• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 29
  • 19
  • 4
  • 3
  • 1
  • Tagged with
  • 196
  • 196
  • 196
  • 196
  • 43
  • 31
  • 28
  • 24
  • 24
  • 23
  • 20
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Effects of early acoustic stimulation of prepulse inhibition in mice [electronic resource] / by Lisa Tanner.

Tanner, Lisa. January 2003 (has links)
Professional research project (Au.D.)--University of South Florida, 2003. / Title from PDF of title page. / Document formatted into pages; contains 20 pages. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: The purpose of this study was to determine the effects of an atypical pattern of early acoustic stimulation on auditory development. Previous human research suggests that the acoustic environment of pre-term human infants in the Neonatal Intensive Care Unit (NICU) negatively affects some aspects of auditory development. Animal research suggests that premature auditory stimulation interrupts auditory development. Because mice are born before their auditory systems are developed, they make an excellent model for research on fetal and postnatal plasticity of the auditory system. The premature auditory state of newborn mice is similar to that of the NICU pre-term infant, albeit, natural for mice C57 mouse pups were exposed to an augmented acoustic environment (AAE) of a nightly 12-hour regiment of 70 dB SPL noise burst, beginning before age 12 days (onset of hearing) and lasting for one month. / ABSTRACT: The prepulse inhibition (PPI) of mice exposed to the AAE was compared to that of non-exposed mice to observe short-term and long-term effects. Results showed that the prepulse inhibition of the AAE exposed mice did not differ significantly from that of the non-exposed mice. However, it is possible that the measurement used, PPI, may not have been appropriate or that the AAE may not have been an appropriate simulation of the NICU environment. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
162

Design and Application of Cationic Nanocarriers to Inhibit Chemotherapy-Induced Breast Cancer Metastasis and Inflammation

Akinade, Tolulope January 2022 (has links)
Chemotherapy persists as one of the mainstays of breast cancer treatment, particularly for triple-negative breast cancer which currently has no targeted treatment methods. While chemotherapy is beneficial for killing the malignant tumor cells, it leads to the release of damage-associated molecular patterns into the tumor microenvironment. Damage-associated molecular patterns are a contributing factor to cancer-related inflammation which can potentiate metastatic spread through several mechanisms such as the development of tumor microenvironments at metastastic sites. These damage-associated molecular patterns include nucleic acids, nucleic acid-associated lipids and vesicles, cytokines, and proteins such as high mobility group protein B1. Polyamidoamine (PAMAM) is a biodegradable, water-soluble dendrimer polymer with the ability to possess different charges and sizes depending on its terminal branches and degree of branching (i.e. generation number), respectively. Amine-terminated PAMAM-NH2 is positively charged and can bind to circulating DNA and RNA. Since most DAMP molecules are negatively charged, I hypothesized that a polycation such as PAMAM-NH2 would be an efficient nanomaterial to remove pathogenic NA DAMPs generated by chemotherapy. Building on this dendrimer, we synthesized modified cationic PAMAM-generation 3 derivatives with an aim to balance toxicity with NA-binding affinity and capacity to encapsulate chemodrugs. Our results found that these soluble and nanoparticle PAMAM materials can bind to both cell-free DNA and RNA released as a result of treating triple-negative breast cancer cells with chemotherapy drugs such as doxorubicin and paclitaxel. These PAMAM-G3 materials are termed as nucleic acid binding polymers and nucleic-acid binding polymeric nanoparticles.My thesis dissertation explores the anti-metastatic effects of nucleic-acid binding polymeric nanoparticles delivering the chemotherapy drug paclitaxel using in-vitro and in-vivo models. Two murine metastatic breast cancer models served as the basis for assessing the effects of conventional paclitaxel delivery compared to paclitaxel delivery from within PAMAM nucleic-acid binding polymeric nanoparticles with respect to primary tumor growth, extent of lung metastasis, and the systemic inflammatory response reflected in murine serum. Compared to treatment with unencapsulated paclitaxel, delivery of paclitaxel within the PAMAM nucleic-acid binding polymeric nanoparticles resulted in significantly decreased serum cell-free DNA levels, decreased inflammatory cytokines, and a lower degree of lung metastasis in the mice. The decrease in the degree of lung metastasis in mice receiving paclitaxel within the PAMAM nanoparticles was confirmed by assessing the photon flux signal of 4T1-luciferase breast cancer cells invading the murine lungs in both in-vivo and ex-vivo imaging and by using a machine learning method to quantify the degree of metastasis in H&E- stained sections of the lungs. The ability to mitigate the phenomenon of chemotherapy-induced cancer metastasis while effectively delivering the chemotherapy to the tumor microenvironment could help improve the outcomes of patients being treated with chemotherapy. This work developed a therapeutic cationic PAMAM nanocarrier-based strategy to inhibit paclitaxel-induced metastasis by scavenging cell-free nucleic acids and mitigating cell-free nucleic acid-induced inflammation.
163

Lithium effects on ethanol intake in impulsive mice

Halcomb, Meredith Ellen 10 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The present study sought to identify the effects of chronic lithium administration on ethanol intakes in high alcohol-preferring (HAP) mice. Lithium is a well-established treatment for bipolar disorder and has demonstrated efficacy in reducing impulsivity, an endophenotype of the disease. Impulsivity is also a prominent trait of alcoholism. HAP mice display a preference for consuming substantial amounts of ethanol and exhibit abnormally high levels of impulsivity. Previous work has determined that chronic lithium exposure in HAP mice reduces their levels of impulsivity. The present study analyzed fluctuations in established intake patterns after lithium exposure and how pre-exposure to lithium would affect ethanol intake acquisition. The results showed an increase in ethanol intake and no change in preference for ethanol over water in lithium treated mice. There was an increase in overall total fluid consumption in these mice, likely resulting from polydipsic effects. There also appeared to be a potentiated lithium toxicity effect found in those mice pre-exposed to lithium. The conclusion was that lithium therapy does not decrease ethanol consumption in HAP mice.
164

Role of group II metabotropic glutamate receptor subtype 2 (MGluR2) in appetitive and consummatory aspects of ethanol reinforcement

Windisch, Kyle Allyson 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Background: Group II metabotropic glutamate receptors (mGluR2/3) are predominately presynaptically located Gi/o coupled receptors that are highly expressed in the cortex, nucleus accumbens, amygdala, and hippocampus. Previous studies suggest that group II mGluRs are involved in regulating ethanol (EtOH) consumption and seeking following extinction (Backstrom and Hyytia, 2005; Kufahl, et al., 2011). The sipper tube model, which allows for procedural separation of seeking and consumption, was used to further clarify the role of mGluR2/3 in EtOH-seeking and consumption. The non-selective group II mGluR agonist LY379268 (LY37) and selective mGluR2 positive allosteric modulator (PAM) BINA were used to determine the relative contribution of mGlu2 and mGlu3 receptors on EtOH seeking and consumption. Following characterization of the agonist and PAM on EtOH reinforcement, a microinjection study was performed examining the effect of blockade of nucleus accumbens core mGluR2/3 on systemic agonist induced suppression of EtOH-seeking. Methods: For the systemic agonist/PAM experiments, separate groups of male Wistar rats [n=8-9 group; LY37 (0-2.0 mg/kg) and BINA (0-20 mg/kg)] were trained to complete a response requirement (RR) of 10 lever presses that resulted in access to 10% EtOH or 2% sucrose (in separate groups) for a 20-minute drinking period. For consummatory testing, animals received weekly drug injections with a RR1. The RR was then increased over sessions to a RR20. For appetitive testing, animals received weekly drug injections followed by a non-reinforced extinction session. To determine effects of blockade of NAc core mGluR2/3 receptors on agonist-induced suppression of EtOH-seeking, a separate group of male Wistar rats (n=15) was trained to complete a RR10 for access to 10% EtOH. Animals were surgically implanted with bilateral guide cannulae terminating 1mm above the NAc core. Following recovery, animals received four sets of microinjections in a balanced design (systemic vehicle + core vehicle, systemic LY37 + core vehicle, systemic LY37 + core LY34, and systemic vehicle + core LY34). A final non-balanced microinjection of LY37 was then performed. Results and Conclusions: Systemic administration of the mGluR2/3 agonist LY37 significantly reduced EtOH- and sucrose- seeking with no systematic effect on locomotion. Systemic administration of the selective mGluR2 PAM BINA had no significant effect on either seeking or consumption. These findings suggest that modulation of glutamatergic neurotransmission by a systemic mGluR2/3 agonist, but not allosteric modulation of mGluR2, significantly reduces reinforcer seeking. Intra- accumbens core administration of LY37 significantly reduced EtOH-seeking, suggesting a role of NAc core mGluR2/3 modulation in EtOH-seeking during maintenance drinking. Systemic administration of LY37 was also found to significantly reduce sucrose consumption and body weight 24-hours following systemic administration, meriting further examination of the role of mGluR2/3 receptors on feeding behavior.
165

Mechanisms of transcriptional regulation in the maintenance of β cell function

Maganti Vijaykumar, Aarthi 08 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) Indiana University School of Medicine / The islet β cell is central to the maintenance of glucose homeostasis as the β cell is solely responsible for the synthesis of Insulin. Therefore, better understanding of the molecular mechanisms governing β cell function is crucial to designing therapies for diabetes. Pdx1, the master transcription factor of the β cell, is required for the synthesis of proteins that maintain optimal β cell function such as Insulin and glucose transporter type 2. Previous studies showed that Pdx1 interacts with the lysine methyltransferase Set7/9, relaxing chromatin and increasing transcription. Because Set7/9 also methylates non-histone proteins, I hypothesized that Set7/9-mediated methylation of Pdx1 increases its transcriptional activity. I showed that recombinant and cellular Pdx1 protein is methylated at two lysine residues, Lys123 and Lys131. Lys131 is involved in Set7/9 mediated augmented transactivation of Pdx1 target genes. Furthermore, β cell-specific Set7/9 knockout mice displayed glucose intolerance and impaired insulin secretion, accompanied by a reduction in the expression of Pdx1 target genes. Our results indicate a previously unappreciated role for Set7/9 in the maintenance of Pdx1 activity and β cell function. β cell function is regulated on both the transcriptional and translational levels. β cell function is central to the development of type 1 diabetes, a disease wherein the β cell is destroyed by immune cells. Although the immune system is considered the primary instigator of the disease, recent studies suggest that defective β cells may initiate the autoimmune response. I tested the hypothesis that improving β cell function would reduce immune infiltration of the islet in the NOD mouse, a mouse model of spontaneous type 1 diabetes. Prediabetic NOD mice treated with pioglitazone, a drug that improves β cell function, displayed an improvement in β cell function, a reduction in β cell death, accompanied by reductions in β cell autoimmunity, indicating that β cell dysfunction assists in the development of type 1 diabetes. Therefore, understanding the molecular mechanisms involved in β cell function is essential for the development of therapies for diabetes.
166

Phenotypic and molecular characterization of a novel mouse model of neurofibromatosis type 2

Gehlhausen, Jeff R. 03 April 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI)
167

Transcription factor regulation of T helper subset function

Awe, Olufolakemi O. 01 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The immune system protects the body from foreign organisms. T cells and B cells are integral components of the ability of the immune system to generate focused immune responses. The development of specialized subsets of T helper cells is governed by transcription factors. Previous work demonstrated a requirement for the transcription factor PU.1 in the development of IL-9-secreting Th9 cells. Work in this dissertation demonstrates that the Th9 subset is not stable in vitro, and that PU.1 expression decreases during long-term culture. To examine a role for PU.1 in Th9-independent immunity we examined a model of multiple sclerosis termed experimental autoimmune encephalomyelitis (EAE). Mice that lack PU.1 expression in T cells (Sfpi1lck-/- mice) demonstrated more severe disease with attenuated recovery compared to control mice, and this was accompanied by an increase of T cells in the central nervous system. We also observed that following multiple routes of immunization Sfpi1lck-/- mice had increased numbers of T follicular helper (Tfh) cells and increased germinal center responses. This correlated with increased expression of the cytokine IL-21 and the surface protein CD40L in T cells that lacked PU.1 expression and resulted in increased numbers of germinal center B cells and antigen-specific antibody titers compared to control mice. The increased germinal center B cells and antibody titers were attenuated with blocking CD40L antibody but not with neutralizing IL-21 antibody. These results suggest that PU.1 limits the expression of CD40L on Tfh cells to regulate the humoral immune response. Together, the data in this dissertation demonstrate Th9-independent functions of PU.1. Moreover, this work shows that transcription factors promoting the development of one subset of T helper cells can simultaneously have negative effects on distinct T cell lineages.
168

The role of CFP1 in murine embryonic stem cell function and liver regeneration

Mahadevan, Jyothi 11 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / CXXC finger protein 1 (Cfp1), a component of the Set1 histone methyltransferase complex, is a critical epigenetic regulator of both histone and cytosine methylation. Murine embryos lacking Cfp1 are unable to gastrulate and Cfp1-null embryonic stem (ES) cells fail to undergo cellular differentiation in vitro. However, expression of wild type Cfp1 in Cfp1-null ES cells rescues differentiation capacity, suggesting that dynamic epigenetic changes occurring during lineage specification require Cfp1. The domain structure of Cfp1 consists of a DNA binding CXXC domain and an N-terminal plant homeodomain (PHD). PHDs are frequently observed in chromatin remodeling proteins, functioning as reader modules for histone marks. However, the histone binding properties and underlying functional significance of Cfp1 PHD are largely unknown. My research revealed that Cfp1 PHD directly and specifically binds to histone H3K4me1/me2/me3 marks. A point mutation that abolishes binding to methylated H3K4 (W49A) does not affect rescue of cellular differentiation, but, point mutations that abolish both methylated H3K4 (W49A) and DNA (C169A) binding result in defective in vitro differentiation, indicating that PHD and CXXC exhibit redundant functions. The mammalian liver has the unique ability to regenerate following injury. Previous studies indicated that Cfp1 is essential for hematopoiesis in zebrafish and mice. I hypothesized that Cfp1 additionally plays a role in liver development and regeneration. To understand the importance of Cfp1 in liver development and regeneration, I generated a mouse line lacking Cfp1 specifically in the liver (Cfp1fl/fl Alb-Cre+). Around 40% of these mice display a wasting phenotype and die within a year. Livers of these mice have altered global H3K4me3 levels and often exhibit regenerative nodules. Most importantly, livers of these mice display an impaired regenerative response following partial hepatectomy. Collectively, these findings establish Cfp1 as an epigenetic regulator essential for ES cell function and liver homeostasis and regeneration.
169

The impact of mTOR, TFEB and Bid on non-alcoholic fatty liver disease and metabolic syndrome

Zhang, Hao 18 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Non-alcoholic fatty liver disease and metabolic syndrome induced by high nutrient status have increasingly become a global health concern as it cause multiple complications. The mTOR complex is central in regulating anabolic reactions within cells under growth factors or under high nutrients stimulation. Constitutive and persistent activation of mTOR can impair cellular functions. In the first part of this study, we demonstrate a damping oscillation of mTOR activity during a long-term treatment of high fat diet. TFEB translocation and lysosomal enzyme activity also oscillate, but in an opposite direction. TFEB controls the lysosomal activity, autophagic degradation and lipid metabolism. Overexpression of wild type and mutant TFEB could inhibit NAFLD development in mice. In addition, TFEB location in nucleus inversely correlates with NAFLD severity in patients. mTOR activation under hypernutrition status suppresses TFEB translocation, inhibits lysosomal functions and autophagic degradation of lipid droplets. Inhibition of mTOR activity by rapamycin reverse the above phenotypes. Because mTOR activation also requires normal lysosomal function, the inhibition of TFEB by mTOR leads to decreased lysosomal function and mTOR downregulation. This negative feedback may explain the oscillation pattern of mTOR activation in long term high fat diet regimen and is a novel mechanism for inhibition of mTOR. In the second part of study, we report that Bid protein, previously known for its pro-apoptosis function in promoting mitochondrial permeability, plays an unexpected role in regulating fatty acid beta oxidation. Deletion of Bid in mice reprograms the body's response to hyper-nutrition caused by high fat diet, leading to the resistance to the development of obesity, liver steatosis and metabolic syndrome. These mice present a higher oxygen consumption, a lower respiratory quotient, and an increased beta-oxidation rate. Mechanistically, the high fat diet regimen triggers translocation of the full length Bid molecule to mitochondrial membrane. Genetic deletion of Bid also affects the stability of its binding protein, MTCH2 in the mitochondrial membrane. In summary, we describe in this study a mTOR-TFEB-lysosome feedback loop, which can regulate NAFLD development, and a novel Bid-mediated regulatory mechanism in beta-oxidation, which limits energy expenditure and promotes obesity development.
170

A Multi-Level Analysis of Amphetamine Derivatives: Repeated 3,4-Methylenedioxymethamphetamine Administration and Popular Methamphetamine Combinations in Mice and Humans

Medina-Kirchner, Christopher Michael January 2024 (has links)
Despite decades of research on amphetamine derivatives, a class of compounds sharing a structural foundation with amphetamine, crucial gaps remain in our understanding of these drugs in a variety of animal species and humans. This dissertation addresses three of these gaps through a multi-level approach involving studies in both humans and mice. Specifically, it focuses on investigating the lack of information regarding: 1) repeated dosing of 3,4-methylenedioxymethamphetamine in humans, 2) methamphetamine/alcohol combinations in humans and 3) methamphetamine/oxycodone combinations in mice. Study 1 involved administering three consecutive doses of 3,4 methylenedioxymethamphetamine to human volunteers at 12- and 24-hour intervals while physiological, behavioral, and subjective measures were collected. Study 2 reanalyzed Kirkpatrick and colleagues (2012a) data to evaluate repeated administrations of methamphetamine and alcohol. The reanalysis focused on quantifying the physiological and subjective effect differences between the first and second administrations, which occurred at a 12-hour interval on the same day, an aspect not previously analyzed or reported by the original authors. Study 3 utilized well-established animal models such as Conditioned Place Preference, Open Field Test, and Novel Object Recognition to evaluate the reward-like and aversive effects of methamphetamine and oxycodone combinations in mice. Study 1 was the first to quantify the effects of multiple 3,4-methylenedioxymethamphetamine doses administered over a 36-hour period of time. Initially, acute 3,4-methylenedioxymethamphetamine produced dose-dependent increases in peak heart rate, blood pressure, and more positive than negative subjective effects. However, by the third dose, many of these effects dissipated, heart rate was no longer elevated, and residual mood effects were minor. Overall, the data do not support the general perception that 3,4-methylenedioxymethamphetamine produces dangerous cardiovascular and residual mood effects in humans following repeated administration. The results of Study 2, again a first in the field, discovered that contrary to expectations, heart rate increases produced by the methamphetamine/alcohol combination were not further increased with repeated dosing, but rather attenuated. In fact, methamphetamine offset alcohol-induced intoxication, even after repeated administration. Study 3 revealed that combining methamphetamine and oxycodone in mice increased reward as measured by Conditioned Place Preference, but not more than either drug alone. However, methamphetamine lengthened the duration of Conditioned Place Preference for the lower oxycodone dose and offset the oxycodone-induced disruptions in novel object recognition performance. One crucial cross-species observation was that methamphetamine mitigated adverse effects such as alcohol-related intoxication and oxycodone cognitive disruption, even after repeated administration. While seemingly beneficial, this observation raises concerns that individuals who combine these drugs may be at risk of underestimating their overall degree of impairment, potentially leading to hazardous activities like driving while intoxicated or engaging in risky behaviors. Sharing this insight is crucial to encourage informed, responsible behavior and safeguard public safety. In conclusion, these studies have significantly enhanced our understanding of two frequently used amphetamine derivatives and their interactions with two commonly used psychoactive drugs—oxycodone and alcohol. Most importantly, we strongly advocate for robust empirical experimentation to counteract misinformation related to 3,4-methylenedioxymethamphetamine and methamphetamine. These endeavors are crucial for developing more precise assessments of the risks and benefits associated with these substances, and for improving drug policies and optimizing public health interventions.

Page generated in 0.0936 seconds