• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 875
  • 489
  • 380
  • 117
  • 71
  • 47
  • 36
  • 34
  • 31
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 2772
  • 506
  • 471
  • 434
  • 369
  • 311
  • 296
  • 204
  • 189
  • 164
  • 161
  • 151
  • 147
  • 146
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

Superplastická deformace ultrajemnozrnných hořčíkových slitin s obsahem vzácných zemin a zinku / Superplastic deformation of ultrafine-grained magnesium alloys containing rare earth metals and zinc

Vávra, Tomáš January 2019 (has links)
Superplastic behavior of two ultrafine-grained (UFG) magnesium alloys was investigated in this thesis. Commercial Mg-4Y-3RE (wt.%) alloy was prepared by equal channel angular pressing (ECAP) and new experimental alloy Mg-23Zn-2Y (wt.%) was prepared by extrusion and ECAP. Eight passes of Mg-4Y-3RE through ECAP resulted in grain refinement down to ~340 nm and formation of a high volume fraction of fine secondary phase particles. UFG microstructure with an average grain size of 3.2 µm after extrusion and 1.6 µm after Ex-ECAP was achieved in Mg-23Zn-2Y alloy. The microstructure of Mg-23Zn- 2Y was observed by scanning and transmission electron microscopy. The thermal stability of both alloys was measured by microhardness tests. Superplastic behavior was investigated in the temperature range of 250-450 řC and strain rate range of 5x10-4 s-1 - 10-1 s-1 . The results revealed a high strain rate superplasticity in Mg-4Y-3RE alloy. Deformation to fracture exceeded 1000% for several deformation conditions, even at the strain rate of 10-1 s-1 . The highest elongation of 656 % in Mg-23Zn-2Y alloy was achieved in extruded state at the strain rate of 10-3 s-1 .
662

Investigation of the Precipitation Behavior in Aluminum Based Alloys

Khushaim, Muna S. 30 November 2015 (has links)
The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different ternary Al-Li-Cu alloys. Atom probe tomography and statistical testing are combined to investigate the fine scale segregation effects of dilute solutes in aluminum alloys. The optimum application of atom probe tomography in a wide range of materials is enabled by the integration of a laser pulse mode in the atom probe analysis. However, the nature of the laser mechanism used during atom probe tomography analyses is still debated. Systematic investigation of the microstructural change of δ′(Al3Li) precipitates influenced by different pulsed laser energies are used to describe the important phenome associated with the laser pulse mode. In this study, atom probe tomography presented a series of snapshots during in-situ reversion of δ′(Al3Li) precipitates, initiated by laser irradiation, using different laser energies for the first time. An estimation method to investigate real sample temperatures during laser-APT analyses using an interface reaction itself as a probe has been proposed. Finally, the considerable potential of aluminum liquid is demonstrated as a powerful synthesis solvent of important intermetallic phases such as: Mg2Si, Al2Mg and CaMgSi. The atom probe tomography technique is utilized to characterize the intermediate reaction steps of the flux-grown intermetallic phases. The study proposed a direct approach to investigate the involved reactions during the formation of the synthesized intermetallic phase.
663

Microstructural Studies of Dental Amalgams Using Analytical Transmission Electron Microscopy

Hooghan, Tejpal Kaur 05 1900 (has links)
Dental amalgams have been used for centuries as major restorative materials for decaying teeth. Amalgams are prepared by mixing alloy particles which contain Ag, Sn, and Cu as the major constituent elements with liquid Hg. The study of microstructure is essential in understanding the setting reactions and improving the properties of amalgams. Until the work reported in this dissertation, optical microscopy (OM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used commonly to analyze amalgam microstructures. No previous systematic transmission electron microscopy (TEM) study has been performed due to sample preparation difficulties and composite structure of dental amalgams. The goal of this research was to carry out detailed microstructural and compositional studies of dental amalgams. This was accomplished using the enhanced spatial resolution of the TEM and its associated microanalytical techniques, namely, scanning transmission electron microscopy (STEM), x-ray energy dispersive spectroscopy (XEDS) and micro-microdiffraction (μμD). A new method was developed for thinning amalgam samples to electron transparency using the "wedge technique." Velvalloy, a low-Cu amalgam, and Tytin, a high-Cu amalgam, were the two amalgams characterized. Velvalloy is composed of a Ag₂Hg₃ (γ₁)/HgSn₇₋₉ (γ₂) matrix surrounding unreacted Ag₃Sn (γ) particles. In addition, hitherto uncharacterized reaction layers between Ag₃Sn(γ)/Ag₂Hg₃ (γ₂) and Ag₂Hg₃ (γ₁)/HgSn₇₋₉ (γ₂) were observed and analyzed. An Ag-Hg-Sn (β₁) phase was clearly identified for the first time. In Tytin, the matrix consists of Ag₂Hg₃ (γ₁) grains. Fine precipitates of Cu₆Sn₅ (η') are embedded inside the γ₁ and at the grain boundaries. These precipitates are responsible for the improved creep resistance of Tytin compared to Velvalloy. The additional Cu has completely eliminated the γ₂ phase which is the weakest component of amalgams. Ag-Hg-Sn (β₁) and large grains of Cu₆Sn₅ (η') are found adjacent to the unreacted alloy particles. Tytin alloy particles contain Cu₃Sn (ε) precipitates in a matrix of Ag₃Sn (γ) and Ag₄Sn (β). SEM was used to correlate the TEM findings in the context of the general microstructure. The results are in good agreement with those published in the literature. The microstructural details reported here, many of which were not previously available, will help provide insight into the deformation mechanisms of dental amalgams.
664

Studium deplece cholesterolu v lidské kožní bariéře / Study of cholesterol depletion in human skin barrier

Audrlická, Pavla January 2020 (has links)
Charles University, Faculty of Pharmacy in Hradec Králové Department of Organic and Bioorganic Chemistry Pavla Audrlická Supervisor: prof. PharmDr. Kateřina Vávrová, Ph.D. Title of diploma thesis: Study of cholesterol depletion in human skin barrier Barrier function of human skin barrier dwells in intercellular lipid membranes of the uppermost skin layer, the stratum corneum (SC), composed of equimolar mixture of ceramides (Cer), free fatty acids (FFA) and cholesterol (Chol).1 Chol is required for proper lipid organization of SC, however, it stays unclear, why is it present in an amount so high that it separates from other lipids.2 Experiments using synthetic model membranes with decreased Chol content suggested that molar ratio of Cer:FFA:Chol 1:1:0,4 is sufficient for lipid barrier formation and its complex functionality.3 The aim of this work was to manipulate Chol content directly in human SC and to study the effects of decreased Chol content on the SC permeability and microstructure. Ex vivo SC obtained from healthy donors was extracted by methyl-β-cyclodextrin (MCD) to reduce natural Chol content. The extracted SC did not show significant changes in Cer or FFA whilst the amount of Chol was lowered to 78 %. SC barrier properties were evaluated by measurements of transepidermal water loss...
665

Highly Functionalized Bridged Silsesquioxanes

Zhou, Guannan, Simerly, Thomas, Golovko, Leonid, Tychinin, Igor, Trachevsky, Vladimir, Gomza, Yury, Vasiliev, Aleksey 01 June 2012 (has links)
The objective of this work was to synthesize functionalized mesoporous silsesquioxanes with high concentrations of amine groups. During typical sol-gel syntheses, these materials are obtained by co-condensation of organic precursors with suitable linkers, such as tetraethoxysilane, necessary to prevent the mesoporous structure from collapsing. Thus, concentrations of amine groups in organosilicas usually do not exceed 2.7-3.4 mmol g -1. The use of bridged bis-trimethoxysilanes, however, allowed formation of mesoporous materials with no linker. Polycondensation of bis-trimethoxysilanes containing amine groups was conducted in acidic, neutral and basic media, resulting in high yields of solid bridged silsesquioxanes. Gelation occurred quickly if no acid or base was added to the reaction mixture. The hybrid organic/ inorganic nature of obtained materials was confirmed by FT-IR and MAS CP NMR spectroscopy. Elemental analysis showed that amino group concentration in the products was 3.3-4.1 mmol g -1. Measurement of particle size distribution confirmed that choice of reaction media significantly affects particle sizes and agglomeration degrees, with the largest agglomerates (up to 50 μm) formed in basic media. A morphology study, using smallangle X-Ray scattering, displayed two-level fractal structures composed of aggregated 6.5-10.5 nm particles. Reactions in the presence of a surfactant resulted in formation of mesoporous structures. Furthermore, the obtained bridged silsesquioxanes were thermally stable down to 260 °C, but could reversibly absorb water and CO 2 at temperatures below 120 °C. Thus, condensation of the bridged precursor without a linker resulted in formation of a highly functionalized mesoporous material.
666

The Influence of the Binder Type & Aggregate Nature on the Electrical Resistivity and Compressive Strength of Conventional Concrete

Deda, Hugo 18 November 2020 (has links)
Concrete has been used in a number of civil engineering applications due to its interesting fresh, hardened, and durability-related properties. 28-day compressive strength is the most important hardened state property and is frequently used as an indicator of the material’s quality. However, early-age mechanical properties are a key factor nowadays to enhance construction planning. Several advanced techniques have been proposed to appraise concrete microstructure and quality, and among those electrical resistivity (ER) is one of the most commonly used since it is a non-destructive and low-cost technique. Although recent literature data have shown that ER may be significantly influenced by a variety of parameters such as the test setup, material porosity and moisture content, binder type/amount and presence of supplementary cementing materials (SCMs) along with the nature of the aggregates used in the mix, further research must be performed to clarify the influence of the raw materials (i.e. SCMs and aggregate nature) on ER using distinct setups. Therefore, this work aims to appraise the influence of the coarse aggregate nature and binder replacement/amount on the concrete ER and compressive strength predictions models through ER. Twenty-four concrete mixtures were developed with two different coarse aggregate natures (i.e. granite and limestone), two different water-to-binder ratios (w/b; i.e. 0.6 and 0.4) and incorporating two different SCMs (i.e. slag and fly-ash class F) with different replacement levels. Moreover, three distinct ER techniques (e.g. bulk, surface, and internal) and compressive strength tests were performed at different ages (i.e. 3, 7, 14, and 28 days). Results indicate that the binder type and replacement amount significantly affect ER and compressive strength. Otherwise, the coarse aggregate nature presented only trivial influence for 0.6 w/b mixes, except for 50% fly-ash replacement samples; whereas for concrete specimens with enhanced microstructure (i.e. 0.4 w/b), the aggregate nature influence was statically significant especially for the binary mixtures with high SCMs replacement levels (i.e. 70% GGBS and 50% fly-ash). Finally, all ER test setups were considered to be quite suitable and reliable NDT techniques correlating themselves very well. Yet the internal resistivity setup demonstrated to be the device which yields the lowest variability amongst them.
667

The effect of repetitive firing cycles on physical and optical properties of zirconia reinforced lithium silicate ceramics

Abdulwahed, Abdulaziz 03 September 2019 (has links)
This study’s objective was to evaluate repetitive firing cycles’ effects on the translucency, light’s absorption coefficient, and flexural strength of zirconia-reinforced lithium silicate ceramics. Two zirconia-reinforced lithium silicate ceramics and one lithium disilicate glass-ceramic were tested. Blocks of all materials were sectioned into tiles with different thicknesses and subjected to up to five firing cycles using the firing schedule indicated in the manufacturer’s user instructions. Light transmission ratio (T) and absorption coefficients were determined using a spectrophotometer. Further, bars were sectioned from blocks of all materials and tested for three-point-bend flexural strength using a Universal Testing Machine (Instron), and flexural strength was calculated from load at failure. Factorial ANOVA and Tukey’s HSD tests were conducted to analyze light transmission and flexural strength, while regression was used to analyze the absorption coefficient. Weibull parameters and fractographic analysis also were investigated. The results showed that repetitive firing cycles reduced e.max® and Vita Suprinity’s® translucency, but not that of Celtra® Duo, which showed no significant difference. All materials of greater thickness exhibited less translucency, and e.max® CAD had the highest mean light transmission; however, it was not significantly different than Celtra® Duo. Repetitive firing cycles showed more absorption coefficient of light with Vita Suprinity® and e.max®, except for Celtra® Duo, which showed no difference. Vita Suprinity® showed the highest absorption coefficient; however, it was not significantly different than e.max® CAD. Repetitive firing cycles had no significant effect on flexural strength. High and low flexural strength samples for all materials showed similar characteristics with respect to crack propagation patterns, and fracture origins. In conclusion, repetitive firing cycles decreased both e.max® and Vita Suprinity’s® translucency significantly. Repetitive firing cycles increased e.max® and Vita Suprinity’s® absorption coefficient significantly, particularly at shorter wavelengths. Repetitive firing cycles did not increase flexural strength statistically significantly. Vita Suprinity® showed an inherent and more homogeneous flaw-distribution in the first two firing cycles compared to the distribution of flaws in the other two materials.
668

Applying Machine Learning to Optimize Sintered Powder Microstructures from Phase Field Modeling

Batabyal, Arunabha 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Sintering is a primary particulate manufacturing technology to provide densification and strength for ceramics and many metals. A persistent problem in this manufacturing technology has been to maintain the quality of the manufactured parts. This can be attributed to the various sources of uncertainty present during the manufacturing process. In this work, a two-particle phase-field model has been analyzed which simulates microstructure evolution during the solid-state sintering process. The sources of uncertainty have been considered as the two input parameters surface diffusivity and inter-particle distance. The response quantity of interest (QOI) has been selected as the size of the neck region that develops between the two particles. Two different cases with equal and unequal sized particles were studied. It was observed that the neck size increased with increasing surface diffusivity and decreased with increasing inter-particle distance irrespective of particle size. Sensitivity analysis found that the inter-particle distance has more influence on variation in neck size than that of surface diffusivity. The machine-learning algorithm Gaussian Process Regression was used to create the surrogate model of the QOI. Bayesian Optimization method was used to find optimal values of the input parameters. For equal-sized particles, optimization using Probability of Improvement provided optimal values of surface diffusivity and inter-particle distance as 23.8268 and 40.0001, respectively. The Expected Improvement as an acquisition function gave optimal values 23.9874 and 40.7428, respectively. For unequal sized particles, optimal design values from Probability of Improvement were 23.9700 and 33.3005 for surface diffusivity and inter-particle distance, respectively, while those from Expected Improvement were 23.9893 and 33.9627. The optimization results from the two different acquisition functions seemed to be in good agreement with each other. The results also validated the fact that surface diffusivity should be higher and inter-particle distance should be lower for achieving larger neck size and better mechanical properties of the material.
669

Mechanism of ceramic deposition by aerosol deposition method / エアロゾルデポジション法によるセラミック成膜メカニズム

Naoe, Kazuaki 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19307号 / 工博第4104号 / 新制||工||1633(附属図書館) / 32309 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 中村 裕之, 教授 邑瀬 邦明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
670

Mechanical Reliability Enhancement of Single Crystal Silicon Microstructures by Means of Diamond-Like Carbon Film Coating / ダイヤモンドライクカーボン膜の全面被覆による単結晶シリコン微細構造の機械的信頼性向上

Zhang, Wenlei 23 January 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21462号 / 工博第4537号 / 新制||工||1707(附属図書館) / 京都大学大学院工学研究科マイクロエンジニアリング専攻 / (主査)教授 田畑 修, 教授 鈴木 基史, 准教授 土屋 智由, 教授 平方 寛之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0652 seconds