Spelling suggestions: "subject:"microscope optique een champ proche"" "subject:"microscope optique enn champ proche""
1 |
Caractérisation de la chiralité optique dans des systèmes plasmoniques / Characterization of optical chirality effects in plasmonic systemsPham, Kim Anh Aline 06 November 2018 (has links)
L'objectif de ce projet de thèse est de mettre en évidence des phénomènes de chiralité optique induits dans des systèmes plasmoniques. La manipulation des différents degrés de liberté de la lumière est mise en évidence par le biais de techniques expérimentales complémentaires basées sur la tomographie en polarisation, la microscopie à fuites radiatives et la microscopie en champ proche optique (SNOM). D'une part, nous rapportons une méthode de caractérisation non-invasive afin de révéler la présence conjointe de chiralité planaire et volumique au sein de métasurfaces plasmoniques. Pour décrire cette chiralité mixte, une généralisation du modèle de Kuhn est développée. D'autre part, nous démontrons deux dispositifs plasmoniques exploitant le couplage spin-orbite optique pour contrôler les moments angulaires de spin et orbitaux de la lumière. En particulier, le mécanisme réciproque de l'effet spin Hall optique est démontré à l'aide de nano-ouvertures en forme de T: la trajectoire des plasmons de surface est adressée dans le moment angulaire de spin des photons. Cette fonctionnalité est ensuite mise en œuvre dans une expérience de brouillage d'interférence. La génération de vortex plasmoniques est également réalisée par le biais de cavités spirales, dont la chiralité conditionne l'intensité et le moment angulaire orbital des vortex. Enfin, une preuve de concept sur la mesure de la densité locale d’états optique, façonnée par un environnement chiral, est démontrée à l'aide d'une sonde SNOM classique et quantique. Ce travail permet de connecter les grandeurs de densité et de flux de chiralité aux interactions lumière-matière. L'étude de la chiralité dans le contexte de la plasmonique ouvre des perspectives prometteuses dans la nano-manipulation optique, la séparation de molécules chirales et le contrôle de sources quantiques. / In this thesis, we aim at demonstrating chiral optical effects in plasmonic systems. The manipulation of the different degrees of freedom of light is evidenced by complementary experimental approaches based on polarisation tomography, leakage radiation microscopy and scanning near-field optical microscopy (SNOM). On one hand, we report on a non-invasive method to reveal the coexistence of surface and bulk chirality in plasmonic metasurfaces. Specifically, we extend the model of Kuhn to describe this chirality mixture. On the other hand, we demonstrate two plasmonic devices which rely on the optical spin-orbit coupling to control the spin and the orbital angular momentum of light. In particular, the reciprocal mechanism of the spin-Hall effect of light is shown using T-shaped nano-apertures: the trajectory of surface plasmons can be encoded in the spin of the photons. This which-path marker is then implemented in an interference erazer experiment. Plasmonic vortex generation is also reported in spiral cavities. The spiral chirality rules the intensity as well as the angular orbital momentum of the singular fields. Finally, as a proof of concept, we demonstrate using a conventional and quantum SNOM probe that the local density of optical states can be structured by a chiral environment. We also connect the density and flux chirality to light-matter interactions. Studying chirality in the context of plasmonics opens promising prospects in the optical nano-manipulation, chiral molecules discrimination and the control of quantum sources.
|
2 |
Organisation à l'échelle nano et imagerie de cristaux liquides et de colloïdes sur les surfaces / Nanoscale patterning and imaging of liquid crystals and colloids at surfacesPendery, Joel 01 April 2014 (has links)
Cette thèse est centrée sur les cristaux liquides et l' ordre orientationnel qui découle de ces matériaux anisotropes. Des motifs chiraux quasi-bidimensionnels ont été formés par microscopie à force atomique (AFM) sur substrat de polyimide. Dans le cas de matériaux non chiraux, une chiralité 3D a été localisée à quelques nanomètres de la surface. La chiralité a été quantifiée par l'effet électroclinique de surface. De plus, un échantillon avec un axe facile et bien contrôlé a été fabriqué et une méthode pour mesurer l'orientation du directeur local avec une résolution de 100 nm en utilisant la microscopie optique en champ proche a donné la vraie fonction de répartition angulaire de l'ordre local avec une grande précision. Enfin, un auto-assemblage de nanoparticules d'or a été étudié dans un film de cristal liquide cholestérique (CLC), en cellule ouverte, a vec une texture cholestérique orientée et des nanoparticules d'or enrobées de molécules de thiol. Les mesures de la Résonance Plasmon de Surface Polarisée Localisée (LSPR) montrent une anisotropie de la réponse optique dans ces système hybrides que nous avons liées à la présence d'agrégats en forme d'aiguilles. Les calculs de la théorie de Mie généralisée, en interprétant les mesures de LSPR, ont mis en évidence une distance entre nanoparticules plus petite dans le CLC par rapport à des nanoparticules sans CLC. L' espacement plus rapproché suggère la présence de sites de piégeage dans le CLC ainsi que la présence d'une coquille isotrope autour les nanoparticules. / This dissertation focuses on liquid crystals and the inherent orientational order that arises from these anisotropic materials. Quasi two-dimensional chiral patterns were scribed via Atomic Force Microscopy (AFM) with robust control onto polyimide substrate, composed of achiral materials, yielding 3D chirality that was localized to within a few nanometers of the surface. The chirality was quantified through the surface electroclinic effect. In addition, a sample with a well-controlled easy axis was fabricated and a method to measure the local director orientation with 100 nm resolution using Near-Field Scanning Optical Microscopy yielded the true angular distribution function of the local order with high precision. Finally, gold nanoparticle self-assembly was studied within a cholesteric liquid crystal (CLC) film. The open sample creates a striped texture and gold nanoparticles coated with thiol are deposited within the liquid crystal matrix. Polarized Localized Surface Plasmon Resonance (LSPR) measurements show an anisotropy between light polarized with respect to the stripe orientation. Evaporating the liquid crystal revealed disordered anisometric needle-like aggregates through AFM. Generalized Mie theory calculations, in conjunction with LSPR, found a smaller nanoparticle spacing in the CLC compared to a 2D monolayer of the same nanoparticles on a rubbed substrate or 1D chains in smectic A dislocations. The closer spacing suggests trapping sites within the CLC, where nanoparticles are first localized and then aggregate under van der Waals attraction aided and enhanced by the CLC and mediated by steric forces.
|
Page generated in 0.0958 seconds