• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 67
  • 58
  • 19
  • 19
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 410
  • 215
  • 164
  • 102
  • 96
  • 78
  • 72
  • 55
  • 50
  • 47
  • 45
  • 37
  • 33
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The Omental Fat Band as an Immunomodulatory Microenvironment for Ovarian Cancer

Cohen, Courtney A. 11 June 2013 (has links)
Cancer research is evolving. Historically concerned with the mechanisms by which malignant cells circumvent cell death signaling and maintain unchecked proliferation, focus has shifted to the complex interactions between the tumor cell and the surrounding microenvironment. Ovarian cancer has one of the highest incidence-to-death ratios of all cancers, and is typically asymptomatic until the later stages, often resulting in metastasis prior to discovery. Naturally occurring phenotypes like lactation and child-bearing (parity) reduce ovarian cancer incidence, but the mechanisms are not understood. As the primary site for ovarian cancer metastasis, and a secondary lymphoid organ capable of mounting potent innate and adaptive immune responses, we believe the omental fat band (OFB) provides a unique opportunity to study complex interactions within the tumor microenvironment. Additionally, we hypothesize that once understood, leukocyte populations within the OFB could be modulated to disrupt the pro-tumorigenic cascade. Using fluorescence-activated cell sorting (FACS) and quantitative realtime PCR (qRT-PCR), we comparatively evaluated the changes in the compositional immune profile of the OFB as a result of parity and cancer. Parous mice were associated with a reduction in macrophages and neutrophils in the OFB, resulting in an inherent "protective state" that was refractory to metastatic cancer cell growth after intraperitoneal implantation. This indicates that the leukocyte populations within the   OFB play an important role in tumor development. Therefore we utilized the potent TH1-type immunomodulatory cytokine IL-12 in a membrane-bound form to circumvent reported side effects, such as hepatic and renal damage, cardiotoxicity and death. Targeted IL-12 delivery to the OFB resulted in delayed disease development, although not protection from subsequent challenge. This was also associated with a reduction tumor-associated macrophages (TAMs) and neutrophils (TANs) within the OFB. Kinetic studies demonstrated that these changes were induced by a significant reduction in neutrophil and macrophage chemoattractants early on in the pro-tumorigenic cascade (7 days post-implantation). This work demonstrates that the OFB is a functionally plastic tissue that can be harnessed and re-mobilized to display an anti-tumorigenic microenvironment. / Ph. D.
72

Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302

Wojtkowiak, Jonathan W., Cornnell, Heather C., Matsumoto, Shingo, Saito, Keita, Takakusagi, Yoichi, Dutta, Prasanta, Kim, Munju, Zhang, Xiaomeng, Leos, Rafael, Bailey, Kate M., Martinez, Gary, Lloyd, Mark C., Weber, Craig, Mitchell, James B., Lynch, Ronald M., Baker, Amanda F., Gatenby, Robert A., Rejniak, Katarzyna A., Hart, Charles, Krishna, Murali C., Gillies, Robert J. 20 May 2016 (has links)
BACKGROUND: Hypoxic niches in solid tumors harbor therapy-resistant cells. Hypoxia-activated prodrugs (HAPs) have been designed to overcome this resistance and, to date, have begun to show clinical efficacy. However, clinical HAPs activity could be improved. In this study, we sought to identify non-pharmacological methods to acutely exacerbate tumor hypoxia to increase TH-302 activity in pancreatic ductal adenocarcinoma (PDAC) tumor models. RESULTS: Three human PDAC cell lines with varying sensitivity to TH-302 (Hs766t > MiaPaCa-2 > SU.86.86) were used to establish PDAC xenograft models. PDAC cells were metabolically profiled in vitro and in vivo using the Seahorse XF system and hyperpolarized 13C pyruvate MRI, respectively, in addition to quantitative immunohistochemistry. The effect of exogenous pyruvate on tumor oxygenation was determined using electroparamagnetic resonance (EPR) oxygen imaging. Hs766t and MiaPaCa-2 cells exhibited a glycolytic phenotype in comparison to TH-302 resistant line SU.86.86. Supporting this observation is a higher lactate/pyruvate ratio in Hs766t and MiaPaCa xenografts as observed during hyperpolarized pyruvate MRI studies in vivo. Coincidentally, response to exogenous pyruvate both in vitro (Seahorse oxygen consumption) and in vivo (EPR oxygen imaging) was greatest in Hs766t and MiaPaCa models, possibly due to a higher mitochondrial reserve capacity. Changes in oxygen consumption and in vivo hypoxic status to pyruvate were limited in the SU.86.86 model. Combination therapy of pyruvate plus TH-302 in vivo significantly decreased tumor growth and increased survival in the MiaPaCa model and improved survival in Hs766t tumors. CONCLUSIONS: Using metabolic profiling, functional imaging, and computational modeling, we show improved TH-302 activity by transiently increasing tumor hypoxia metabolically with exogenous pyruvate. Additionally, this work identified a set of biomarkers that may be used clinically to predict which tumors will be most responsive to pyruvate + TH-302 combination therapy. The results of this study support the concept that acute increases in tumor hypoxia can be beneficial for improving the clinical efficacy of HAPs and can positively impact the future treatment of PDAC and other cancers.
73

Tumour-stroma interaction in pancreatic cancer

Lunardi, Serena January 2013 (has links)
Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant desmoplastic reaction driven by pancreatic stellate cells (PSCs). There is accumulating evidence that PSCs influence the malignant phenotype of PDAC. The aim of this study was to analyse the tumour response to radiation treatment in the presence of PSCs and to investigate the cytokine network in the coculture of PSCs and pancreatic cancer cells (PCCs). PSCs were used in coculture with different PCC lines. Clonogenic survival assays of several PCC lines cocultured with PSCs showed decreased radiosensitivity. This effect was abrogated by inhibition of the β1-integrin/FAK signalling pathway. Furthermore, tumour regrowth experiments after irradiation showed that coinjected PSCs were radioprotective for PCCs after single-dose and fractionated irradiation in xenografts. In addition, we examined the expression of 50 proteins in the supernatants of PCCs and PSCs in mono- and coculture conditions. The detected cytokine expression profile of PSCs included many proinflammatory factors. Also, we identified IP-10 as the chemokine with the highest differential upregulation in PSCs by paracrine stimuli from five different PCC lines. Human PDAC with a high stroma component had elevated IP-10 mRNA expression. IP-10 did not stimulate tumour cell growth and migration in our conditions even though several PCCs expressed its cognate receptor CXCR3. Nevertheless, we discovered that in human PDAC samples IP-10 and CXCR3 mRNA levels correlated with the presence of CD3ε, CD4, FoxP3, CTLA4 and CD39 used as surrogate markers for T regulatory cells (Tregs), known to exert an immunosuppressive effect. In conclusion, these data demonstrate that PSCs enhance survival of PCCs to radiation by activating β1-integrin/FAK signalling. Furthermore, the interaction between the tumour stroma in pancreatic cancer may support an immunosuppression by chemoattraction of Tregs following upregulation of IP-10. Further characterisation of the paracrine signalling between PCCs, PSCs and immune cells will improve the understanding of pancreatic cancer biology and could lead to the identification of new targets for multimodal therapy.
74

Investigation of mechanotransductory mechanisms in the pathogenesis of lung fibrosis

Fiore, Vincent F. 27 May 2016 (has links)
Fibrosis of vital organs remains one of the leading causes of death in the developed world, where it occurs predominantly in soft tissues (liver, lung, kidney, heart) through fibroblast proliferation and deposition of extracellular matrix (ECM). In the process of fibrosis, remodeling and deposition of ECM results in stiffening of cellular microenvironment; cells also respond to these changes in the stiffness through engagement of their cytoskeleton and signaling via cell-ECM contacts. Thus, understanding to what extent the stiffness of the cellular microenvironment changes as a consequence of fibrotic progression, and how cells respond to this change, is critical. In this thesis, we quantitatively measured stiffness of the lung parenchyma and its changes during fibrosis. We find that the average stiffness increases by approximately 10-fold. We then investigated how changes in ECM rigidity affect the cytoskeletal phenotype of lung fibroblasts. We find a complex relation between expression of the glycoprotein Thy-1 (CD90) and ECM rigidity-dependent cytoskeletal phenotype (i.e. “mechanotransduction”). Finally, we investigate a mechanism for the regulation of rigidity sensing by Thy-1 and its involvement in intracellular signaling through cell-ECM contacts. Taken together, this work helps define in vivo parameters critical to the fibrogenesis program and to define unique cellular phenotypes that may respond or contribute to mechanical homeostasis in fibrotic diseases.
75

Rôle des chimiokines dans les interactions entre les cellules stromales mésenchymateuses et les cellules de cancer du sein / Role of chemokines in mesenchymal stromal cells and breast cancer interaction

Escobar, Pauline 26 November 2010 (has links)
Le cancer du sein est le cancer le plus fréquent chez la femme et représente un problème de santé publique majeur. L'agressivité des tumeurs mammaires varie notamment en fonction de leurstatut pour le récepteur α des oestrogènes (ERα). Les cancers du sein n'exprimant pas ERα ont unmauvais pronostic, de part leur capacité métastatique plus importante. Cependant, les facteurs sous jacents à cette plus grande agressivité des cancers ERα-négatifs restent mal compris. Il est aujourd'hui admis que la progression tumorale et la dissémination métastatique dépendent, non seulement des propriétés intrinsèques des cellules cancéreuses, mais également des régulations exercées sur ces cellules par le micro environnement tumoral. Les interactions entre les cellules cancéreuses et les cellules présentes au niveau du site tumoral, telles que les cellules leucocytaires,les cellules endothéliales, ainsi que les cellules stromales, sont nécessaires au développement et à l'évolution de la tumeur. Ces interactions sont médiées via la production d'hormones, de cytokines ainsi que de chimiokines. Les cellules stromales mésenchymateuses (MSC) sont de composants essentiels du stroma tumoral. Leur rôle dans la progression des tumeurs reste, pour le moment, très controversé. L'objectif de notre projet a été de comprendre les raisons pour lesquelles les MSC peuvent favoriser ou inhiber le développement tumoral. Nous nous sommes, dans un premier temps,intéressés aux interactions entre les cellules cancéreuses mammaires et les MSC. Nous avons déterminé si le fait que les cellules cancéreuses soit métastatiques ou non modifiait le phénotype des MSC et leur réponse dans les régulations de la croissance tumorale. Nous avons ainsi constaté quel es facteurs sécrétés spécifiquement par les cellules cancéreuses métastatiques ERα-négativesinduisaient la production de certaines chimiokines, dont CXCL5. Ces chimiokines peuvent êtressécrétées par les cellules du microenvironnement mais également par les cellules cancéreuses ellesmêmes.Nous avons donc étudié le rôle de CXCL5 dans l'agressivité des tumeurs mammaires. Nousavons ainsi montré que ces chimiokines induisent, in vitro, une augmentation des propriétésprolifératives, invasives et migratoires des cellules cancéreuses. Cette étude nous à permis demontrer que les chimiokines et les interactions entre les cellules cancéreuses et les MSC pouvaientêtre impliquées dans la progression tumorale ainsi que dans l'agressivité des tumeurs mammaires. / Breast cancer remains in Europe and USA the first cause of death by cancer for women.Breast cancer aggressiveness relies in particular on estrogen receptor α (ERa) status. Breast cancers which do not express ERα are more metastatic and have a poorer prognosis, than ERα-positivetumors. However underlying factors involved in these invasive properties are poorly understood.Today, it is established that tumor progression is regulated by intrinsic cancer cells properties, and byinteractions between cancer cells and surrounding microenvironment. Several evidences suggest thatleukocytes, endothelial cells, fibroblasts and infiltrating cells present in stromal compartment caninteract with tumor cells through the production of hormones, cytokines and chemokines.Mesenchymal stromal cells (MSC) belong also to the stromal compartment. Recent studies havehighlighted their potential role in cancer growth and metastasis. However, the ability of MSC to favor orprevent cancer progression remains controversial. The aim of this work was to understand the roles ofMSC in tumor progression and to explain the differential effects of MSC on cancer cells, depending onthe type of cancer cells involved. First, we were analyzed MSC and cancer cells interactions, anddetermined if metastatic cancer cells could affect MSC phenotypes and its response in terms of tumorgrowth. We observed that metastatic breast cancer cells secreted factors, which could highly enhancethe release by MSC of several chemokines, including CXCL5. CXCL5 can be secreted by stromal cellsbut also by cancer cells themselves. We next showed in vitro that CXCL5 increased proliferative,invasive and migratory properties of breast cancer cells. This study allowed us to demonstrate thatchemokines play a role in the cross-talk between MSC and breast cancer cells, and that they play akey role in tumor proliferation and aggressiveness.
76

Biologie intégrative du métabolisme de la baie du raisin / Integrative biology of grape berry metabolism

Kappel, Christian 16 December 2010 (has links)
La surface des vignobles mondiaux représente environ 7,9 millions ha, ce qui correspond à une production annuelle de 67 millions de tonnes de baies. La production mondiale annuelle de vins est de l’ordre de 300 millions hl/an. La surface du vignoble français est de 843 000 ha. La viticulture moderne doit affronter trois défis majeurs interdépendants : réduire l’utilisation des produits phytosanitaires, s'adapter au changement climatique, maîtriser la qualité et la typicité pour garder ou conquérir de nouveaux marchés.En 2007, la vigne est devenue la première espèce fruitière pérenne dont le génome a été séquencé. Cette avancée scientifique ouvre de nombreuses perspectives en termes de génomique fonctionnelle (ensemble de méthodes permettant de caractériser la fonction des gènes) et de biologie intégrative (ensemble de méthodes visant à appréhender le fonctionnement global de la plante et ses réponses à l’environnement). Ces perspectives dépendent pour une bonne part de la maîtrise de quantités importantes de données qu’il convient d’organiser et de corréler grâce à des outils informatiques adaptés.Des approches fonctionnelles concernant des gènes candidats et des approches transcriptomiques à haut débit ont permis d’identifier certains gènes ou certaines familles de gènes impliqués dans le développement et la maturation de la baie de raisin, mais au moment où cette thèse a débuté, aucun travail de biologie intégrative n’avait été entrepris.Le travail présenté ici, qui décrit l’obtention et l’analyse de métadonnées transcriptomiques et biochimiques portant sur la réponse de la baie à l’environnement radiatif, s’inscrit dans ce contexte. En procédant à un effeuillage partiel après la véraison, nous avons modulé l’exposition des baies au rayonnement solaire. Ceci a permis d’étudier l’influence du rayonnement (baie exposée, non exposée), de la position de la grappe (est, ouest) et de la position de la baie (à l’extérieur ou à l’intérieur de la grappe). Des baies ont été récoltées à 5 moments différents après l’effeuillage et utilisées pour des analyses métabolomiques et transcriptomiques. Leur contenu en sucres, acides organiques, acides aminés, anthocyanes et flavonols a été analysé par des dosages enzymatiques et par chromatographie liquide à haute performance). L’expression des gènes a été étudiée avec des microarrays représentatifs de l’ensemble du génome de la vigne (29600 gènes) pour les conditions présentant les différences métaboliques les plus marquées (baies exposées, situées à l’ouest et à l’extérieur de la grappe vs baies non exposées, situées à l’est et à l’intérieur de la grappe). Des analyses statistiques et corrélatives ont été conduites pour (a) déterminer les métabolites qui répondent au traitement et les facteurs qui les influencent (b) déterminer les gènes qui répondent aux traitements et ceux qui semblent co-régulés (c) préciser les réseaux de gènes et de métabolites qui semblent reliés. L’effeuillage n’affecte pas la teneur en sucres ou en acide tartrique des baies, il affecte peu les acides aminés, mais il augmente la teneur en flavonols et diminue la teneur en acide malique. Il affecte plus particulièrement les gènes associés au stress abiotique, au métabolisme secondaire, au transport et au métabolisme hormonal. Des expériences complémentaires ont permis d’identifier divers gènes spécifiquement associés à la composante thermique de l’exposition au soleil, parmi lequels des gènes codant pour des HSP, des transporteurs ABC, et des enzymes du métabolisme flavonoïdique. Des réseaux reliant des gènes et des métabolites ont pu être construits, qui associent des métabolites secondaires à des gènes de fonctions connues, ou à de nouveaux gènes candidats dont il conviendra d’étudier la fonction précise. / The total surface of vineyards worldwide is about 7.9 millions ha, which corresponds to an annual production of 67 millions tons berries. The annual world production of wines is about 300 millions hl/year. The French wineyard occupies 843 000 ha, among which 481 000 ha are dedicated to high quality wines (VQPRD) and 362 000 ha to table wines. Modern viticulture must deal with three major and related challenges : reduce the use of organic and inorganic phytochemicals, adapt the vineyard to climatic change and control the quality and the typicity in order to keep or gain new markets.In 2007, the grapevine became the first perennial fruit species whose genome was sequenced. This scientific breakthrough opens new pespectives in terms of functional genomics (set of methods allowing to characterize the function of genes) and integrative biology (set of methods allowing to study the global functioning of the plant and its response to the environment). These perspectives mainly depend on our ability to analyze large sets of data with adequate informatic tools.Functional approaches on candidate genes, and high throughput transcriptomic approaches have allowed to identify some genes or some gene families involved in the development and ripening of the grape berry, but when this Ph. D work started, no paper based on integrative biology was published on grapevine. The present work, which describes the collection and analysis of transcriptomic and metabolomic metadata related to the response of the berry to sun exposure. The exposure of the berries to the sun was controlled through a partial defoliation after veraison. This allowed to study the effects of sun exposure (exposed or shaded berries), of the position of the cluster (east, west) and of the anatomical position of the berry (outside or inside the berry). Berries were collected at 5 different time points after defoliation and used for metabolomic and transcriptomic analysis. Their content in sugars, amino acids, organic acids, anthocyanins and flavonols was analyzed by enzymatic assays and high performance liquid chromatography. For the berries whose metabolic content differed the most (exposed, west and outside berries vs shaded, east and inside berries), gene expression was studied with microarrays bearing a set of probes covering the whole genome of grapevine (29600 genes). Correlative and statistical analysis were conducted in order to (a) determine the metabolites that are the most responsive to the treatment, and the most important factors that control them (b) determine the genes that respond to the treatment and seem to be co-regulated (c) to precise the networks of genes and metabolites which seem related. Defoliation does not affect the sugar and tartaric acid contents, hardly affects amino acids, but it increases flavonol content and decreases malic acid content. It affects more specifically genes associated with abiotic stress, secondary metabolism, transport and hormonal metabolism. Additional experiments allowed us to identify genes that are specifically associated with the thermal component of sun exposure, among which genes encoding HSP, ABC transporters, and enzymes of flavonoid metabolism. Networks relating genes and metabolites could be constructed. These networks associate secondary metabolites with genes of known function and new candidate genes for which the function will have to be precised.
77

Biomimetic Poly(ethylene glycol)-based Hydrogels as a 3D Tumor Model for Evaluation of Tumor Stromal Cell and Matrix Influences on Tissue Vascularization

Ali, Saniya January 2015 (has links)
<p>To this day, cancer remains the leading cause of mortality worldwide1. A major contributor to cancer progression and metastasis is tumor angiogenesis. The formation of blood vessels around a tumor is facilitated by the complex interplay between cells in the tumor stroma and the surrounding microenvironment. Understanding this interplay and its dynamic interactions is crucial to identify promising targets for cancer therapy. Current methods in cancer research involve the use of two-dimensional (2D) monolayer cell culture. However, cell-cell and cell-ECM interactions that are important in vascularization and the three-dimensional (3D) tumor microenvironment cannot accurately be recapitulated in 2D. To obtain more biologically relevant information, it is essential to mimic the tumor microenvironment in a 3D culture system. To this end, we demonstrate the utility of poly(ethylene glycol) diacrylate (PEGDA) hydrogels modified for cell-mediated degradability and cell-adhesion to explore, in 3D, the effect of various tumor microenvironmental features such as cell-cell and cell-ECM interactions, and dimensionality on tumor vascularization and cancer cell phenotype. </p><p>In aim 1, PEG hydrogels were utilized to evaluate the effect of cells in the tumor stroma, specifically cancer associated fibroblasts (CAFs), on endothelial cells (ECs) and tumor vascularization. CAFs comprise a majority of the cells in the tumor stroma and secrete factors that may influence other cells in the vicinity such as ECs to promote the organization and formation of blood vessels. To investigate this theory, CAFs were isolated from tumors and co-cultured with HUVECs in PEG hydrogels. CAFs co-cultured with ECs organized into vessel-like structures as early as 7 days and were different in vessel morphology and density from co-cultures with normal lung fibroblasts. In contrast to normal lung fibroblasts (LF), CAFs and ECs organized into vessel-like networks that were structurally similar to vessels found in tumors. This work provides insight on the complex crosstalk between cells in the tumor stroma and their effect on tumor angiogenesis. Controlling this complex crosstalk can provide means for developing new therapies to treat cancer.</p><p>In aim 2, degradable PEG hydrogels were utilized to explore how extracellular matrix derived peptides modulate vessel formation and angiogenesis. Specifically, integrin-binding motifs derived from laminin such as IKVAV, a peptide derived from the α-chain of laminin and YIGSR, a peptide found in a cysteine-rich site of the laminin β chain, were examined along with RGDS. These peptides were conjugated to heterobifunctional PEG chains and covalently incorporated in hydrogels. The EC tubule formation in vitro and angiogenesis in vivo in response to the laminin-derived motifs were evaluated. </p><p>Based on these previous aims, in aim 3, PEG hydrogels were optimized to function as a 3D lung adenocarcinoma in vitro model with metastasis-prone lung tumor derived CAFs, HUVECs, and human lung adenocarcinoma derived A549 tumor cells. Similar to the complex tumor microenvironment consisting of interacting malignant and non-malignant cells, the PEG-based 3D lung adenocarcinoma model consists of both tumor and stromal cells that interact together to support vessel formation and tumor cell proliferation thereby more closely mimicking the functional properties of the tumor microenvironment. The utility of the PEG-based 3D lung adenocarcinoma model as a cancer drug screening platform is demonstrated with investigating the effects of doxorubicin, semaxanib, and cilengitide on cell apoptosis and proliferation. The results from drug screening studies using the PEG-based 3D in vitro lung adenocarcinoma model correlate with results reported from drug screening studies conducted in vivo. Thus, the PEG-based 3D in vitro lung adenocarcinoma model may serve as a better tool for identifying promising drug candidates than the conventional 2D monolayer culture method.</p> / Dissertation
78

Role of delta-like 4 in solid tumours and response to radiation therapy

Bham, Saif Ahmed Shahab January 2013 (has links)
Delta-like ligand 4 (DLL4) is a ligand for the Notch family of receptors. DLL4 is an important regulator of angiogenesis and DLL4 blockade promotes non-productive angiogenesis and delays tumour growth. The aim of this thesis was to investigate the effects of anti-DLL4 therapy in solid tumours in combination with a clinically relevant dose of ionising radiation (5 Gy; IR) and to analyse alterations in the Notch pathway induced by the treatments. Combining both treatments resulted in a greater than additive tumour growth delay in LS174T tumours, compared to either treatment alone. DLL4 blockade dysregulated vasculature and increased necrosis in LS174T and HCT-15 (DLL4-expressing and negative cell lines respectively) tumours within 3 days after treatment, but no changes were observed with IR alone. Additionally, combined IR and anti-DLL4 treatment of FaDu tumours (another DLL4-negative cell line) by our colleagues, also resulted in a supra-additive growth delay. These results show that combining IR with DLL4 blockade is an effective strategy for prolonging tumour growth delay and suggest that the stroma/vasculature provide the main therapeutic target for the anti-DLL4 therapy. Analysis of Notch pathway shows that IR upregulated Jag1 in tumour cells, and may inhibit Notch and downregulate DLL4 in the stroma. These changes may potentially affect tumour vessels and response to anti-DLL4 therapy. In vitro, anti-DLL4 therapy induced proliferation in quiescent contact-inhibited endothelial cells and also appeared to abrogate IR-induced inhibition of migration. These results suggest that DLL4 may be important in maintaining vessel quiescence and that IR may in part decrease migration through Notch signalling. Combining IR and DLL4 blockade to target tumour growth is an effective and well tolerated strategy and warrants further validation and refinement to be translated into clinical practice.
79

The use of novel xenografting methods to reveal differential gene expression between breast cancer at primary and metastatic sites

de Sousa, Emma Louise January 2012 (has links)
In developed countries, breast cancer is the commonest malignancy among women. Understanding the mechanisms involved in breast cancer progression and the influence of the microenvironment on cancer cell proliferation, results in better treatments. This study aimed to optimise breast cancer xenograft rates using a novel chamber developed for tissue engineering purposes. The established tumours were subjected to enzyme digestion, creating a single cell suspension, which was then injected into immunocompromised mice at primary, metastatic and intra-cardiac sites. The resulting tumours in the mammary fat pad (MFP) and bone were compared using species-specific reverse-transcription polymerase chain reaction (RT-PCR) and cDNA microarray, to examine the influence of the microenvironment on gene expression. The achieved xenograft graft rates of 25% were similar to those previously reported. The matrix metalloproteinase family of enzymes (MMPs) degrade extracellular matrix, influencing invasion and migration of malignant cells. RT-PCR results showed that the majority of the MMPs expressed in the cancers were stromal rather than tumour in origin. MT1-MMP, MMP-2 and MMP-11 had significantly higher expression levels in the MFP than in the bone, but MMP-9 was expressed more in the bone than MFP. There was also an up-regulation of stromal production of MT1-MMP and MMP-13 in the MFP in the presence of tumour. This may have significance when considering which MMPs are the most appropriate targets for inhibition during cancer treatment. The most significant of the differentially expressed genes on microarray analysis were trefoil factor 1 (TFF1) and insulin growth-factor binding protein 3 (IGFBP-3), both expressed significantly more in tumours from the MFP than the bone. The thesis presented demonstrates some of the complexities of tumour-stromal interactions and supports Paget’s seed-soil theory, confirming in several ways the variation in gene expression in breast cancer between primary and metastatic sites.
80

Vliv chemoterapie na expresi imunoregulačních genů v mikroprostředí nádorů / Impacts of chemotherapy on imunoregulatory gene expression in the tumor microenvironment

Paračková, Zuzana January 2013 (has links)
Tumor microenvironment is an area, where the local immunosuppressive effects dominate and prevents the immune system to perform its physiological functions. The cells infiltrating the microenvironment have an important function among many cell types since they produce a large quantity of factors suppressing the immune response. In our work, we monitored the immune changes in the microenvironment during tumor growth and chemotherapy. For these purposes, we utilized the methods for analysis of the proportion and phenotype of the distinct populations of immunocytes and for analysis of the total level of expressions of selected genes associated with immunosuppression or with distinct populations of immunocytes. The aim of our work was to discover, using two types of mouse tumors (TRAMP-C2 and TC-1/A9), how 5-azacytidine (5AC), a cytostatic drug with epigenetic activity, affects the proportion of leukocytes infiltrating the tumor microenvironment and, further, whether these changes are accompanied by decreased expression of immunosuppressing genes. In addition, we have also focused on the changes of relative expression of genes encoding markers of lymphoid lines and, on other immunoregulating genes, encoding IL-6, IL-10, IL-12, IL-4 and IFNγ cytokines, in the microenvironment of these tumors....

Page generated in 0.063 seconds