Spelling suggestions: "subject:"micromechanics"" "subject:"micromechanic""
91 |
MICROMECHANICS BASED COMPOSITE MATERIAL MODELS FOR CRASHWORTHINESS FINITE ELEMENT SIUMLATIONYI, WEITAO 11 October 2001 (has links)
No description available.
|
92 |
Durability of Ceramic Matrix Composites at Elevated Temperatures: Experimental Studies and Predictive ModelingHalverson, Howard Gerhard 23 May 2000 (has links)
In this work, the deformation and strength of an oxide/oxide ceramic matrix composite system under stress-rupture conditions were studied both experimentally and analytically. A rupture model for unidirectional composites which incorporates fiber strength statistics, fiber degradation, and matrix damage was derived. The model is based on a micromechanical analysis of the stress state in a fiber near a matrix crack and includes the effects of fiber pullout and global load sharing from broken to unbroken fibers. The parameters required to produce the deformation and lifetime predictions can all be obtained independently of stress-rupture testing through quasi-static tension tests and tests on the individual composite constituents. Thus the model is truly predictive in nature. The predictions from the model were compared to the results of an extensive experimental program. The model captures the trends in steady-state creep and tertiary creep but the lifetime predictions are extremely conservative. The model was further extended to the behavior of cross-ply or woven materials through the use of numeric representations of the fiber stresses as the fibers bridge matrix cracks. Comparison to experiments on woven materials demonstrated the relationship between the behavior of the unidirectional and cross-ply geometries. Finally, an empirical method for predicting the durability of materials which exhibit multiple damage modes is examined and compared to results of accurate Monte Carlo simulations. Such an empirical method is necessary for the durability analysis of large structural members with varying stress and temperature fields over individual components. These analyses typically require the use of finite element methods, but the extensive computations required in micromechanical models render them impractical. The simple method examined in this work, however, is shown to have applicability only over a narrow range of material properties. / Ph. D.
|
93 |
Micromechanical Behavior of Fiber-Reinforced Composites using Finite Element Simulation and Deep LearningSepasdar, Reza 07 October 2021 (has links)
This dissertation studies the micromechanical behavior of high-performance carbon fiber-reinforced polymer (CFRP) composites through high-fidelity numerical simulations. We investigated multiple transverse cracking of cross-ply CFRP laminates on the microstructure level through simulating large numerical models. Such an investigation demands an efficient numerical framework along with significant computational power. Hence, an efficient numerical framework was developed for simulating 2-D representations of CFRP composites' microstructure. The framework utilizes a nonlinear interface-enriched generalized finite element method (IGFEM) scheme which significantly decreases the computational cost. The framework was also designed to be fast and memory-efficient to enable simulating large numerical models. By utilizing the developed framework, the impacts of a few parameters on the evolution of transverse crack density in cross-ply CFRP laminates were studied. The considered parameters were characteristics of fiber/matrix cohesive interfaces, matrix stiffness, $0^{circ}$~plies longitudinal stiffness. We also developed a micromechanical framework for efficient and accurate simulation of damage propagation and failure in aligned discontinuous carbon fiber-reinforced composites under loading along the fibers' direction. The framework was validated based on the experimental results of a recently developed 3-D printed aligned discontinuous carbon fiber-reinforced composite as the composite of interest. The framework was then utilized to investigate the impacts of a few parameters of the constitutive equations on the strength and failure pattern of the composites of interest. This dissertation also contributes towards improving the computational efficiency of CFRP composites' simulations. We exhaustively investigated the cause of a convergence difficulty in finite element analyses caused by cohesive zone models (CZMs) which are commonly used to simulate fiber/matrix interfaces in CFRP composites. The CZMs' convergence difficulty significantly increases the computational burden. For the first time, we explained the root of the convergence difficulty and proposed a simple technique to overcome the convergence issue. The proposed technique outperformed the existing methods in terms of accuracy and computational cost. We also proposed a deep learning framework for predicting full-field distributions of mechanical responses in 2-D representations of CFRP composites based on the geometry of the microstructures. The deep learning framework can be used as a surrogate to the expensive and time-consuming finite element simulations. The proposed framework was able to accurately predict the stress distribution at an early stage of damage initiation and the failure pattern in representations of CFRP composites microstructure under transverse tension. / Doctor of Philosophy / Carbon fiber-reinforced polymers (CFRPs) are materials that are lightweight with excellent mechanical performance. Hence, these materials have a wide range of applications in various industries such as aerospace, automotive, and civil engineering. The extensive use of CFRPs has made them an active area of research and there have been great efforts to better understand and improve the mechanical properties of these materials over the past few decades. Therefore, CFRP materials and their manufacturing process are constantly changing and new types of CFRPs are kept being developed. As a result, the mechanical behavior of CFRPs needs to be exhaustively investigated to provide guidelines for their optimal engineering design and indicate the future direction of manufacturing improvements. This dissertation studied the mechanical behavior of CFRPs through high-fidelity simulations. Two types of CFRP were investigated: laminates and 3-D printed CFRPs. Laminates are the most popular type of CFRPs which are commonly used to construct the body of aircraft. 3-D printed CFRPs are new types of material that are gaining traction due to their ability to construct structures with complex geometries at high speed and without direct human supervision. The numerical simulations of CFRPs under mechanical loading are time-consuming and require significant computational power even when run on a supercomputer. Hence, this dissertation also contributes to improving the computational efficiency of numerical simulations. To decrease the computational cost, we proposed a technique that can significantly speed up the numerical simulations of CFRPs. Moreover, we utilized artificial intelligence to develop a new framework that can be substituted for the expensive and time-consuming conventional numerical simulations to quickly predict specific mechanical responses of CFRPs.
|
94 |
Extension of Moire interferometry into the ultra-high sensitivity domainHan, Bongtae 11 May 2006 (has links)
The objective of this research was to provide means for the experimental analysis of deformations encountered in micromechanics. Whole field contour maps of U and V displacements in a microscopic field of view were desired. Since displacements within a small field can be very small even when strains are large, ultra-high sensitivity is required. The specific objective was displacement sensitivity of 50 nm per fringe contour, which corresponds to that of moire with 20,000 lines per mm, in combination with spatial resolution of the optical microscope (2-5 μm).
The objective was achieved by the following developments. First, the basic sensitivity of moire interferometry was increased beyond the previously conceived theoretical limit. This was accomplished by creating the virtual reference grating inside a refractive medium instead of air, thus shortening the wavelength of light. A very compact four beam moire interferometer in a refractive medium was developed for microscopic viewing, which produced a basic sensitivity of 208 nm per fringe order. Its configuration made it inherently stable and relatively insensitive to environmental disturbances. An optical microscope was employed as the image recording system to obtain the desired spatial resolution.
Secondly, a fringe multiplication scheme was implemented. Here, an automatic fringe shifting and fringe sharpening scheme was developed, wherein very thin fringe contours of order N* = βN were produced, where N is the fringe order in the basic moire pattern and β is a fringe multiplication factor. A factor of 12 was achieved, providing a sensitivity of 17 nm per fringe contour. This corresponds to moire with 57,600 lines per mm (1,463,000 lines per in.), which exceeds the sensitivity objective. The mechanical and electronic systems implemented here are remarkably robust and quick.
The method was demonstrated with three practical applications: interface strains in a thick 0°/90° graphite/epoxy composite, fiber/matrix deformations of metal/matrix composites, and thermal deformation around a solder joint in a microelectronic subassembly. / Ph. D.
|
95 |
Theoretical and experimental analysis of strain concentration around a broken fiber using the macro-composite techniqueKuppuswamy, Anand 18 September 2008 (has links)
It is important to understand the damage events in composite materials at the micro level, model elastic properties, and understand phenomenological aspects of strength. Development of an accurate representation of these phenomena at the local level is difficult but pioneering work was done by researchers at Virginia Tech. This thesis builds on the previous efforts at Virginia Tech where the experimental and analytical models were improved to include high fiber volume fractions. Experimental techniques were developed to achieve a controlled fiber fracture at a predetermined location and then measure the over-strain experienced by the neighboring rods. A finite element model was used to validate the micromechanical analysis. Quantitative measurements of perturbed strain fields were measured with embedded strain gages which were then compared with the finite element results. / Master of Science
|
96 |
Micromechanics of crenulated fibers in carbon/carbon compositesCarapella, Elissa E. 19 September 2009 (has links)
The influence of crenulated noncircular fibers on the micromechanical stress states due to a transverse strain and to a temperature change in carbon/carbon composites is examined using the finite element method. Stresses at the interface of both fully bonded and fully disbonded fibers having two crenulation amplitudes and with two fiber volume fractions are presented. In each case, these interface stresses are compared to stresses at the interface of circular fibers which have the same degree of disbond and fiber volume fraction and are under the same loading conditions. For the disbonded cases, deformed meshes showing locations of fiber/matrix contact are also included. In addition to the interface stress states, selected composite properties are also computed and compared in each case examined. Interest in studying noncircular fibers stems from a desire to increase the transverse properties of carbon/carbon by introducing a mechanical interlocking between the fiber and the matrix. Results presented here indicate that this interlocking does in fact occur. Evidence from the interface stress data suggests, however, that any possible advantage of this interlocking may be outweighed by the disadvantage of stress concentrations which arise at the interface due to the crenulated geometry of the fibers / Master of Science
|
97 |
Micromechanics of strength-related phenomena in composite materialsCase, Scott Wayne 12 September 2009 (has links)
Micromechanical models are presented which can be used to evaluate: stress concentrations in the vicinity of single and multiple fiber fractures in unidirectional composites under axial loading; the tensile strength of unidirectional composites; fiber coatings that can be used to maximize the transverse strain-to-failure and longitudinal shear strain-to-failure of composites; and the compression strength of composite materials containing embedded cylindrically shaped sensors or actuators. In each case, with the exception of the longitudinal shear model, the micromechanical predictions are compared with the experimental results. In the cases of the fiber fracture model and the transverse strain-to-failure model, these experimental results are obtained by employing a macro-model composite. It is demonstrated that the constituents of the macromodel composite can be systematically altered in order to study physical parameters such as fiber volume fraction and fiber coatings. / Master of Science
|
98 |
Mechanical Properties of Random Discontinuous Fiber Composites Manufactured from Wetlay ProcessLu, Yunkai 22 August 2002 (has links)
The random discontinuous fiber composite has uniform properties in all directions. The wetlay process is an efficient method to manufacture random discontinuous thermoplastic preform sheets that can be molded into random composite plaques in the hot-press. Investigations were done on the molding parameters that included the set-point mold pressure, set-point mold temperature and cooling methods. The fibers used in the study included glass and carbon fiber. Polypropylene (PP) and Polyethylene Terephthalate (PET) were used as the matrix.
Glass/PP and Glass/PET plaques that had fiber volume fractions ranging from 0.05 to 0.50 at an increment of 0.05 were molded. Both tensile and flexural tests were conducted. The test results showed a common pattern, i.e., the modulus and strength of the composite increased with the fiber volume fraction to a maximum and then started to descend. The test results were analyzed to find out the optimal fiber volume fraction that yielded the maximum modulus or strength. Carbon/PET composites plaques were also molded to compare their properties with Glass/PET composite at similar fiber volume fractions. Micrographs were taken of selected specimens to examine the internal structure of the material.
Existing micromechanics models that predict the tensile modulus or strength of random fiber composites were examined. Predictions from some of the models were compared with test data. / Master of Science
|
99 |
Analysis of Composites using PeridynamicsDegl'Incerti Tocci, Corrado 07 February 2014 (has links)
Since the last century a lot of effort has been spent trying to analyze damage and crack evolution in solids. This field is of interest because of the many applications that require the study of the behavior of materials at the micro- or nanoscale, i.e. modeling of composites and advanced aerospace applications. Peridynamics is a recently developed theory that substitutes the differential equations that constitute classical continuum mechanics with integral equations. Since integral equations are valid at discontinuities and cracks, peridynamics is able to model fracture and damage in a more natural way, without having to work around mathematical singularities present in the classical continuum mechanics theory. The objective of the present work is to show how peridynamics can be implemented in finite element analysis (FEA) using a mesh of one-dimensional truss elements instead of 2-D surface elements. The truss elements can be taken as a representation of the bonds between molecules or particles in the body and their strength is found according to the physical properties of the material. The possibility implementing peridynamics in a finite element framework, the most used method for structural analysis, is critical for expanding the range of problems that can be analyzed, simplifying the verification of the code and for making fracture analysis computationally cheaper. The creation of an in-house code allows for easier modifications, customization and enrichment if more complex cases (such as multiscale modeling of composites or piezoresistive materials) are to be analyzed. The problems discussed in the present thesis involve plates with holes and inclusions subjected to tension. Displacement boundary conditions are applied in all cases. The results show good agreement with theory as well as with empirical observation. Stress concentrations reflect the behavior of materials in real life, cracks spontaneously initiate and debonding naturally happens at the right locations. Several examples clearly show this behavior and prove that peridynamics is a promising tool for stress and fracture analysis. / Master of Science
|
100 |
Microfluidic technology for integrated thermal management: micromachined synthetic jetWang, Yong 01 December 2003 (has links)
No description available.
|
Page generated in 0.0394 seconds