• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 21
  • 14
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 143
  • 139
  • 122
  • 33
  • 26
  • 26
  • 24
  • 24
  • 23
  • 21
  • 21
  • 21
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterization of Cellulose and Chitin Thin Films and Their Interactions with Bio-based Polymers

Kittle, Joshua Daniel 02 May 2012 (has links)
As the two most abundant natural polymers on earth, cellulose and chitin have attracted increasing attention as a source of renewable energy and functional materials. Thin films of cellulose and chitin are useful for studying interactions of these materials with other natural and synthetic molecules via techniques such as quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR). Because of the difficulty of extracting native cellulose, regenerated cellulose (RC), sulfated nanocrystalline cellulose (SNC), and desulfated nanocrystalline cellulose (DNC) thin films are often studied in its place. In this work, QCM-D solvent exchange studies showed that water contents of RC, SNC and DNC films were proportional to the film thickness (d). Accessibility and degradation of the films was further analyzed via substrate exposure to cellulase. Cellulase adsorption onto RC films was independent of d, whereas cellulase adsorption onto SNC and DNC films increased with d. Enhanced access to guest molecules for SNC and DNC films relative to RC films revealed they are more porous. The porosity of these cellulose films aided in understanding the observed differences of xyloglucan (XG) adsorption onto their surfaces. Xyloglucan adsorption onto RC, SNC, and DNC was studied by QCM-D and SPR. The amount of adsorbed XG increased in the order RC < SNC < DNC. XG adsorption onto RC films was independent of d, whereas XG adsorption was weakly dependent upon d for SNC films and strongly dependent upon d for DNC films. However, XG adsorbed onto "monolayer" thin films of RC, SNC, and DNC in approximately the same amount. These results suggested that the morphology and surface charge of the cellulose substrate had a limited effect upon XG adsorption and that accessible surface area of the cellulose film may be the factor leading to apparent differences in XG adsorption for different surfaces. The porosity and surface charge of SNC films presented a unique opportunity to examine polyelectrolyte adsorption and subsequent dewatering of the SNC substrate. The adsorption of a series of cationically derivatized dextran (cDex) polyelectrolytes with various degrees of substitution (DS) onto SNC was studied using QCM-D and SPR. As the hydrophobic character of the cDex samples increased, the water content of the adsorbed cDex layer decreased. For cDex with the greatest hydrophobic content, nearly 50% by mass of the initial water present in the porous SNC film was removed upon cDex adsorption. This study indicated that the water content of the film could be tailored by controlling the DS and hydrophobic character of the polyelectrolyte. This work also presents the first report of smooth, homogeneous, ultrathin chitin films, opening the door to surface studies of binding interactions, adsorption kinetics, and enzymatic degradation. The chitin films were formed by spincoating trimethylsilyl chitin onto gold or silica substrates, followed by regeneration to a chitin film. The utility of these chitin films as biosensors was evident from QCM-D and SPR studies that revealed bovine serum albumin adsorbed as a monolayer. / Ph. D.
12

Polymer films and brushes self-construction by electrochemically triggered morphogens / Auto-construction de films et de brosses de polymères par morphogène généré électrochimiquement

Dochter, Alexandre 23 September 2014 (has links)
Les multicouches de polyelectrolytes, systèmes auto-assemblés par adsorption successive de polycations et de polyanions, constituent un matériau d’intérêt pour la fonctionnalisation de surface. Ce type de revêtement possède toutefois quelques limitations majeures : leur construction est lente et fastidieuse ; leur tenue mécanique et chimique est faible. Récemment, une méthode basée sur l’auto-construction de films par l’utilisation d’un morphogène, i.e. un gradient de catalyseur généré depuis une surface, a été développé permettant ainsi une rapide construction de revêtements robustes. Cette technique reste toutefois limitée à des systèmes particuliers basés sur la chimie click ou sur des interactions hôtes-invités. Nos travaux ont permis de diversifier cette approche de construction tout-en-un par l’utilisation de morphogènes. Dans un premier temps, des brosses de polymères ont été construites en une étape depuis une surface par la réaction de polymérisation ATRP. Cette réaction a été catalysée par la formation d’ions Cu(I) (le morphogène) par électrochimie depuis la surface de travail. L’approche morphogénique a également été utilisée afin de construire des films de polyélectrolytes et de polyampholytes en une étape par la génération électrochimique d’un gradient de protons (le morphogène) depuis la surface de travail. Ces films ont été fonctionnalisés pour présenter une activité enzymatique. / Polyelectrolyte multilayers, i.e. self-assembled systems based on successive polycation and polyanion adsorptions, constitute interesting materials for surface functionalization. These coatings possess several limitations: they are weak towards chemical and mechanical constraint and their buildup is long and tedious. Recently, a new method based on the self-construction of films by the means of a morphogen (a catalyst gradient generated from a surface) has attracted attention since it allows the quick self-assembly of robust films. Nevertheless, this technique was quite limited to peculiar systems based on click chemistry or on host-guest interactions.This present work generalize the one-pot morphogenic approach to other systems. In the first place, polymer brushes were built up from a surface by ATRP polymerization. The Cu(I) catalyst (the morphogen) was electrochemically generated at the interface.The morphogenic approach was later used to buildup polyelectrolytes and polyampholyte films in a one-pot manner by electrochemically generating protons (the morphogens) at the interface. These films exhibited an enzymatic activity.
13

Ellipsometric and nanogravimetric porosimetry studies of nanostructured, mesoporous electrodes

May, Robert Alan 26 August 2010 (has links)
Nanostructured, porous materials offer great promise for application in areas such as energy storage, photovoltaics, and catalysis. These materials are often difficult to characterize because they are structurally and compositionally inhomogeneous, and disordered with features to small to be resolved by scanning probe techniques such as atomic force microscopy (AFM) and scanning electron microscopy (SEM). These shortcomings require that new techniques be developed that can be applied to real world systems to elucidate how the interplay of material composition and structure alters their performance. Towards this end, the development of a hybrid quartz crystal microbalance/ ellipsometric porosimetry (QCM/EP) technique is being pursued to facilitate the determination of a number of material parameters such as porosity, pore size distribution, and surface area. Additionally, the use of adsorbate probe molecules of varying polarity gives further information about adsorbate-surface interactions and surface chemistry characteristics. Simultaneous acquisition of both mass-based and refractive index based adsorption isotherms fosters mechanistic understanding about the behavior of adsorbates confined in mesopores while at the same time reducing the uncertainty in the analysis of the optical parameters acquired via ellipsometry. To highlight the power of this approach, studies of TiO₂ and TiC, electrode materials as model systems will be presented that have helped us validate measurement and modeling protocols for extracting physical properties. / text
14

Desenvolvimento de equipamento de teste de estruturas miniaturizadas: testes em estrutura útil na eliminação de partículas. / Development of machine to test miniaturized structures: tests in util structure from particles elimination.

Santos, Leandro Colevati dos 26 May 2006 (has links)
Amostras com pequenos volumes e matrizes complexas, como sistemas biológicos, necessitam de preparação criteriosa. Muitas dessas amostras são melhor analizadas em estruturas miniaturizadas devido à necessidade de detectar células e microorganismos em diferentes matrizes. Por essa razão, equipamentos capazes de detectar e destruir microorganismos e estruturas para prévia retenção desses se faz necessários na vida moderna. Chicanas, constrições usadas para reduzir velocidade de fluxo, que podem ser utilizadas para reter compostos, são estruturas macroscópicas para remover resíduos de lagos, fazendas e etc. e chicanas miniaturizadas foram usadas para a adsorção de compostos orgânicos do ar e da água. Assim, esse trabalho tem dois diferentes objetivos: 1) Produção de um equipamento de baixo custo, para teste de partículas ou eliminação de microorganismos e 2) O desenvolvimento de estruturas miniaturizadas para retenção e/ou seleção de partículas e substâncias viscosas de um fluido líquido. A metodologia utilizada foi: 1) Dois software foram escolhidos para esse trabalho. O LabVIEW® 7.0 foi utilizado como plataforma para o desenvolvimento do software do equipamento e o FemLAB® 3.1 para a simulação de estruturas. O equipamento produzido usou Microbalança de Quartzo como detector e um sistema de admissão baseado em uma bomba e tubos. 2) O desenho da estrutura foi otimizado por simulação do comportamento do fluxo. A estrutura otimizada foi feita desmontável, e usinada em polimetilmetacrilato ? acrílico, com ferramentas convencionais. Acrílico foi usado devido à sua transparência óptica, que permite testes com microsocpia óptica. As simulações consideraram N2 e Água como fluidos gasoso e líquido, respectivamente. Avaliou-se o comportamento das partículas (50?m and 13?m) em fluxo gasoso e polidimetilsiloxano (silicone, com viscosidade de 350 cSt) e partículas em fluxo líquido. As estruturas foram caracterizadas quanto à adsorção e retenção de partículas usando equipamento desenvolvido e por microscopia óptica. As estruturas foram, também, continuamente fotografadas durante a execução do experimento e fotos foram utilizadas para determinar o comportamento do fluxo. Os reagentes foram injetados na estrutura em pequenos pulsos. O equipamento mostrou boa performance para detecção de adsorção em fluxo líquido e reprodutibilidade no monitoramento do aquecimento de estruturas. As chicanas mostraram boa capacidade de reter partículas grandes (50?m), mas não pequenas (13?m), tanto para fluxos gasosos como líquidos. Contudo, a estrutura tem pequena capacidade de carga para fluidos líquidos (? 1mg); além disso, a retenção de amostras de silicone na estrutura, utilizando fluido líquido, ocorreu devido à diferença de velocidade entre os fluidos. A simulação e os resultados experimentais apresentam boa correlação. Assim, a chicana mostrou a possibilidade de, seletivamente, separar partículas em fluxos gasosos e líquidos ou reter substâncias viscosas em fluxo líquido. Esses resultados apontam para diversas aplicações, como por exemplo, pré-tratamento para análises biológicas e retenção ou eliminação de microorganismos. / Samples with small volume and complex matrix, such as biological systems, require careful preparation. Many of these samples are better analyzed in miniaturized structures owing to the need of detect cells and microorganisms in different arrays. Therefore equipment able to detect and destroy microorganisms and structures to previously retain them are require in the modern life. Chicanes, i.e. constrictions used to reduce flow velocity, can be useful to retain compounds, are macroscopic devices to remove waste removal from lakes, farms, etc. and miniaturized chicane was used to adsorption of organic compounds from air and water. Thus, this work has two different targets: 1) Production of a low-cost equipment useful for tests of particle or microorganisms elimination and 2) The development of miniaturized structures useful for retention and/or selection of particles and viscous substances from a liquid flow. The methodology used was: 1) Two software were chosen to this work. The LabVIEW® 7.0 was used for development of equipment software and FemLAB® 3.1 for structures simulation. The equipment production used Quartz Crystal Microbalance as detector and an admission system based on simple pumps and plumbing. 2) The design of the structure design was optimized using flow simulation. The optimized design was manufactured in poly(methyl methacrylate) -acrylic, with conventional tools. Acrylic was used due to the optical transparency that allows photographic tests and the structures can be easily disassembled. The simulations considered nitrogen and water for gaseous and liquid flow, respectively. It was evaluated the behavior of particles (50?m and 13?m) on gaseous flow and polydimethylsiloxane (silicone, viscosity of 350 cSt) and particles on liquid flow. The structures were characterized using equipment produced to measure adsorption and optical microscopy to evaluate particle retention. The structures were also continuously photographed during the experiments and the photos were analyzed to determine flow behavior. The reactants were inserted in the structure in small pulses. The equipment shows good performance for detection of adsorption in liquid flows and reproducibility on monitoring heated structures. Chicanes showed good ability to retain big particles (50 ?m) but not small ones (13 ?m) for both liquid and gaseous flow. However, the structure has small load capacity for liquids (? 1 mg). Moreover, the retention of silicone samples in the structure on liquid flow occurs due to the difference in the fluid velocity. The simulation and experimental results are in good agreement and also chicane structure shows the possibility of selectively separate particles from gaseous and liquid flow or retain viscous substances from a liquid flow. These results point out to several applications, such as sample pretreatment for biological analysis and microorganism retention or elimination.
15

Eletrofiação de nanofibras poliméricas de poliacrilonitrila e polifluoreto de vinilideno, incorporadas com negro de fumo e ftalocianina de cobre, visando aplicações em dispositivos sensores. / Electrospinning of polyacrylonitrile and polyvynilidene fluoride nanofibers incorporate with carbon black end copper phthalocyanine to applications in sensors devices.

Gomes, Demetrius Saraiva 23 February 2018 (has links)
O presente trabalho tem como objetivo principal a eletrofiação de nanofibras poliméricas de poliacrilonitrila (PAN) e polifluoreto de vinilideno (PVDF), incorporadas com negro de fumo (NF) e ftalocianina de cobre (CuPc), visando aplicações em dispositivos sensores. Inicialmente foram preparadas soluções de PAN puro a 6 % em peso e PVDF puro a 20% em peso e foram misturadas a essas soluções partículas de negro de fumo e ftalocianina de cobre, obtendo soluções de PAN/NF, PVDF/NF, PAN/CuPc e PVDF/CuPc. Foi determinada a viscosidade absoluta das soluções. Realizou-se a eletrofiação para obtenção de nanofibras que foram caracterizadas segundo o diâmetro e morfologia, usando microscópio óptico e microscópio eletrônico de varredura. Para avaliar as interações polímero-polímero, polímero-partícula foram analisadas por espectroscopia FITR e Raman. Com as fibras de PAN/NF foi analisada a resistência e condutância elétrica das membranas usando um picoamperímetro digital, visando aplicação como filtro eletrostático. Foi construído canal na lâmina de silício usando um feixe de laser visando a deposição de fibras dentro do canal usando a técnica de focagem eletrodinâmica com tensão aplicada em máscaras de cobre. Foi usada a técnica da microbalança de cristal de quartzo para determinar a variação de massa adsorvida por membranas de PAN/CuPc e PVDF/CuPc por meio da medida da variação de frequência usando um frequencímetro digital, onde se observou que essas membranas são promissoras para atuar como sensores de vapor de amônia. / The main objective of this work is the incorporation of different particles in order to electrospun polymeric nanofibers of polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF), aiming at applications in sensor devices. Initially, solutions of PAN pure 6 wt% and PVDF pure 20 wt% were prepared and these solutions were mixed with carbon black (NF) particles and copper phthalocyanine (CuPc), obtaining solutions of PAN/NF, PVDF/NF, PAN/CuPc and PVDF/CuPc. The absolute viscosity of the solutions was determined. The electrospinning was performed to obtain nanofibers that were characterized according to the diameter and morphology, using optical microscope and scanning electron microscopy. To evaluate the polymer-polymer and polymer-particle interactions, FITR and Raman spectroscopy were performed. The resistance and conductance of the membranes electrospun from PAN/NF solution were analyzed using a digital picoammeter, and an increase in the resistance was measured. This result shows that the membrane is suitable to be applied as electrostatic filter. A channel was constructed on the silicon wafer using a laser beam for the deposition of fibers inside the channel using the electrodynamic focusing technique. The quartz crystal microbalance technique was used to determine the applicability of the membranes as sensor layer. The results of PAN/CuPc and PVDF/CuPc membranes suggests that these membranes are promising to act such as ammonia vapor sensors.
16

Supramolecular organization of collagen layers adsorbed on polymers

Gurdak, Elzbieta 30 August 2006 (has links)
The aim of this work is to better understand the factors and mechanisms leading to the supramolecular organization of collagen layers adsorbed on polymers. Native collagen adsorption on polystyrene (PS) and plasma-oxidized polystyrene (PSox) substrates revealed that the adsorbed layer consists in two parts: a dense and thin sheet (~ 10 nm) in which fibrils are formed, as revealed by atomic force microscopy, and an overlying thick layer (~ 200 nm) which contains protruding molecules, as revealed by quartz crystal microbalance with dissipation monitoring. The protruding molecules are in low density but modify noticeably the local viscosity. Faster and enhanced fibril formation takes place on hydrophobic compared to hydrophilic substrate. As a result of drastic thermal denaturation, the ability of collagen to assemble into fibrils is lost and the number of protruding molecules responsible for higher viscosity is reduced. Radiochemical measurements showed that collagen molecules are more easily displaced when adsorbed on a hydrophobic substrate compared to a hydrophilic substrate. This may explain why fibril formation occurs more readily on the more hydrophobic substrate, but is in contrast with higher surface affinity. The possible explanation of this paradox by the quick formation of a dense layer of collagen molecules having a smaller number of contact points with a very hydrophobic surface could not be demonstrated by a comparison of adsorption procedures. Comparing different collagen sources revealed various modes of aggregation with different characteristics regarding size and order (large fibers in solution, smaller fibrils to featureless underneath layer in the adsorbed phase). Moreover, collagen aggregation in the solution is a process competing with adsorption: more aggregated solutions behave like less concentrated solutions regarding the adsorbed amount and fibril formation in the adsorbed phase. It must be emphasized that interpretation of the QCM-D data, which is based on fitting physical quantities according to a model, has to be performed very carefully, and requires the examination of the sensitivity of the fitted data to the fitting parameters.
17

Etude de matériaux conducteurs par couplages de mesures d'impédance électrochimique, de gravimétrie et d'angle de contact

Ho Thu, Huong 28 November 2012 (has links) (PDF)
L'objectif de ce travail est d'étudier le comportement de polymères conducteurs en couplant des mesures simultanées et in situ d'angle de contact et de différents outils d'analyses électrochimiques (impédance électrochimique, électrogravimétrie cyclique et ac-électrogravimétrie). L'originalité de ce travail est de mettre en place un dispositif qui permet d'effectuer des mesures électrochimiques dans un volume variant de 1,5 à 3 µL. Nous avons pris comme polymère conducteur modèle le polypyrrole, électrogénéré à partir de différents monomères substitués que nous avons synthétisés. La mouillabilité de la surface des films de polymères formés est influencée, non seulement, par la nature du monomère mais aussi par les dopants présents en solution lors de la formation du film. Selon la nature du film de polymère conducteur formé, grâce aux mesures d'ac-électrogravimétrie, nous avons pu identifier les mécanismes d'échanges des diverses espèces (chargées ou non) au cours de la polarisation et les corréler aux variations de mouillabilité mesurées simultanément
18

Tetrahydrofuran Hydrate Inhibitors: Ice-Associating Bacteria and Proteins

Huva, Emily 31 March 2009 (has links)
Ice-associating proteins (IAPs) are proteins that interact directly with ice crystals, either by offering a site for nucleation, i.e. ice nucleating proteins (INPs), or by binding to nascent crystals to prevent addition of more water molecules, i.e. antifreeze proteins (AFPs). AFPs have been found to inhibit the formation of clathrate-hydrates, ice-like crystalline solids composed of water-encaged guest molecules. Study of AFP-hydrate interaction is leading to a greater understanding of AFP adsorption and of the mechanism behind the “memory effect” in hydrates, wherein previously frozen crystals reform more quickly after a brief melt. AFP is currently the only known memory inhibitor. Such a low-dosage hydrate inhibitor (LDHI) is of great interest to the oil and gas industry, as hydrate formation and reformation in the field is a huge problem. Bacterial AFPs, though largely uncharacterized, may be the best candidates for large-scale production of hydrate inhibitors, given the difficulties in obtaining AFP from other sources. The popular kinetic inhibitors (KIs) polyvinylpyrrolidone (PVP) and polyvinylcaprolactam (PVCap) were used for points of comparison in experiments exploring the hydrate-inhibition activity of several ice-associating bacteria and proteins. The addition of the soil microbe, Chryseobacterium, increased the average lag-time to tetrahydrofuran (THF) hydrate formation by 14-fold, comparable to PVP or PVCap. Samples containing Pseudomonas putida, a bacterium having both ice-nucleation protein (INP) and AFP activity, had lag-times double that of the control. Solutions with P. putida and Chryseobacterium sometimes formed hydrate slurries of stunted crystal nuclei instead of solid crystals. No inhibition of memory or nucleation was noted in bacterial assays, however bacteria with INP activity was linked to unusually rapid memory reformation. Quartz crystal microbalance experiments with dissipation (QCM-D) showed that a tight adsorption to SiO2 and resistance to rinsing are correlated with a molecule’s inhibition of hydrate formation and reformation. These results support a heterogeneous nucleation model of the memory effect, and point to the affinity of AFP for heterogeneous nucleating particles as an important component of memory inhibition. / Thesis (Master, Biology) -- Queen's University, 2008-05-30 15:20:38.749
19

Flocculation of silica particles in a model oil solution: Effect of adsorbed asphaltene

Zahabi, Atoosa Unknown Date
No description available.
20

Molecular adsorption and diffusion properties of polymeric and microporous materials via quartz crystal microbalance techniques

Venkatasubramanian, Anandram 27 August 2014 (has links)
Nanoporous molecular sieve materials like metal organic frameworks (MOFs) and metal oxide nanotubes (AlSiNTs) have found a wide range of technological applications in catalysis, separations, and ion exchange due to their salient features over other contemporary sensing materials. As a result, these materials can function as a chemical recognition layer that relies on analyte adsorption and they have shown to selectively adsorb specific gas molecules from mixtures. The characterization of gas adsorption in these materials is performed predominantly by commercial gravimetric equipment, whose capital and operating costs are generally high and require relatively large amounts of sample. Thus, it is desirable to obtain a reliable measure of the gas transport properties of these materials over a substantial range of pressure and temperature by non-gravimetric methods. The objective of this thesis is to investigate the adsorption and diffusion characteristics of recently-identified nanoporous materials through the development and use of a high-pressure/high-temperature quartz crystal microbalance (QCM) device. In this regard, this thesis is divided into four main objectives, viz. (1) Design and development of high temperature/ high pressure QCM device, (2) Measurement and analysis of adsorption characteristics in nanoporous materials, (3) Diffusion measurement and analysis in polymer thin films and (4) Diffusion measurement and analysis in MOF crystals. The results obtained in Objectives 2-4 will allow us to make important recommendations regarding the use of specific nanoporous materials in molecular separation applications and also lead to significant understanding of gas uptake thermodynamics in nanoporous materials via the application of analytical models to the experimental data.

Page generated in 0.0412 seconds