Spelling suggestions: "subject:"amicrobial growth"" "subject:"kmicrobial growth""
31 |
Wear and Boundary Lubrication in Modular Total Knee ReplacementsBrandt, Jan-Mels 25 January 2008 (has links)
Wear of the polyethylene (PE) bearing surface and wear particle-induced osteolysis (bone resorption) can lead to failure of modular total knee replacements and make expensive revision surgery necessary. Gamma-in-air sterilization of the PE insert and having a modular tibial component are both risk factors for excessive backside wear that contribute to osteolysis and implant failure. The overall wear (backside and topside) of modular total knee replacements has been subjected to considerable research in order to avoid such implant failure. The investigations reported in the present thesis evaluated both the clinical and in vitro wear performance of modular total knee replacements.
The clinical investigations included damage assessment of retrieved PE inserts. A semi-quantitative grading method was developed and used to assess backside surface damage on 52 PE inserts retrieved from contemporary total knee replacement surgeries. Statistical analyses, such as univariate and multiple linear regression analysis, were performed to identify factors that influence backside damage including implant design features and patient characteristics. The damage features on the retrieved tibial PE inserts were also assessed with surface characterization techniques, such as scanning electron microscopy, energy dispersive X-ray analysis, and surface profilometry. To reduce surface damage and thus wear, PE inserts should be either gas-plasma or ethylene-oxide sterilized, used with polished tibial trays and held in place with a partial-peripheral locking mechanism.
Synovial fluid samples were aspirated from a total of twenty patients and some basic biochemical analyses were performed. The total protein concentration, protein constituent fractions, the level of osmolality, and trace element concentrations were measured and compared with the same characteristics of four serum lubricants that were frequently used in simulator wear testing to mimic synovial fluid.
In vitro investigations were conducted to explore the effects of some major constituents of the serum lubricants on the wear rate using a knee simulator apparatus. Increased protein constituent degradation led to increased wear. Such findings suggested that a protein layer acted as a boundary lubricant to protect the PE surfaces of knee implants. The protein constituent fractions of alpha calf serum (ACS) were similar to those measured for synovial fluid. These ACS lubricants were used in further wear studies in which hyaluronic acid (HA) and phosphate buffer solution (PBS) were successively added. The PBS was used in place of the distilled water to generate a serum lubricant with a clinically relevant level of osmolality. The thermal stability of the ACS lubricants and synovial fluid were measured. The thermal stability of the ACS lubricant that contained HA and PBS was about the same as that of human synovial fluid. The simulator wear rate of PE was significantly influenced by both HA and PBS.
In further investigations, sodium azide, which has been used to inhibit microbial growth in simulator wear testing, was shown to be highly ineffective. Microbial contamination was recognized and the organism responsible was identified using standard microbiological methods. The use of an antibiotic-antimycotic mixture as the microbial inhibitor in the ACS + PBS + HA lubricant created a sterile environment and thus very clinically relevant environment for wear testing.
The content of this thesis represents a comprehensive data collection on retrieval analysis and lubricant-specific knee simulator wear testing of modular total knee replacements. A more clinically relevant lubricant composition for simulator wear testing was proposed (U.S. patent Serial number 60/899,894; pending since February 9th, 2007) that improved upon the current guideline from the International Standards Organization for knee simulator wear testing. The present thesis should serve as a guide for the surgeon, researcher and the implant manufacturer to evaluate retrieved implant components and to select lubricant additives for wear testing that closely mimics the in vivo wear conditions.
|
32 |
Preventing Microbial Growth on pall-rings when upgrading biogas using absorption with water washHåkansson, Anna January 2006 (has links)
For produced biogas to be usable as vehicle fuel it has to be upgraded to a higher energy content. This is accomplished by elevation of the methane concentration through removal of carbon dioxide. Absorption with water wash is the most common upgrading method used in Sweden today. The upgrading technique is based on the fact that carbon dioxide is more soluble in water than methane. Upgrading plants that utilises this method have problems with microbial growth in the system. This growth eventually leads to a stop in operation due to the gradually drop in upgrading capacity. The aim of this thesis were to evaluate the possibility to through some kind of water treatment maintain an acceptable level of growth or altogether prevent it in order to maintain an acceptable process capacity and thereby avoid the need to clean. Through collection of literature the implementation possibilities were evaluated with regard to efficiency, economic sustainability and if there would be a release of any harmful substances. In order to prevent the microbial growth in the columns the treatment should either focus on removing microorganisms or limit the accessible nutrients. For the single pass system it is concluded that the treatment should reduce the biofilm formation and be employed in an intermittent way. Among the evaluated treatments focusing on the reduction of microorganisms the addition of peracetic acid seems to be the most promising one. For the regenerating system the treatment method could focus on either one. As for the single pass system peracetic acid could be added to reduce the amount of microorganism. To reduce the amount of organic matter an advanced oxidation process could be deployed with the advantage that it also could remove the microorganisms. / För att kunna använda den producerade biogasen som fordonsgas måste dess energiinnehåll höjas. Detta åstadkoms genom avskiljning av koldioxid så att metankoncentrationen ökar. Den vanligaste förekommande uppgraderingstekniken i Sveriges är absorption med vatten, som bygger på att koldioxid är mer lösligt än metan i vatten under tryck. Uppgraderingsanläggningarna har mikrobiell tillväxt på fyllkropparna i absorptionskolonnen, vilket ofrånkommligen orsakar en lägre uppgraderingskapacitet och slutligen är ett stopp i produktionen nödvändig för kunna tvätta fyllkropparna. Anläggningarna som recirkulerar processvattnet kan även ha tillväxt i kolonnen, där den lösta koldioxiden tas bort. Syftet med detta arbete var att genom en litteraturstudie undersöka om det vore möjligt att undvika eller åtminstone hålla tillväxten under en acceptabel nivå genom någon typ av vattenrening. De olika reningsmetoderna utvärderades med avseende på möjlighet att implementeras i det befintliga uppgraderings systemet, effektivitet, möjliga utsläpp och ekonomisk hållbarhet. För att begränsa tillväxt i kolonnerna ska vattenreningen antingen fokusera på att ta bort mikroorganismer eller begränsa tillgången på näringsämnen för bakterierna som når kolonnerna via biogasen, luften som används för att ta bort koldioxiden från vattnet, eller via vattnet. För uppgraderingsanläggningar där processvattnet bara passerar kolonnen en gång rekommenderas en reningsmetod som fokuserar på reducera bildandet av biofilmen. Av de utvärderade metoderna ter sig perättiksyra som det bästa alternativet. För system med recirkulerande processvatten skulle reningsmetoden fokusera på antingen reduktion av mikroorganismer, organiskt material eller både och. Som för anläggningar med icke-cirkulerande vatten verkar perättiksyra vara det bästa alternativet för reduktion av mikroorganismer. En avancerad oxidationsprocess skulle kunna användas för att reducera mängden mikroorganismer och organiskt material.
|
33 |
Wear and Boundary Lubrication in Modular Total Knee ReplacementsBrandt, Jan-Mels 25 January 2008 (has links)
Wear of the polyethylene (PE) bearing surface and wear particle-induced osteolysis (bone resorption) can lead to failure of modular total knee replacements and make expensive revision surgery necessary. Gamma-in-air sterilization of the PE insert and having a modular tibial component are both risk factors for excessive backside wear that contribute to osteolysis and implant failure. The overall wear (backside and topside) of modular total knee replacements has been subjected to considerable research in order to avoid such implant failure. The investigations reported in the present thesis evaluated both the clinical and in vitro wear performance of modular total knee replacements.
The clinical investigations included damage assessment of retrieved PE inserts. A semi-quantitative grading method was developed and used to assess backside surface damage on 52 PE inserts retrieved from contemporary total knee replacement surgeries. Statistical analyses, such as univariate and multiple linear regression analysis, were performed to identify factors that influence backside damage including implant design features and patient characteristics. The damage features on the retrieved tibial PE inserts were also assessed with surface characterization techniques, such as scanning electron microscopy, energy dispersive X-ray analysis, and surface profilometry. To reduce surface damage and thus wear, PE inserts should be either gas-plasma or ethylene-oxide sterilized, used with polished tibial trays and held in place with a partial-peripheral locking mechanism.
Synovial fluid samples were aspirated from a total of twenty patients and some basic biochemical analyses were performed. The total protein concentration, protein constituent fractions, the level of osmolality, and trace element concentrations were measured and compared with the same characteristics of four serum lubricants that were frequently used in simulator wear testing to mimic synovial fluid.
In vitro investigations were conducted to explore the effects of some major constituents of the serum lubricants on the wear rate using a knee simulator apparatus. Increased protein constituent degradation led to increased wear. Such findings suggested that a protein layer acted as a boundary lubricant to protect the PE surfaces of knee implants. The protein constituent fractions of alpha calf serum (ACS) were similar to those measured for synovial fluid. These ACS lubricants were used in further wear studies in which hyaluronic acid (HA) and phosphate buffer solution (PBS) were successively added. The PBS was used in place of the distilled water to generate a serum lubricant with a clinically relevant level of osmolality. The thermal stability of the ACS lubricants and synovial fluid were measured. The thermal stability of the ACS lubricant that contained HA and PBS was about the same as that of human synovial fluid. The simulator wear rate of PE was significantly influenced by both HA and PBS.
In further investigations, sodium azide, which has been used to inhibit microbial growth in simulator wear testing, was shown to be highly ineffective. Microbial contamination was recognized and the organism responsible was identified using standard microbiological methods. The use of an antibiotic-antimycotic mixture as the microbial inhibitor in the ACS + PBS + HA lubricant created a sterile environment and thus very clinically relevant environment for wear testing.
The content of this thesis represents a comprehensive data collection on retrieval analysis and lubricant-specific knee simulator wear testing of modular total knee replacements. A more clinically relevant lubricant composition for simulator wear testing was proposed (U.S. patent Serial number 60/899,894; pending since February 9th, 2007) that improved upon the current guideline from the International Standards Organization for knee simulator wear testing. The present thesis should serve as a guide for the surgeon, researcher and the implant manufacturer to evaluate retrieved implant components and to select lubricant additives for wear testing that closely mimics the in vivo wear conditions.
|
34 |
The development of a microcomputer controlled variable pathlength turbidimeter /Ortmanis, Andris. January 1986 (has links)
No description available.
|
35 |
Application of the rate of nucleic acid synthesis to the study of microbial growth and production in seawaterWinn, Christopher David January 1984 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1984. / Includes bibliographical references. / Microfiche. / x, 216 leaves, bound ill. 29 cm
|
36 |
Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by g-ray induced mutagenesisOttenheim, Christoph, Werner, Katharina A., Zimmermann, Wolfgang, Wu, Jin Chua 01 December 2017 (has links)
Aspergillus niger DSM 26641 was exposed to 60Co g-radiation to enhance the b-1,4-endoxylanase activity, restrict colony growth and improve robustness of pellets. The first promising mutant obtained after g-radiation of the fungal spores at 50-2000 Gy showed a restricted colony growth and an 82% enhancement in b-1,4-endoxylanase activity. The mutant was subjected to a second round of g-radiation at 1400 Gy generating a mutant with double the b-1,4-endoxylanase activity compared to the native strain. The selected final mutant, deposited as Aspergillus niger DSM 28712, showed a maximal saccharification activity of 26 U·ml-1 on xylan based broth, 48 U·ml-1 on lignocellulose hydrolysate and 375 U·ml-1 on lignocellulose hydrolysate supplemented with yeast extract and mineral salts.
|
37 |
Väderskydd för träkonstruktioner : En studie av vad som påverkar beslutet och dess möjliga effekter på uttorkningstid och mögeltillväxt / Weather protection for timber structures : A study into what influences the decision and its possible effect on drying time and mold growthLundquist, Simon, Ekman, Filip January 2020 (has links)
I detta examensarbete studeras vad som styr valet att använda väderskydd under produktion av träbyggnader som innehåller KL-trä. Rapporten tar upp teori om hur trä beter sig i olika klimat, en fallstudie bestående av fuktmätningar som används för att beräkna uttorkningstiden och mögeltillväxten med datorprogrammet WUFI. Studien består av en litteraturstudie där effekten av mikrobiell tillväxt på trä kontrolleras och hur träets egenskaper påverkas av fukt diskuteras. Litteraturundersökningen följs av intervjuer som genomförs med entreprenörer och byggherre. Intervjufrågorna fokuserar på att få en uppfattning om vad som styr valet till att bygga med väderskydd eller inte. Därefter analyserades två fallstudier, nämligen Projekt A och Projekt C. Projekt A erhölls med väderskydd och av Projekt C var utan väderskydd. Studien avrundas med beräkningar av klimatdata som erhölls inom Projekt A och Projekt C. För Projekt A beräknades fuktkvoten i bjälkarna. För Projekt C beräknades fuktkvoten i bjälklag och yttervägg. Beräkningarna omfattade en period från tidpunkten när mätning gjordes och tre år framåt. Resultatet användes för att bestämma om bildandet av mögel skulle vara ett problem. Konstruktioner som använder väderskydd har mindre fuktvariation och lägre fuktkvot. Det finns också mindre risk för hälsoproblem på grund av att mögel försämrar hälsan. Det syns att användningen av väderskydd fortfarande är i tidigt stadie. Det är inte obligatoriskt och användningen är mycket beroende av den beslutande byggherrens kunskap. Användning av väderskydd rekommenderas emellertid ur ett tekniskt perspektiv för att undvika onödiga hälsoproblem, skador och eventuellt strukturella komplikationer.
|
38 |
The Effects of a Calcium Pectinate Film upon Shrinkage, Palatability and Surface Microbial Growth on Carcasses and Selected Beef and Poultry CutsStubbs, Clifford Arthur 01 May 1980 (has links)
A process in which low methoxyl pectin is applied to the surface of meat carcasses and poultry to reduce shrinkage, maintain color and improve shelf life was evaluated. A 3.0 percent aqueous low methoxyl pectin (acidified with 1.4 percent acetic acid if required) was applied to beef, lamb and turkey carcasses by spraying and caused to form a gel coating by overspraying with a 3.5 percent calcium chloride salt solution.
Turkey carcasses treated with acidified pectin or acidified pectin after 3.0 percent acetic acid dip for 30 seconds were not significantly improved in shelf life over carcasses which were acid dipped 30 seconds. Pectin coating of turkey carcasses was determined infeasible due to discoloration.
Pectin coated lamb carcasses were significantly lower in shrinkage (0.71 ±0.04 percent) (p
Pectin coated beef carcasses were significantly lower in shrinkage (0.44 ±0.38 percent) (p
Both acidified pectin (pH 3.5) and unacidified pectin (pH 4.1) significantly (p
|
39 |
Subsurface Igneous Mineral Microbiology: Iron-Oxidizing Organotrophs on Olivine Surfaces and the Significance of Mineral Heterogeneity in BasaltsSmith, Amy Renee 01 January 2011 (has links)
The subsurface igneous biome contains a vast portion of Earth's total biomass, yet we still know so little about it. Igneous environments such as iron-rich ocean crust and lava tubes may also host analogs to chemolithotrophically-driven life on other planets, so studying life in this biome is essential to understanding how life may survive on other planets. In this study, three igneous surface and subsurface environments were investigated for microbial preference for olivine, microbial physiologies and phylotypes present on olivine, and microbial growth on olivine in the laboratory via iron oxidation. These environments include a subseafloor borehole drilled into the ocean crust basalt basement, a lava tube with perennial ice, and a trio of Columbia River basalt-hosted freshwater terrestrial habitats. The subseafloor borehole (IODP Hole 1301A) is situated on the eastern flank of Juan de Fuca Ridge (JFR) and was used in the first long-term deployment of microbial enrichment flow cells using osmotically-driven pumps. The flow cells contained igneous minerals and glasses, for which cell density and microbial abundances were evaluated. Total cell density and viable oligotrophs were highest for Fe(II)-rich olivines. Organotrophic bacterial isolates were capapble of iron oxidation and nitrate reduction, and grew on olivine in the laboratory. Putative neutrophilic iron oxidizers were also isolated from igneous riparian and cave environments in northwest and central Oregon. Isolated bacteria from all three environments were capable of chemolithotrophic growth with olivine and oxygen or nitrate in the laboratory. Bacteria isolated from river basalt were putatively capable of producing alteration textures on olivine surfaces in culture. Microbial life in the igneous subsurface preferentially attach to Fe²⁺-rich minerals, which suggests that life in the subsurface is heterogeneously distributed. The isolation of oligotrophic iron oxidizers that grow on olivine suggests that olivine supports a chemolithotrophic subsurface community based on primary productivity via iron oxidation. This generation of biomass on olivine surfaces creates organic carbon-rich coated mineral surfaces that may support a more complex community. The identification of Mars analogs living in Oregon lava tubes and the discovery that iron oxidizers may produce biosignatures on olivine surfaces are key findings that may provide the foundation for a new chapter in the search for life on Mars.
|
40 |
The development of a microcomputer controlled variable pathlength turbidimeter /Ortmanis, Andris. January 1986 (has links)
No description available.
|
Page generated in 0.0481 seconds