• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 17
  • 14
  • 10
  • 7
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 219
  • 219
  • 66
  • 40
  • 40
  • 34
  • 33
  • 24
  • 23
  • 23
  • 22
  • 21
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Effects of microbial community coalescence in lake water at ice break-off / Effekter av sammansmältning av mikrobsamhällen i sjövatten vid islossning

Melhus, Christoffer January 2019 (has links)
The period of ice break-off in spring is a key event for many biogeochemical processes in lakes globallly. The biogeochemical processes occurring at ice break-off have the potential of influencing characteristics of lakes throughout spring and summer, including algal blooms and greenhouse gas emission. This makes it important to study lakes in the period of ice break-off. At ice break-off, soil bacteria from the catchment area usually enter the lake via spring floods and mix with the bacteria already occurring in the lake water. In this study, the effects of mixing soil- and lake microbial communities during ice break-off-like conditions were tested by performing an experiment under controlled conditions in the laboratory. In the experiment, light, microbial community composition and concentration of soil-derived organic matter were manipulated to simulate different conditions associated with ice break-off. The variables investigated were bacterial activity and functionality, measured as cell abundance and enzymatic activity, as well as primary production and concentration of dissolved organic matter. The results showed that a mix of soil and lake microbial communities had enzymatic activity patterns resembling lake communities, and then shifted to being more similar to soil communities. The experiment also showed that degradation of measured dissolved organic matter was not linked to biotic processes, and that the observed decrease was most likely due to photo degradation. Finally, the experiment showed that primary production, here measured as chlorophyll a, was only stimulated by the mixed community with light and added soil dissolved organic matter. The results found in this study are important as they show that microbial communities do alter their function and enzymatic activity based on composition. Furthermore, the result that primary production was only seen in the presence of light, soilderived organic matter and a mixed community of lake and soil bacteria may be seen as an indication that primary producers in lake ecosystems to some extent depend on the inflow of terrestrial microbes and organic matter. It also possible that the coalescence of microbial communities enables the communities to perform tasks they were unable to prior to coalescence (i.e. perform tasks that allows primary production to take place). These results give the basis for further, more detailed studies.
162

Effects of long- and short-term crop management on soil biological properties and nitrogen dynamics

Stark, Christine January 2005 (has links)
To date, there has been little research into the role of microbial community structure in the functioning of the soil ecosystem and on the links between microbial biomass size, microbial activity and key soil processes that drive nutrient availability. The maintenance of structural and functional diversity of the soil microbial community is essential to ensure the sustainability of agricultural production systems. Soils of the same type with similar fertility that had been under long-term organic and conventional crop management in Canterbury, New Zealand, were selected to investigate relationships between microbial community composition, function and potential environmental impacts. The effects of different fertilisation strategies on soil biology and nitrogen (N) dynamics were investigated under field (farm site comparison), semi-controlled (lysimeter study) and controlled (incubation experiments) conditions by determining soil microbial biomass carbon (C) and N, enzyme activities (dehydrogenase, arginine deaminase, fluorescein diacetate hydrolysis), microbial community structure (denaturing gradient gel electrophoresis following PCR amplification of 16S and 18S rDNA fragments using selected primer sets) and N dynamics (mineralisation and leaching). The farm site comparison revealed distinct differences between the soils in microbial community structure, microbial biomass C (conventional > organic) and arginine deaminase activity (organic > conventional). In the lysimeter study, the soils were subjected to the same crop rotation (barley (Hordeum vulgare L.), maize (Zea mays L.), rape (Brassica napus L. ssp. oleifera (Moench)) plus a lupin green manure (Lupinus angustifolius L.) and two fertiliser regimes (following common organic and conventional practice). Soil biological properties, microbial community structure and mineral N leaching losses were determined over 2½ years. Differences in mineral leaching losses were not significant between treatments (total organic management: 24.2 kg N per ha; conventional management: 28.6 kg N per ha). Crop rotation and plant type had a larger influence on the microbial biomass, activity and community structure than fertilisation. Initial differences between soils decreased over time for most biological soil properties, while they persisted for the enzyme activities (e.g. dehydrogenase activity: 4.0 and 2.9 µg per g and h for organic and conventional management history, respectively). A lack of consistent positive links between enzyme activities and microbial biomass size indicated that similarly sized and structured microbial communities can express varying rates of activity. In two successive incubation experiments, the soils were amended with different rates of a lupin green manure (4 or 8t dry matter per ha), and different forms of N at 100 kg per ha (urea and lupin) and incubated for 3 months. Samples were taken periodically, and in addition to soil biological properties and community structure, gross N mineralisation was determined. The form of N had a strong effect on microbial soil properties. Organic amendment resulted in a 2 to 5-fold increase in microbial biomass and enzyme activities, while microbial community structure was influenced by the addition or lack of C or N substrate. Correlation analyses suggested treatment-related differences in nutrient availability, microbial structural diversity (species richness or evenness) and physiological properties of the microbial community. The findings of this thesis showed that using green manures and crop rotations improved soil biology in both production systems, that no relationships existed between microbial structure, enzyme activities and N mineralisation, and that enzyme activities and microbial community structure are more closely associated with inherent soil and environmental factors, which makes them less useful as early indicators of changes in soil quality.
163

The effect of pulse crops on arbuscula mycorrhizal fungi in a durum-based cropping system

Fraser, Tandra 07 April 2008
Pulses are an important component in crop rotations in the semiarid Brown soil zone of southern Saskatchewan, Canada. Besides their capability to fix nitrogen, pulse crops establish a strong symbiotic relationship with arbuscular mycorrhizal fungi (AMF), which have been shown to increase nutrient and water uptake through hyphal extensions in the soil. Incorporating strongly mycorrhizal crops in a rotation may increase inoculum levels in the soil and benefit the growth of a subsequent crop. The objective of this study was to determine if AMF potential and colonization of a durum crop is significantly affected by cropping history and to assess the impact of pulses in crop rotations on the abundance and diversity of AMF communities in the soil. In 2004 and 2005, soil, plant, and root samples were taken on Triticum turgidum L. (durum) with preceding crops of Pisum sativum L. (pea), Lens culinaris Medik (lentil), Cicer arietinum L. (chickpea), Brassica napus L. (canola) or Triticum turgidum L. (durum). Although there were few differences in soil N and P levels, previous crop had a significant effect (p<0.05) on durum yields in both years. A previous crop of pea was associated with the highest yields, while the durum monocultures were lowest. Arbuscular mycorrhizal potential and colonization were significantly affected (p<0.05) by cropping history, but not consistently as a result of inclusion of a pulse crop. Phospholipid and neutralipid fatty acids (PLFA/NLFA) were completed to analyse the relative abundance of AMF (C16:1ù5), saprophytic fungi (C18:2ù6), and bacteria in the soil. The effect of treatment on the abundance of AMF, saprotrophic fungi and bacteria were not significant (p<0.05), but the changes over time were. These results demonstrate that although previous crop may play a role in microbial community structure, it is not the only influencing factor.
164

The effect of pulse crops on arbuscula mycorrhizal fungi in a durum-based cropping system

Fraser, Tandra 07 April 2008 (has links)
Pulses are an important component in crop rotations in the semiarid Brown soil zone of southern Saskatchewan, Canada. Besides their capability to fix nitrogen, pulse crops establish a strong symbiotic relationship with arbuscular mycorrhizal fungi (AMF), which have been shown to increase nutrient and water uptake through hyphal extensions in the soil. Incorporating strongly mycorrhizal crops in a rotation may increase inoculum levels in the soil and benefit the growth of a subsequent crop. The objective of this study was to determine if AMF potential and colonization of a durum crop is significantly affected by cropping history and to assess the impact of pulses in crop rotations on the abundance and diversity of AMF communities in the soil. In 2004 and 2005, soil, plant, and root samples were taken on Triticum turgidum L. (durum) with preceding crops of Pisum sativum L. (pea), Lens culinaris Medik (lentil), Cicer arietinum L. (chickpea), Brassica napus L. (canola) or Triticum turgidum L. (durum). Although there were few differences in soil N and P levels, previous crop had a significant effect (p<0.05) on durum yields in both years. A previous crop of pea was associated with the highest yields, while the durum monocultures were lowest. Arbuscular mycorrhizal potential and colonization were significantly affected (p<0.05) by cropping history, but not consistently as a result of inclusion of a pulse crop. Phospholipid and neutralipid fatty acids (PLFA/NLFA) were completed to analyse the relative abundance of AMF (C16:1ù5), saprophytic fungi (C18:2ù6), and bacteria in the soil. The effect of treatment on the abundance of AMF, saprotrophic fungi and bacteria were not significant (p<0.05), but the changes over time were. These results demonstrate that although previous crop may play a role in microbial community structure, it is not the only influencing factor.
165

Exotic earthworms and soil microbial community composition in a northern hardwood forest

Dempsey, Mark Austin. January 2009 (has links)
Title from first page of PDF document. Includes bibliographical references (p. 22-27).
166

Soilborne disease suppressiveness / conduciveness : analysis of microbial community dynamics / by Johannes Hendrikus Habig

Habig, Johannes Hendrikus January 2003 (has links)
Take-all is the name given to the disease caused by a soilborne fungus Gaeumannomyces graminis (Sacc.) von Arx and Olivier var. tritici Walker (Ggt), an ascomycete of the family Magnaportheaceae (Cook, 2003). This fungus is an aggressive soil-borne pathogen causing root rot of wheat (primary host), barley and rye crops (secondary host). The flowering, seedling, and vegetative growth stages can be affected by the infection of the whole plant, leaves, roots, and stems. Infections of roots result in losses in crop yield and quality primarily due to a lowering in nutrient uptake. Take-all is most common in regions where wheat is cultivated without adequate crop rotation. Crop rotation allows time between the planting dates of susceptible crops, which causes a decrease in the inoculum potential of soilborne plant pathogens to levels below an economic threshold by resident antagonistic soil microbial communities. Soilborne disease suppressiveness is an inherent characteristic of the physical, chemical, and/or biological structure of a particular soil which might be induced by agricultural practices and activities such as the cultivation of crops, or the addition of organisms or nutritional amendments, causing a change in the microfloral environment. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, and long-term stability. In this regard, an overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, the analysis of microbial functional diversity and microbial structural diversity by the quantification of community level physiological profiles and signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between physico-chemical characteristics, and different biological indicators of soil quality of agricultural soils conducive, suppressive, and neutral with respect to take-all disease of wheat as caused by the soilborne fungus Gaeumannomyces graminis var. tritici (Ggt), were investigated using various techniques. The effect of crop rotation on the functional and structural diversity of soils conducive to take-all disease was also investigated. Through the integration of quantitative and qualitative biological data as well as the physico-chemical characteristics of the various soils, the functional and structural diversity of microbial IV communities in the soils during different stadia of take-all disease of wheat were characterised. All results were evaluated statistically and the predominant physical and chemical characteristics that influenced the microbiological and biochemical properties of the agricultural soils during different stadia of take-all disease of wheat were identified using multivariate analyses. Although no significant difference @ > 0.05) could be observed between the various soils using conventional microbiological enumeration techniques, the incidence of Gliocladium spp. in suppressive soils was increased. Significant differences @ < 0.05) were observed between agricultural soils during different stadia of take-all disease of wheat. Although no clear distinction could be made between soils suppressive and neutral to take-all disease of wheat, soils suppressive and conducive to take-all disease of wheat differed substantially in their community level physiological profiles (CLPPs). Soils suppressive / neutral to take-all disease were characterised by enhanced utilisation of carboxylic acids, amino acids, and carbohydrates, while conducive soils were characterised by enhanced utilisation of carbohydrates. Shifts in the functional diversity of the associated microbial communities were possibly caused by the presence of Ggt and associated antagonistic fungal and bacterial populations in the various soils. It was evident that the relationships amongst the functionality of the microbial communities within the various soils had undergone changes through the different stages of development of take-all disease of wheat, thus implying different substrate utilisation capabilities of present soil microbial communities. Diversity indices were calculated as Shannon's diversity index (H') and substrate equitability (J) and were overall within the higher diversity range of 3.6 and 0.8, respectively, indicating the achievement of very high substrate diversity values in the various soils. A substantial percentage of the carbon sources were utilised, which contributed to the very high Shannon-Weaver substrate utilisation indices. Obtained substrate evenness (equitability) (J) indices indicated an existing high functional diversity. The functional diversity as observed during crop rotation, differed significantly (p < 0.05) from each other, implying different substrate utilisation capabilities of present soil microbial communities, which could possibly be ascribed to the excretion of root exudates by sunflowers and soybeans. Using the Sorenson's index, a clear distinction could be made between the degrees of substrate utilisation between microbial populations in soils conducive, suppressive, and neutral to take-all disease of wheat, as well as during crop rotation. Furthermore, the various soils could also be differentiated on the basis of the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Soils conducive and neutral to take-all disease of wheat were characterised by high concentrations of manganese, as well as elevated concentrations of monounsaturated fatty acids, terminally branched saturated fatty acids, and polyunsaturated fatty acids which were indicative of Gram-negative bacteria, Gram-positive bacteria and micro eukaryotes (primarily fungi), respectively. These soils were also characterised by low concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as low soil pH. Soil suppressive to take-all disease of wheat was characterised by the elevated levels of estimated of biomass and elevated concentrations of normal saturated fatty acids, which is ubiquitous to micro-organisms. The concentration of normal saturated fatty acids in suppressive soils is indicative of a low structural diversity. This soil was also characterised by high concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as elevated soil pH. The relationship between PLFAs and agricultural soils was investigated using principal component analysis (PCA), redundancy analysis (RDA) and discriminant analysis (DA). Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Hierarchical cluster analysis of the major phospholipid fatty acid groups indicated that the structural diversity differed significantly between soils conducive, suppressive, and neutral to take-all disease of wheat caused by Gaeumannomyces graminis var. tritici. The results indicate that the microbial community functionality as well as the microbial community structure was significantly influenced by the presence of take-all disease of wheat caused by Gaeumannomyces graminis var. tritici, and that the characterisation of microbial functional and structural diversity by analysis of community level physiological profiles and phospholipid fatty acid analysis, respectively, could be successfully used as an assessment criteria for the evaluation of agricultural soils conducive, suppressive, and neutral to take-all disease of wheat, as well as in crop rotation systems. This methodology might be of significant value in assisting in the management and evaluation of agricultural soils subject to the prevalence of other soilborne diseases. / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2004.
167

Molekularbiologische Charakterisierung und vergleichende Genomik von ausgewählten Vertretern mariner Roseobacter-Stämme / Molecular characterization and comparative genomics of selected members of the marine roseobacter clade

Vollmers, John Felix 18 July 2013 (has links)
Die in dieser Arbeit präsentierten Genomanalysen erweitern das Wissen um das genomische Potential der Roseobacter-Gruppe und zeigen mögliche Adaptionen an ökologische Nischen innerhalb mariner Lebensräume auf. In den polaren Meereisorganismen Octadecabacter arcticus 238 und O. antarcticus 307 konnten neue Eigenschaften identifiziert werden, welche bislang nicht in Vertretern der Roseobacter-Gruppe beschrieben wurden und wahrscheinlich Anpassungen an polare bzw. Meereis-assoziierte Lebensräume darstellen. Ein besonderes Highlight dieser Analysen ist die Charakterisierung einer neuen Untergruppe von Xanthorhodopsinen in den Octadecabacter-Vertretern. Diese neue Xantho¬rhodopsin-Unter¬gruppe unterscheidet sich von den bisher beschriebenen Xantho¬rhodopsinen nicht nur durch phylogenetische Verwandtschaftsbeziehungen, sondern auch in ihrer mangelnden Befähigung zur Keto-Carotenoid-Bindung und ihrer vorwiegenden Verbreitung in Organismen Eis-assoziierter Habitate. Für beide polare Octadecabacter-Vertreter wurde eine ungewöhnlich hohe Genom-plastizität festgestellt. Hierbei scheint es sich um eine Anpassung an das einzigartige Meereis¬habitat dieser Organismen zu handeln, welches als hot spot für horizontalen Gentransfer (HGT) gilt. Zudem bietet diese Genomplastizität eine Erklärung für die zahlreichen genomischen Unterschiede zwischen den Octadecabacter-Stämmen, welche in direktem Widerspruch zu der nahen Verwandtschaft dieser Organismen auf 16S rRNA-Gen¬sequenz¬ebene stehen. Trotz dieser Unterschiede weist die genetische Ausstattung von O. arcticus und O. antarcticus auffällige Übereinstimmungen auf, welche auf einen gemeinsamen exklusiven Genpool von Octadecabacter-Vertretern beider Polargebiete hindeuten. Dies wird durch 16S rRNA-basierte phylogenetische Analysen von Octadecabacter-Vertretern verschiedener Habitate unterstützt. Somit scheint zwischen Bakteriengemeinschaften beider Polarregionen eine direkte Verbindung zu existieren. Von den Polargebieten ausgehende Tiefenströmungen, welche sich über beide Hemisphären erstrecken, könnten diese Verbindung darstellen. Anhand der bislang verfügbaren Genomsequenzen wurden Verwandtschaftsbeziehungen sowie allgemeine Unterschiede zwischen Vertretern der Roseobacter-Gruppe auf vielfältigen Ebenen untersucht. Die Ergebnisse dieser Analysen geben wertvolle Einblicke in unterschiedliche Nischenadaptionen zwischen nah verwandten Roseobacter-Vertretern und in die Bedeutung von horizontalem Gentransfer für diese Gruppe. Zudem bieten sie eine Grundlage für die vereinfachte Einteilung und Analyse zukünftiger Roseobacter-assoziierter Genom– und Metagenomsequenzen.
168

Charakterisierung der Mikroorganismen im sauren Grubenwasser des ehemaligen Uranbergwerks Königstein

Zirnstein, Isabel 20 July 2015 (has links) (PDF)
Beim Bergbau werden bestehende Ökosysteme in großem Maße beeinflusst. Im ehemaligen Uranbergwerk Königstein (Sachsen) wurde die Umwelt durch den Einsatz von chemischen Säuren zur Lösung des Urans aus dem Erz (Laugung) in Folge der Verschiebung des pH-Wertes zusätzlich belastet. Durch diesen Prozess entstand eine Umgebung, die einen niedrigen pH-Wert und hohe Konzentrationen an gelösten Schwermetall-Ionen aufweist. Die komplexe mikrobielle Lebensgemeinschaft verschob sich daraufhin, indem sich bevorzugt säuretolerante und Schwermetall-tolerante Mikroorganismen durchsetzten. Diese Mikroorganismen wurden durch die Flutung der unter Tage Schächte im Jahr 2010 in ihrer Zusammensetzung erneut beeinflusst. In dieser Arbeit wurde die mikrobielle Biozönose nach Flutung der unter Tage Schächte des ehemaligen Uranbergwerkes Königstein charakterisiert und mit den Ergebnissen der mikrobiellen Diversität vor dem Flutungsprozess verglichen. Hierfür kam ein breites Spektrum an Methoden zum Einsatz, das klassische mikrobiologische Methoden und molekularbiologische Techniken umfasste. Die Analysen erfolgten dabei über mehrere Jahre hinweg, um die Variabilität der mikrobiellen Population im Grubenwasser planktonisch und im Biofilm zu erfassen.
169

Soilborne disease suppressiveness / conduciveness : analysis of microbial community dynamics / by Johannes Hendrikus Habig

Habig, Johannes Hendrikus January 2003 (has links)
Take-all is the name given to the disease caused by a soilborne fungus Gaeumannomyces graminis (Sacc.) von Arx and Olivier var. tritici Walker (Ggt), an ascomycete of the family Magnaportheaceae (Cook, 2003). This fungus is an aggressive soil-borne pathogen causing root rot of wheat (primary host), barley and rye crops (secondary host). The flowering, seedling, and vegetative growth stages can be affected by the infection of the whole plant, leaves, roots, and stems. Infections of roots result in losses in crop yield and quality primarily due to a lowering in nutrient uptake. Take-all is most common in regions where wheat is cultivated without adequate crop rotation. Crop rotation allows time between the planting dates of susceptible crops, which causes a decrease in the inoculum potential of soilborne plant pathogens to levels below an economic threshold by resident antagonistic soil microbial communities. Soilborne disease suppressiveness is an inherent characteristic of the physical, chemical, and/or biological structure of a particular soil which might be induced by agricultural practices and activities such as the cultivation of crops, or the addition of organisms or nutritional amendments, causing a change in the microfloral environment. Disturbances of soil ecosystems that impact on the normal functioning of microbial communities are potentially detrimental to soil formation, energy transfers, nutrient cycling, and long-term stability. In this regard, an overview of soil properties and processes indicated that the use of microbiological and biochemical soil properties, such as microbial biomass, the analysis of microbial functional diversity and microbial structural diversity by the quantification of community level physiological profiles and signature lipid biomarkers are useful as indicators of soil ecological stress or restoration properties because they are more responsive to small changes than physical and chemical characteristics. In this study, the relationship between physico-chemical characteristics, and different biological indicators of soil quality of agricultural soils conducive, suppressive, and neutral with respect to take-all disease of wheat as caused by the soilborne fungus Gaeumannomyces graminis var. tritici (Ggt), were investigated using various techniques. The effect of crop rotation on the functional and structural diversity of soils conducive to take-all disease was also investigated. Through the integration of quantitative and qualitative biological data as well as the physico-chemical characteristics of the various soils, the functional and structural diversity of microbial IV communities in the soils during different stadia of take-all disease of wheat were characterised. All results were evaluated statistically and the predominant physical and chemical characteristics that influenced the microbiological and biochemical properties of the agricultural soils during different stadia of take-all disease of wheat were identified using multivariate analyses. Although no significant difference @ > 0.05) could be observed between the various soils using conventional microbiological enumeration techniques, the incidence of Gliocladium spp. in suppressive soils was increased. Significant differences @ < 0.05) were observed between agricultural soils during different stadia of take-all disease of wheat. Although no clear distinction could be made between soils suppressive and neutral to take-all disease of wheat, soils suppressive and conducive to take-all disease of wheat differed substantially in their community level physiological profiles (CLPPs). Soils suppressive / neutral to take-all disease were characterised by enhanced utilisation of carboxylic acids, amino acids, and carbohydrates, while conducive soils were characterised by enhanced utilisation of carbohydrates. Shifts in the functional diversity of the associated microbial communities were possibly caused by the presence of Ggt and associated antagonistic fungal and bacterial populations in the various soils. It was evident that the relationships amongst the functionality of the microbial communities within the various soils had undergone changes through the different stages of development of take-all disease of wheat, thus implying different substrate utilisation capabilities of present soil microbial communities. Diversity indices were calculated as Shannon's diversity index (H') and substrate equitability (J) and were overall within the higher diversity range of 3.6 and 0.8, respectively, indicating the achievement of very high substrate diversity values in the various soils. A substantial percentage of the carbon sources were utilised, which contributed to the very high Shannon-Weaver substrate utilisation indices. Obtained substrate evenness (equitability) (J) indices indicated an existing high functional diversity. The functional diversity as observed during crop rotation, differed significantly (p < 0.05) from each other, implying different substrate utilisation capabilities of present soil microbial communities, which could possibly be ascribed to the excretion of root exudates by sunflowers and soybeans. Using the Sorenson's index, a clear distinction could be made between the degrees of substrate utilisation between microbial populations in soils conducive, suppressive, and neutral to take-all disease of wheat, as well as during crop rotation. Furthermore, the various soils could also be differentiated on the basis of the microbial community structure as determined by phospholipid fatty acid (PLFA) analysis. Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Soils conducive and neutral to take-all disease of wheat were characterised by high concentrations of manganese, as well as elevated concentrations of monounsaturated fatty acids, terminally branched saturated fatty acids, and polyunsaturated fatty acids which were indicative of Gram-negative bacteria, Gram-positive bacteria and micro eukaryotes (primarily fungi), respectively. These soils were also characterised by low concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as low soil pH. Soil suppressive to take-all disease of wheat was characterised by the elevated levels of estimated of biomass and elevated concentrations of normal saturated fatty acids, which is ubiquitous to micro-organisms. The concentration of normal saturated fatty acids in suppressive soils is indicative of a low structural diversity. This soil was also characterised by high concentrations of phosphorous, potassium, percentage organic carbon, and percentage organic nitrogen, as well as elevated soil pH. The relationship between PLFAs and agricultural soils was investigated using principal component analysis (PCA), redundancy analysis (RDA) and discriminant analysis (DA). Soil suppressive to take-all disease of wheat differed significantly (p < 0.05) from soils conducive, and neutral to take-all disease of wheat, implying a shift in relationships amongst the structural diversity of microbial communities within the various soils. A positive association was observed between the microbial phospholipid fatty acid profiles, and dominant environmental variables of soils conducive, suppressive, and neutral to take-all disease of wheat. Hierarchical cluster analysis of the major phospholipid fatty acid groups indicated that the structural diversity differed significantly between soils conducive, suppressive, and neutral to take-all disease of wheat caused by Gaeumannomyces graminis var. tritici. The results indicate that the microbial community functionality as well as the microbial community structure was significantly influenced by the presence of take-all disease of wheat caused by Gaeumannomyces graminis var. tritici, and that the characterisation of microbial functional and structural diversity by analysis of community level physiological profiles and phospholipid fatty acid analysis, respectively, could be successfully used as an assessment criteria for the evaluation of agricultural soils conducive, suppressive, and neutral to take-all disease of wheat, as well as in crop rotation systems. This methodology might be of significant value in assisting in the management and evaluation of agricultural soils subject to the prevalence of other soilborne diseases. / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2004.
170

The fate and effects of sewage-derived pharmaceuticals in soil

Gielen, Gertruda Jacqueline Hariette Petronella January 2007 (has links)
The behaviour and impact of pharmaceuticals in the environment are still poorly understood. Pharmaceuticals are widely used and continually released into the environment causing increasing concerns about their impact on the environment beyond the intended human or veterinary use. Prescribed pharmaceuticals, typically, enter the environment either through excretion after human use or disposal of surplus medication. Sewage treatment plants do not completely remove pharmaceuticals and their metabolites and these have been detected in sewage treatment plant effluent and receiving waters. Land application of treated sewage effluent is widely practiced in New Zealand as an alternative to surface water discharge. Methods were developed to determine selected pharmaceuticals in environmental matrices such as sewage effluent, sewage solids, soil, and soil water. From these, pharmaceutical removal efficiencies were determined for three common sewage treatment processes; activated sludge, composting and land application of sewage effluent. The impacts of some common pharmaceuticals on soil microbial communities, together with the effect of prolonged exposure to sewage effluent on these communities were examined. Additionally, toxicity of sewage effluent, and toxicity mechanisms of specific pharmaceuticals were investigated using luminescent micro-organisms and lettuce seedlings. Pharmaceuticals were successfully detected in sewage effluent, sewage solids, compost, soil and soil water. The sewage treatment processes investigated, including land application, were able to remove or reduce pharmaceutical concentrations in sewage. In case of land application, volcanic soils were more efficient than sandy soils in pharmaceutical removal while irrigation rate and level of sewage pre-treatment also showed some effect on removal efficiency. Pharmaceuticals were not acutely toxic at environmental levels currently detected. Exposure of microbial communities to unnaturally high levels of pharmaceuticals did demonstrate that most pharmaceuticals were potentially able to induce stress in the microbial community although microbes were able to metabolise some of these pharmaceuticals. Twelve years of effluent irrigation resulted in microbial adaptation to aspirin, acetaminophen and tetracycline, indicating that these pharmaceuticals had an effect on microbial community. Presently, land application of treated sewage waste may be a suitable treatment for additional pharmaceutical removal provided that land application schemes are designed appropriately, and pharmaceutical accumulation in the soil is occasionally monitored. It would be prudent to recognise the potential risk that could be caused by chronic exposure to pharmaceuticals such that continued vigilance may lead to future indications of chronic effects at an early stage.

Page generated in 0.0776 seconds