• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • Tagged with
  • 15
  • 15
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vibrational spectroscopy of keratin fibres : A forensic approach

Panayiotou, Helen January 2004 (has links)
Human hair profiling is an integral part of a forensic investigation but it is one of the most technically difficult subjects in forensic science. This thesis describes the research and development of a novel approach for the rapid identification of unknown human and other related keratin fibres found at a crime scene. The work presented here is developed systematically and considers sample collection, sample preparation, analysis and interpretation of spectral data for the profiling of hair fibres encountered in criminal cases. Spectral comparison of fibres was facilitated with the use of chemometrics methods such as PCA, SIMCA and Fuzzy Clustering, and the less common approach of multi-criteria decision making methodology (MCDM). The aim of the thesis was to investigate the potential of some vibrational spectroscopy techniques for matching and discrimination of single keratin hair fibres in the context of forensic evidence. The first objective (chapter 3) of the thesis was to evaluate the use of Raman and FT-IR micro-spectroscopy techniques for the forensic sampling of hair fibres and to propose the preferred technique for future forensic hair comparisons. The selection of the preferred technique was based on criteria such as spectral quality, ease of use, rapid analysis and universal application to different hair samples. FT-IR micro-spectroscopy was found to be the most appropriate technique for hair analysis because it enabled the rapid collection of spectra from a wide variety of hair fibres. Raman micro-spectroscopy, on the other hand, was hindered with fluorescence problems and did not allow the collection of spectra from pigmented fibres. This objective has therefore shown that FT-IR micro-spectroscopy is the preferable spectroscopic technique for forensic analysis of hair fibres, whilst Raman spectroscopy is the least preferred. The second objective (chapter 3) was to investigate, through a series of experiments, the effect of chemical treatment on the micro-environment of human hair fibres. The effect of bleaching agents on the hair fibres was studied with some detail at different treatment times and the results indicate a significant change in the chemical environment of the secondary structure of the hair fibre along with changes in the C-C backbone structure. One of the most important outcomes of this research was the behaviour of the fÑ-helix during chemical treatment. The hydrogen bonding in the fÑ-helix provides for the stable structure of the fibre and therefore any disruption to the fÑ-helix will inevitably damage the molecular structure of the fibre. The results highlighted the behaviour of the fÑ-helix, which undergoes a significant decrease in content during oxidation, and is partly converted to a random-coil structure, whilst the fÒ-sheet component of the secondary structure remains unaffected. The reported investigations show that the combination of FT-IR and Raman micro-spectroscopy can provide an insight and understanding into the complex chemical properties and reactions within a treated hair fibre. Importantly, this work demonstrates that with the aid of chemometrics, it is possible to investigate simultaneously FT-IR and Raman micro-spectroscopic information from oxidised hair fibres collected from one subject and treated at different times. The discrimination and matching of hair fibres on the basis of treatment has potential forensic applications. The third objective (chapter 4) attempted to expand the forensic application of FT-IR micro-spectroscopy to other keratin fibres. Animal fibres are commonly encountered in crime scenes and it thus becomes important to establish the origin of those fibres. The aim of this work was to establish the forensic applications of FT-IR micro-spectroscopy to animal fibres and to investigate any fundamental molecular differences between these fibres. The results established a discrimination between fibres consisting predominantly of fÑ-helix and those containing mainly a fÒ-sheet structure. More importantly, it was demonstrated through curve-fitting and chemometrics, that each keratin fibre contains a characteristic secondary structure arrangement. The work presented here is the first detailed FT-IR micro-spectroscopic study, utilising chemometrics as well as MCDM methods, for a wide range of keratin fibres, which are commonly, found as forensic evidence. Furthermore, it was demonstrated with the aid of the rank ordering MCDM methods PROMETHEE and GAIA, that it is possible to rank and discriminate keratin fibres according to their molecular characteristics obtained from direct measurements together with information sourced from the literature. The final objective (chapter 5) of the thesis was to propose an alternative method for the discrimination and matching of single scalp human hair fibres through the use of FT-IR micro-spectroscopy and chemometrics. The work successfully demonstrated, through a number of case scenarios, the application of the technique for the identification of variables such as gender and race for an unknown single hair fibre. In addition, it was also illustrated that known hair fibres (from the suspect or victim) can be readily matched to the unknown hair fibres found at the crime scene. This is the first time that a substantial, systematic FT-IR study of forensic hair identification has been presented. The research has shown that it is possible to model and correlate individual¡¦s characteristics with hair properties at molecular level with the use of chemometrics methods. A number of different, important forensic variables of immediate use to police in a crime scene investigation such as gender, race, treatment, black and white hair fibres were investigated. Blind samples were successfully applied both to validate available experimental data and extend the current database of experimental determinations. Protocols were posed for the application of this methodology in the future. The proposed FT-IR methodology presented in this thesis has provided an alternative approach to the characterisation of single scalp human hair fibres. The technique enables the rapid collection of spectra, followed by the objective analytical capabilities of chemometrics to successfully discriminate animal fibres, human hair fibres from different sources, treated from untreated hair fibres, as well as black and white hair fibres, on the basis of their molecular structure. The results can be readily produced and explained in the courts of law. Although the proposed relatively fast FT-IR technique is not aimed at displacing the two slower existing methods of hair analysis, namely comparative optical microscopy and DNA analysis, it has given a new dimension to the characterisation of hair fibres at a molecular level, providing a powerful tool for forensic investigations.
12

Yb:tungstate waveguide lasers

Bain, Fiona Mair January 2010 (has links)
Lasers find a wide range of applications in many areas including photo-biology, photo-chemistry, materials processing, imaging and telecommunications. However, the practical use of such sources is often limited by the bulky nature of existing systems. By fabricating channel waveguides in solid-state laser-gain materials more compact laser systems can be designed and fabricated, providing user-friendly sources. Other advantages inherent in the use of waveguide gain media include the maintenance of high intensities over extended interaction lengths, reducing laser thresholds. This thesis presents the development of Yb:tungstate lasers operating around 1μm in waveguide geometries. An Yb:KY(WO₄)₂ planar waveguide laser grown by liquid phase epitaxy is demonstrated with output powers up to 190 mW and 76 % slope efficiency. This is similar to the performance from bulk lasers but in a very compact design. Excellent thresholds of only 40 mW absorbed pump power are realised. The propagation loss is found to be less than 0.1 dBcm⁻¹ and Q-switched operation is also demonstrated. Channel waveguides are fabricated in Yb:KGd(WO₄)₂ and Yb:KY(WO₄)₂ using ultrafast laser inscription. Several of these waveguides lase in compact monolithic cavities. A maximum output power of 18.6 mW is observed, with a propagation loss of ~2 dBcm⁻¹. By using a variety of writing conditions the optimum writing pulse energy is identified. Micro-spectroscopy experiments are performed to enable a fuller understanding of the induced crystal modification. Observations include frequency shifts of Raman lines which are attributed to densification of WO₂W bonds in the crystal. Yb:tungstate lasers can generate ultrashort pulses and some preliminary work is done to investigate the use of quantum dot devices as saturable absorbers. These are shown to have reduced saturation fluence compared to quantum well devices, making them particularly suitable for future integration with Yb:tungstate waveguides for the creation of ultrafast, compact and high repetition rate lasers.
13

The Colours of Diabetes : advances and novel applications of molecular optical techniques for studies of the pancreas

Nord, Christoffer January 2016 (has links)
Diabetes is a rapidly increasing health problem. In a global perspective,approximately 415 million people suffered from diabetes in 2015 and this number ispredicted to increase to 640 million by 2040. To tackle this pandemic there is a needfor better analytical tools by which we can increase our understanding of the disease.One discipline that has already provided much needed insight to diabetes etiology isoptical molecular imaging. Using various forms of light it is possible to create animage of the analysed sample that can provide information about molecularmechanistic aspects of the disease and to follow spatial and temporal dynamics. The overall aim of this thesis is to improve and adapt existing andnovel optical imaging approaches for their specific use in diabetes research. Hereby,we have focused on three techniques: (I) Optical projection tomography (OPT),which can be described as the optical equivalent of x-ray computed tomography(CT), and two vibrational microspectroscopic (VMS) techniques, which records theunique vibrational signatures of molecules building up the sample: (II) Fouriertransforminfrared vibrational microspectroscopy (FT-IR) and (III) Ramanvibrational microspectroscopy (Raman). The computational tools and hardware applications presented here generallyimprove OPT data quality, processing speed, sample size and channel capacity.Jointly, these developments enable OPT as a routine tool in diabetes research,facilitating aspects of e.g. pancreatic β-cell generation, proliferation,reprogramming, destruction and preservation to be studied throughout the pancreaticvolume and in large cohorts of experimental animals. Further, a novel application ofmultivariate analysis of VMS data derived from pancreatic tissues is introduced.This approach enables detection of novel biochemical alterations in the pancreasduring diabetes disease progression and can be used to confirm previously reportedbiochemical alterations, but at an earlier stage. Finally, our studies indicate thatRaman imaging is applicable to in vivo studies of grafted islets of Langerhans,allowing for longitudinal studies of pancreatic islet biochemistry.viIn summary, presented here are new and improved methods by which opticalimaging techniques can be utilised to study 3D-spatial, quantitative andmolecular/biochemical alterations of the normal and diseased pancreas.
14

Spectroscopies vibrationnelles (MCR et ATR-FTIR) et Chromatographie Liquide couplée à la Spectrométrie de Masse Haute Résolution (LC-HR-MS) : Outils d’investigation in vivo de l’impact du vieillissement cutané sur le Stratum Corneum aux niveaux tissulaire, supra-moléculaire et moléculaire / Vibrational spectroscopies (MCR and ATR-FTI) and Liquid Chromatography coupled Mass Spectrometry High Resolution : In vivo investigation tools for the effect of skin aging on the Stratum Corneum at tissular, supra-molecular and molecular levels

Boireau-Adamezyk, Elise 22 May 2015 (has links)
La peau est l’organe le plus étendu du corps humain. Doté d’une membrane biologique fine appelée la couche cornée, celle-ci le protège du desséchement et des agressions extérieures chimiques ou mécaniques auxquelles le corps humain doit faire face. Ce travail de thèse a consisté, dans un premier temps, à décrire via la littérature existante les effets de l’âge,dûs au vieillissement intrinsèque et extrinsèque,sur la physiologie cutanée du Stratum Corneum (SC).La partie expérimentale basée sur la microscopie vibrationnelle traitera des variations de la fonction barrière et de l’hydratation du SC lors du vieillissement chronologique et photo-vieillissement. D’autres méthodes ont également été utilisées comme la chromatographie liquide en phase normale couplée à la spectrométrie de masse haute résolution dotée d’une source APCI et d’un détecteur Orbitrap pour l’étude de la composition détaillée des lipides du SC ainsi que des méthodes plus globales comme la PIE ou la cornéométrie. Le caractère non invasif de toutes ces méthodes a permis de réaliser ces études in vivo. L’évolution de la fonction barrière a été étudiée aux niveaux tissulaire, moléculaire et supramoléculaire par micro-spectroscopie confocale Raman et spectroscopie Infrarouge. Puis le lien moléculaire a été fait entre le vieillissement intrinsèque et les céramides de la matrice lipidique intercornéocytaires par chromatographie en phase liquide couplée à la spectrométrie de masse. Les molécules discriminantes entre population jeune et âgée ont été déterminées par analyse chimiométrique. L’évolution de l’hydratation cutanée aux niveaux tissulaire, moléculaire et supramoléculaire a également été l’objet d’une investigation approfondie. Les variations de la composition des NMF et la teneur en eau dans le SC lors du vieillissement cutané ont été mises en lumière en utilisant des descripteurs spectraux Raman. Les variations structurelles des molécules d’eau impactant l’organisation supramoléculaire des édifices lipidiques ont également été évaluées. Au cours du vieillissement, la fonction barrière cutanée et hydratation sont conservées. / Skin is the external surface defining the human body in space. Its outer-most layer is a thin biological membrane, called Stratum Corneum(SC), that protects the internal organs from desiccation as well as chemical or mechanical external aggressions. The present thesis aimsin a first step, to summarize the current knowledge regarding the effects of intrinsic and extrinsic aging on SCphysiology,based on available literature. The experimental part addresses the gaps in our understanding of the effects of chronological aging and photoaging on the SC barrier function and hydration, using traditional methods (such as trans epidermal water loss and skin conductance) as well as more advanced ones (vibrational spectroscopies, liquid chromatography in normal phase tandem mass spectrometry high resolution with an APCI source and an Orbitrap detector. As these methods are non-invasive, all studies have been carried out in vivo. The evolution of the barrier function has been studied at the tissular, molecular and supramolecular levels using confocal Raman micro-spectroscopy and infrared spectroscopy. Then the link between the intrinsic aging and the ceramides of the intercorneocytary lipid matrix has been studied by liquid chromatography tandem mass spectrometry. The discriminant molecules between young and old population have been identified by a chemometric analysis. The evolution of cutaneous hydration at the tissular, molecular and supramolecular level has also been investigated. The variations in the NMF composition and the SC water content have been studied by Raman spectral descriptors. Moreover, the structural variations of water molecules impacting the supramolecular organization of the lipid structures have been evaluated. Chronological aging and chronic exposure to environmental factors mildly affect SC barrier function and hydration levels. However, the processes controlling these properties are affected by aging in a site-dependent fashion.
15

Supercritical CO2 Assisted Impregnation to prepare Drug-eluting Polymer Implants / Imprégnation par voie CO2 supercritique pour préparer des implants polymère à libération contrôlée de principes actifs

Champeau, Mathilde 04 November 2014 (has links)
Le procédé d’imprégnation par voie CO2 supercritique est une solution prometteuse pour préparer des implants polymère à libération contrôlée de médicaments.Ce travail a permis de comprendre l’influence des paramètres gouvernant ce procédé et de préciser dans quelle mesure ce procédé peut être utilisé pour préparer des implants polymères chargés en médicament. Pour ce faire, nous avons combiné les informations obtenues grâce aux techniques classiques de caractérisation de polymères et à un dispositif que nous avons développé basé sur la micro-spectroscopie FTIR haute pression in situ.Dans cette étude, des fils de suture de PLLA, PP and PET ont été imprégné avec deux anti-inflammatoires (aspirine et kétoprofène).Tout d’abord, l’évolution du comportement des systèmes binaires médicament/CO2 (solubilité et spéciation) et polymère/CO2 (quantité de CO2 adsorbé, gonflement de la matrice, évolution de la microstructure et des propriétés de tension du polymère) a été déterminé en fonction de la pression et de la température. Ensuite, le procédé d’imprégnation a été étudié. L’influence des conditions expérimentales sur le taux d’imprégnation a été déterminée et expliquée par la quantité de CO2 adsorbé, le gonflement de la matrice, la solubilité du médicament, l’évolution de la microstructure du polymère et aussi l’affinité médicament/polymère. La matrice de PLLA a pu être plus largement imprégnée (jusqu’à 32%) que celles de PP et PET (5% max). Enfin, l’influence des conditions d’imprégnation et de dépressurisation sur le relargage a été démontrée sur le système PLLA/Kétoprofène, la durée de relargage variant de 3jours à 3mois. / The scCO2 impregnation process is a promising alternative to other manufacturing process to prepare drug-eluting polymer implants.This work enabled to rationalize the influence of the key parameters governing this process and to determine in which extent this process can be used to prepare drug-eluting implants. We have combined the information obtained with traditional polymer characterization techniques and a newly characterization set-up we have developed that is based on in situ FTIR micro-spectroscopy. We have worked on the impregnation of sutures made of PLLA, PP and PET with two anti-inflammatory drugs namely ketoprofen and aspirin.Firstly, the thermodynamic behaviors of the systems drug/CO2 (solubility and speciation of the drug) and polymer/CO2 (CO2 sorption, polymer swelling, evolution of the polymer microstructure and of the tensile properties) were studied as a function of pressure and temperature. Then, the scCO2 impregnation process was investigated. The impact of the operational conditions on the drug loading (contact time, pressure, temperature and depressurization conditions) was explored and accounted regarding to the CO2 sorption, the2swelling, the drug solubility as well as the changes in the polymer microstructure with the experimental conditions and the presence of the drug. The drug/polymer affinity was also explored. The tensile properties of the impregnated fibers were also evaluated. PLLA was more impregnated (up to 32%) than PP and PET (up to 5%) in the investigated conditions. Finally, we have shown that the drug release can be tuned from 3 days to 3 months by varying the impregnation and depressurization conditions on the system PLLA/Ketoprofen.

Page generated in 0.032 seconds