieval

Bucher, Maxime 27 November 2018 (has links)
Dans cette thèse nous étudions différentes questions relatives à la mise en pratique de modèles d'apprentissage profond. En effet malgré les avancées prometteuses de ces algorithmes en vision par ordinateur, leur emploi dans certains cas d'usage réels reste difficile. Une première difficulté est, pour des tâches de classification d'images, de rassembler pour des milliers de catégories suffisamment de données d'entraînement pour chacune des classes. C'est pourquoi nous proposons deux nouvelles approches adaptées à ce scénario d'apprentissage, appelé <<classification zero-shot>>.L'utilisation d'information sémantique pour modéliser les classes permet de définir les modèles par description, par opposition à une modélisation à partir d'un ensemble d'exemples, et rend possible la modélisation sans donnée de référence. L'idée fondamentale du premier chapitre est d'obtenir une distribution d'attributs optimale grâce à l'apprentissage d'une métrique, capable à la fois de sélectionner et de transformer la distribution des données originales. Dans le chapitre suivant, contrairement aux approches standards de la littérature qui reposent sur l'apprentissage d'un espace d'intégration commun, nous proposons de générer des caractéristiques visuelles à partir d'un générateur conditionnel. Une fois générés ces exemples artificiels peuvent être utilisés conjointement avec des données réelles pour l'apprentissage d'un classifieur discriminant. Dans une seconde partie de ce manuscrit, nous abordons la question de l'intelligibilité des calculs pour les tâches de vision par ordinateur. En raison des nombreuses et complexes transformations des algorithmes profonds, il est difficile pour un utilisateur d'interpréter le résultat retourné. Notre proposition est d'introduire un <<goulot d'étranglement sémantique>> dans le processus de traitement. La représentation de l'image est exprimée entièrement en langage naturel, tout en conservant l'efficacité des représentations numériques. L'intelligibilité de la représentation permet à un utilisateur d'examiner sur quelle base l'inférence a été réalisée et ainsi d'accepter ou de rejeter la décision suivant sa connaissance et son expérience humaine. / In this thesis, we examine some practical difficulties of deep learning models.Indeed, despite the promising results in computer vision, implementing them in some situations raises some questions. For example, in classification tasks where thousands of categories have to be recognised, it is sometimes difficult to gather enough training data for each category.We propose two new approaches for this learning scenario, called <<zero-shot learning>>. We use semantic information to model classes which allows us to define models by description, as opposed to modelling from a set of examples.In the first chapter we propose to optimize a metric in order to transform the distribution of the original data and to obtain an optimal attribute distribution. In the following chapter, unlike the standard approaches of the literature that rely on the learning of a common integration space, we propose to generate visual features from a conditional generator. The artificial examples can be used in addition to real data for learning a discriminant classifier. In the second part of this thesis, we address the question of computational intelligibility for computer vision tasks. Due to the many and complex transformations of deep learning algorithms, it is difficult for a user to interpret the returned prediction. Our proposition is to introduce what we call a <<semantic bottleneck>> in the processing pipeline, which is a crossing point in which the representation of the image is entirely expressed with natural language, while retaining the efficiency of numerical representations. This semantic bottleneck allows to detect failure cases in the prediction process so as to accept or reject the decision.
19

Deep Contrastive Metric Learning to Detect Polymicrogyria in Pediatric Brain MRI

Zhang, Lingfeng 28 November 2022 (has links)
Polymicrogyria (PMG) is one brain disease that mainly occurs in the pediatric brain. Heavy PMG will cause seizures, delayed development, and a series of problems. For this reason, it is critical to effectively identify PMG and start early treatment. Radiologists typically identify PMG through magnetic resonance imaging scans. In this study, we create and open a pediatric MRI dataset (named PPMR dataset) including PMG and controls from the Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada. The difference between PMG MRIs and control MRIs is subtle and the true distribution of the features of the disease is unknown. Hence, we propose a novel center-based deep contrastive metric learning loss function (named cDCM Loss) to deal with this difficult problem. Cross-entropy-based loss functions do not lead to models with good generalization on small and imbalanced dataset with partially known distributions. We conduct exhaustive experiments on a modified CIFAR-10 dataset to demonstrate the efficacy of our proposed loss function compared to cross-entropy-based loss functions and the state-of-the-art Deep SAD loss function. Additionally, based on our proposed loss function, we customize a deep learning model structure that integrates dilated convolution, squeeze-and-excitation blocks and feature fusion for our PPMR dataset, to achieve 92.01% recall. Since our suggested method is a computer-aided tool to assist radiologists in selecting potential PMG MRIs, 55.04% precision is acceptable. To our best knowledge, this research is the first to apply machine learning techniques to identify PMG only from MRI and our innovative method achieves better results than baseline methods.
20

Supervised metric learning with generalization guarantees / Apprentissage supervisé de métriques avec garanties en généralisation

Bellet, Aurélien 11 December 2012 (has links)
Ces dernières années, l'importance cruciale des métriques en apprentissage automatique a mené à un intérêt grandissant pour l'optimisation de distances et de similarités en utilisant l'information contenue dans des données d'apprentissage pour les rendre adaptées au problème traité. Ce domaine de recherche est souvent appelé apprentissage de métriques. En général, les méthodes existantes optimisent les paramètres d'une métrique devant respecter des contraintes locales sur les données d'apprentissage. Les métriques ainsi apprises sont généralement utilisées dans des algorithmes de plus proches voisins ou de clustering.Concernant les données numériques, beaucoup de travaux ont porté sur l'apprentissage de distance de Mahalanobis, paramétrisée par une matrice positive semi-définie. Les méthodes récentes sont capables de traiter des jeux de données de grande taille.Moins de travaux ont été dédiés à l'apprentissage de métriques pour les données structurées (comme les chaînes ou les arbres), car cela implique souvent des procédures plus complexes. La plupart des travaux portent sur l'optimisation d'une notion de distance d'édition, qui mesure (en termes de nombre d'opérations) le coût de transformer un objet en un autre.Au regard de l'état de l'art, nous avons identifié deux limites importantes des approches actuelles. Premièrement, elles permettent d'améliorer la performance d'algorithmes locaux comme les k plus proches voisins, mais l'apprentissage de métriques pour des algorithmes globaux (comme les classifieurs linéaires) n'a pour l'instant pas été beaucoup étudié. Le deuxième point, sans doute le plus important, est que la question de la capacité de généralisation des méthodes d'apprentissage de métriques a été largement ignorée.Dans cette thèse, nous proposons des contributions théoriques et algorithmiques qui répondent à ces limites. Notre première contribution est la construction d'un nouveau noyau construit à partir de probabilités d'édition apprises. A l'inverse d'autres noyaux entre chaînes, sa validité est garantie et il ne comporte aucun paramètre. Notre deuxième contribution est une nouvelle approche d'apprentissage de similarités d'édition pour les chaînes et les arbres inspirée par la théorie des (epsilon,gamma,tau)-bonnes fonctions de similarité et formulée comme un problème d'optimisation convexe. En utilisant la notion de stabilité uniforme, nous établissons des garanties théoriques pour la similarité apprise qui donne une borne sur l'erreur en généralisation d'un classifieur linéaire construit à partir de cette similarité. Dans notre troisième contribution, nous étendons ces principes à l'apprentissage de métriques pour les données numériques en proposant une méthode d'apprentissage de similarité bilinéaire qui optimise efficacement l'(epsilon,gamma,tau)-goodness. La similarité est apprise sous contraintes globales, plus appropriées à la classification linéaire. Nous dérivons des garanties théoriques pour notre approche, qui donnent de meilleurs bornes en généralisation pour le classifieur que dans le cas des données structurées. Notre dernière contribution est un cadre théorique permettant d'établir des bornes en généralisation pour de nombreuses méthodes existantes d'apprentissage de métriques. Ce cadre est basé sur la notion de robustesse algorithmique et permet la dérivation de bornes pour des fonctions de perte et des régulariseurs variés / In recent years, the crucial importance of metrics in machine learningalgorithms has led to an increasing interest in optimizing distanceand similarity functions using knowledge from training data to make them suitable for the problem at hand.This area of research is known as metric learning. Existing methods typically aim at optimizing the parameters of a given metric with respect to some local constraints over the training sample. The learned metrics are generally used in nearest-neighbor and clustering algorithms.When data consist of feature vectors, a large body of work has focused on learning a Mahalanobis distance, which is parameterized by a positive semi-definite matrix. Recent methods offer good scalability to large datasets.Less work has been devoted to metric learning from structured objects (such as strings or trees), because it often involves complex procedures. Most of the work has focused on optimizing a notion of edit distance, which measures (in terms of number of operations) the cost of turning an object into another.We identify two important limitations of current supervised metric learning approaches. First, they allow to improve the performance of local algorithms such as k-nearest neighbors, but metric learning for global algorithms (such as linear classifiers) has not really been studied so far. Second, and perhaps more importantly, the question of the generalization ability of metric learning methods has been largely ignored.In this thesis, we propose theoretical and algorithmic contributions that address these limitations. Our first contribution is the derivation of a new kernel function built from learned edit probabilities. Unlike other string kernels, it is guaranteed to be valid and parameter-free. Our second contribution is a novel framework for learning string and tree edit similarities inspired by the recent theory of (epsilon,gamma,tau)-good similarity functions and formulated as a convex optimization problem. Using uniform stability arguments, we establish theoretical guarantees for the learned similarity that give a bound on the generalization error of a linear classifier built from that similarity. In our third contribution, we extend the same ideas to metric learning from feature vectors by proposing a bilinear similarity learning method that efficiently optimizes the (epsilon,gamma,tau)-goodness. The similarity is learned based on global constraints that are more appropriate to linear classification. Generalization guarantees are derived for our approach, highlighting that our method minimizes a tighter bound on the generalization error of the classifier. Our last contribution is a framework for establishing generalization bounds for a large class of existing metric learning algorithms. It is based on a simple adaptation of the notion of algorithmic robustness and allows the derivation of bounds for various loss functions and regularizers.

Page generated in 0.4769 seconds