• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 6
  • 2
  • Tagged with
  • 35
  • 35
  • 35
  • 15
  • 13
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Optics and spectroscopy of gold nanowires / Propriétés optiques et spectroscopiques de nanofils d'or

Vasanthakumar, Priya 14 May 2012 (has links)
Les études portent sur les propriétés optiques de nanofils d’or individuels et de réseaux de nanofils d’or. Malgré ses avantages, comme une sensibilité moindre à l’oxydation et sa biocompatibilité, les nanofils en or ont été peu étudiés par comparaison avec les nanofils en argent ou semiconducteurs. Les études sur ces substrats ont été réalisées par spectroscopie Raman exaltée de surface (SERS). Le régime de la molécule unique est atteint, ce que j’ai démontré en utilisant deux molécules différentes de colorant, co-déposées. J’ai étudié la propagation des plasmons de surface dans les nanofils ainsi que son évolution en fonction de la longueur d’onde. Une distance de propagation de 3,8 µm a été observée, plus grande que les valeurs précédemment rapportées. Les réseaux de nanofils ont également été étudiés en combinant la réponse de deux molécules pour démêler les différents processus contribuant au signal de la diffusion Raman. Les résultats obtenus par des études en polarisation et en fonction de la longueur d’onde sur l’évolution de l’intensité du signal SERS ont été confrontés aux résultats de simulations réalisées par la méthode de l’approximation des dipôles discrets (DDA). La microscopie de champ proche optique à balayage (SNOM) a été mise en œuvre pour étudier les effets d’exaltation locale sur les réseaux de nanofils. Ces études ont été réalisées avec deux polarisations croisées et à deux longueurs d’onde différentes. L’originalité des études SNOM repose sur l’utilisation de deux modes différents d’éclairement. L’un est utilisé pour cartographier l’exaltation des champs électromagnétiques, l’autre pour étudier les effets de propagation des plasmons dans les nanofils. / We have reported the optical properties of isolated gold nanowires and of nanowire arrays. Despite the advantages gold has to offer as it is less sensitive to oxidation and as an biocompatible metal, it has been scarcely studied than silver or semiconductors nanowires. We have made surface enhanced Raman spectroscopic (SERS) studies on the isolated nanowires and nanowire arrays. Single molecule regime is attained and has been proven with the aid of two dye molecules that are co-deposited. The propagation of surface plasmons in these nanowires and their evolution with the excitation wavelength have been studied. We report a propagation distance of 3.8 µm which is longer than the values previously reported in literature. Nanowire arrays have been investigated with two dyes again to disentangle the various factors contributing to SERS. Polarization studies and the evolution of enhancement in the nanowires with the wavelength have been reported and explained with the aid of simulations obtained by the discrete dipole approximation (DDA). The scanning near field optical microscopy (SNOM) has been done to investigate the local field enhancements on the nanowire arrays. Two different polarizations and two excitation wavelengths have been used. The original idea of the technique includes the use of two illumination modes which serves two purposes. One, to map the regions of enhanced field and the other to study the propagation effects seen on the nanowire.
32

Etude et validation de nouveaux nano-émetteurs destinés à la microscopie optique en champ proche : développement de pointées fonctionnalisées

Suarez, Miguel 17 October 2006 (has links) (PDF)
Un des problèmes majeurs et non encore résolu en microscopie optique champ proche est le choix de l'émetteur ou du capteur optimal. Parmi les techniques développées, l'utilisation de sondes métalliques a conduit aux résolutions les plus élevées. L'inconvénient de ces nano-sondes réalisées à partir de fil métallique, est leur opacité. Une solution hybride combinant un milieu transparent et une couche métallique, par exemple une fibre optique taillée en pointe et métallisée, présente l'intérêt à la fois du guidage de la lumière et de l'existence d'un certain confinement du champ lumineux. Toutefois ces nano-sondes, largement utilisées, présentent de nombreux inconvénients dont le principal est la faible quantité de lumière transmise ou captée. L'introduction du concept de pointe fonctionnalisée est envisagée dans ce travail afin de remédier à cette carence, en optimisant par segmentation adéquate de la couche métallique, le transfert électromagnétique de ou vers la pointe. Il s'agit ni plus ni moins de la transposition dans le domaine optique du principe de l'antenne segmentée. Ce travail constitue le début d'un vaste sujet de recherche portant sur la fonctionnalisation des sondes destinées à la microscopie champ proche. Nous avons réalisé dans cette étude le cas d'un anneau métallique nanométrique suivant deux approches, théorique et expérimentale, menées en parallèle. Pour l'approche théorique, nous nous sommes appuyés sur des simulations numériques à partir d'un code de calcul commercial basé sur des différences finies spatio-temporelles FDTD, et sur une approche analytique modale d'un cylindre métallique infini. Pour la partie expérimentale, nous avons mis en place des procédés de fabrication d'anneaux nanométriques assistée par lithographie électronique classique et nous proposons un procédé original qui combine la lithographie électronique et une attaque ionique argon, afin de surmonter les limites de résolution imposées par les performances de nos appareillages (MEB). Toutes ces techniques ont été réalisées au sein de la centrale de technologie MIMENTO de l'Institut FEMTO-ST.
33

Émission dipolaire et absorption en champ proche de nanostructures

Castanié, Etienne 04 November 2011 (has links) (PDF)
Le présent document constitue le mémoire rédigé durant ma thèse de doctorat, qui s'est déroulée de novembre 2008 à novembre 2011 à l'Institut Langevin (ESPCI ParisTech). Une partie de ce travail de thèse a consisté en l'étude expérimentale des fluctuations spatiales de la densité de modes optiques (LDOS) à la surface de films d'or semi-continus, connus pour présenter des modes de surface localisés au voisinage du seuil de percolation. Pour cela, nous avons dispersé des nanosources fluorescentes à la surface de films de fraction surfacique d'or croissante et mesuré la statistique du taux d'amortissement des émetteurs. Nous avons montré que les fluctuations spatiales de LDOS sont maximales lorsque les modes localisés apparaissent. Nous avons ensuite développé un instrument permettant de réaliser l'imagerie de LDOS en accrochant une nanosource fluorescente à l'apex d'une pointe d'AFM, et réalisé une preuve de principe sur des échantillons de test. Une autre partie a concerné l'étude théorique de la réponse optique d'une nanoparticule métallique. Nous avons montré comment le taux d'amortissement d'un dipôle en champ proche d'une nanosphère métallique est modifié lorsque les interactions microscopiques sont prises en compte. Nous avons également étudié l'influence de l'environnement sur la section efficace d'absorption d'une nanoparticule, et montré que cette grandeur n'est pas intrinsèque, mais dépend de l'environnement. Nous avons confirmé ce résultat sur un exemple simple permettant de donner des ordres de grandeur.
34

Contribution à l'étude et à la modélisation de la mésostructure de composites polymères-noir de carbone

Pécastaings, Gilles 11 July 2005 (has links) (PDF)
Les proprétés physiques des matériaux hétérogènes polymère/noir de carbone sont étroitement liées à l'arrangement des particules conductrices dans la matrice, c'est-à-dire à leur mésostructure. Afin d'étudier celle-ci, nous avons utilisé une extension de la microscopie à champ proche appelée Résiscope qui permet grâce aux propriétés électriques locales de ces matériaux de révéler les connexions électriques entre particules. L'analyse comparative de trois séries de matériaux ayant subi des mélanges différents a permis de montrer qu'un modèle de percolation ne représente que très imparfaitement la mésostructure des matériaux réels et qu'une analyse numérique appropriée des images fournit des renseignements sur la mésostructure à courte et à grande échelles. Enfin, nous avons entrepris l'élaboration de modèles de structures alternatifs fondés sur des données de microscopie électronique en transmission.
35

High speed bio atomic force microscopy : application à l'étude de la structure et dynamique d'assemblage supramoléculaires : étude des interactions au niveau de la cellule

Ewald, Maxime 12 December 2011 (has links)
Le microscope à force atomique (AFM) fait partie des microscopies de champ proche dites à sonde locale. De par sa versatilité, un grand nombre de domaines des nanosciences tant en physique, que chimie ou biologie utilisent cette technique. Cependant, le champ d’investigation de la microscopie AFM classique est restreint temporellement et spatialement. En effet, en raison de sa limite de vitesse d’acquisition d’image et sa limite de caractérisation des interactions en surface, des études de dynamique moléculaire ou d’éléments sub-surface ne sont pas envisageables. Nous montrons donc que la caractérisation en volume est permise en utilisant une méthode d’imagerie non destructive, la microscopie de champ proche holographique ultrasonore (SNFUH). Cette méthode développée pour étudier à l.air et en liquide, a fourni des informations localisées en profondeur avec une haute résolution spatiale, en utilisant des fréquences de résonance dans la gamme du MHz. Une calibration a été effectuée sur des échantillons de structures enterrées ou non, réalisés par lithographie e-beam. Ces échantillons ont été utilisés pour ajuster les fréquences de résonance et comprendre la formation des images en mode acoustique (profondeur investiguée et inversion de contraste). Cet outil non invasif et innovant de caractérisation a donc été développé. Il présente un énorme potentiel pour des échantillons biologiques en termes de résolution et d’information. Les microscopes AFMclassique et acoustique SNFUH sont soumis à des contraintes de temps. Pour s’en affranchir, un prototype, le microscope à force atomique haute-vitesse (HS-AFM) a été développé par l’équipe du Professeur T. Ando à l’Université de Kanazawa (Japon). Il autorise ainsi le balayage à vitesse vidéo, i.e. 25 images/s, en milieu liquide. Nous avons amélioré le prototype avec une nouvelle génération de boucle d’asservissement et augmenté la zone de caractérisation. La résolution dépend fortement du levier utilisé. De plus une qualité d’image supérieure est obtenue grâce à l’utilisation de surpointes en carbone sur ces mêmes leviers. Finalement, nous montrons des résultats obtenus avec ces deux techniques de microscopies sur différents édi.ces biologiques en milieu liquide. Ainsi, avec le microscope AFM haute-vitesse, des dynamiques biomoléculaires ont pu être visualisées (ex : structures protéine-ADN) avec une résolution nanométrique. Puis une étude des changements conformationnels intracellulaires de kératinocytes vivantes dans leur milieu physiologique a été réalisée par microscopie acoustique SNFUH et montre la dégradation du matériel biologique. L’ensemble de ces résultats ouvre un nouveau champ d’investigation dans le domaine de la biologie. / The atomic force microscope (AFM) made part of scanning near-field probe microscopy. Thanks to its versatility, many fields as physics, chemistry or biology use this technique. However, the field of investigation of the classical AFM microscope is limited temporally and spatially. Indeed, due to his scan speed limitation and surface interaction caracterisation limitation, studies of molecular dynamics and sub-surface elements are not possible. We show that the volume caracterisation is permitted using a non-destructive imaging method, called Scanning Near-Field by Ultrasound Holography (SNFUH). This tool developed for study in air and liquid has provided depth information as well as spatial resolution at the nanometer scale using resonant frequencies of about range of MHz. Calibration has been performed on samples of buried or not structures made by e-beam lithography and have been used to adjust the resonant frequency and understand the acoustic image formation (depth investigation and contrast in-version). We have developed a non-invasive and innovative tool of characterization for biology : he presents a huge potential for biological samples in terms of resolution and information. Classical AFM and acoustic SNFUH microscopes are time resolution limited. To overcome this time constraint, a prototype, High Speed Atomic Force Microscope (HS-AFM), has been developed by the team of Prof. T. Ando, Kanazawa University (Japan). It allows a scan rate at video speed, i.e. 25 frames/s, in liquid medium. We have improved the prototype, through a new generation of feedback control and increased the scan area. The resolution depends strongly of the probe used. Moreover a better image quality is obtained through the use of carbon tips on these cantilevers. Finally, we show our results obtained with these two microscopy techniques about biological buildings in liquid environment. Thereby, with the HS-AFM microscope, biomolecular dynamics have been visualized (e.g. protein-DNA structures) with nanometric resolution. Then a study about intracellular conformational changes of keratinocytes living cells in their physiological medium has been realized by acoustic microscopy SNFUH and show deterioration of biological components. All of these results provide new insights in biology field.

Page generated in 0.1598 seconds