• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 876
  • 489
  • 380
  • 117
  • 71
  • 47
  • 36
  • 34
  • 31
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 2773
  • 506
  • 471
  • 434
  • 369
  • 311
  • 296
  • 204
  • 189
  • 164
  • 162
  • 151
  • 147
  • 146
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
691

Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass

Ulugöl, H., Kul, A., Yildirim, Gurkan, Şahmaran, M., Aldemir, A., Figueira, D., Ashour, Ashraf 23 September 2020 (has links)
Yes / Geopolymers are mostly produced with main-stream precursors such as fly ash and slag. These precursors are successfully used and competitively demanded by the cement industry. Development of geopolymers from alternative precursors is appealing. The main aim of this work is the development of geopolymers with construction and demolition waste-based precursors including masonry units (red clay brick, roof tile, hollow brick) and glass. Different curing temperatures (50, 65, 75, 85, 95, 105, 115, 125 oC), curing periods (24, 48, 72 h), and Na concentrations (10, 12, 15%) of alkaline activator (NaOH) were employed. Compressive strength testing and microstructural investigations were performed including X-ray diffraction, thermogravimetry and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Results showed that depending on the type of precursor (hollow brick), curing temperature/period (115 oC/24 h) and concentration of alkaline activator (12%), it is possible to obtain compressive strength results more than 45 MPa. Hollow brick is the most successful precursor resulting in higher compressive strength results thanks to a more compact microstructure. The strength performance of red clay brick and roof tile is similar. The compressive strength results of geopolymers with glass precursor are lower, most probably due to significantly coarser particles of glass used. The main reaction products of red clay brick-, roof tile- and hollow brick-based geopolymers are sodium aluminosilicate hydrate (N-A-S-H) gels with zeolite-like structures while they are sodium silicate gels in the case of glass-based geopolymers. Our findings showed that CDW-based materials can be used successfully in producing geopolymers. Current research is believed to help raise awareness in novel routes for the effective utilization of such wastes which are realistically troublesome and attract further research on the utilization of CDW-based materials in geopolymer production. / The authors gratefully acknowledge the financial assistance of the Scientific and Technical Research Council (TUBITAK) of Turkey and British Council provided under projects: 117M447 and 218M102.
692

Control of Microstructure during Solidification & Homogenization of Thin-Slab Cast Direct-Rolling (TSCDR) Microalloyed Steels

Zhou, Tihe 07 1900 (has links)
<p> The advantages of Thin-Slab Cast Direct-Rolling (TSCDR) process include reduced capital, energy, labour and inventory costs, as well as the ability to roll thinner strip compared to the conventional process of thick slab casting, reheating and hot rolling. There is great interest in utilizing this technology to produce microalloyed steels which can meet American Petroleum Institute (API) standards. However, whereas the conventional approach can produce APIX80, APIXlOO, and even APIX120 steels; the TSCDR process can only produce APIX70 and APIX80. The main obstacles in the way of achieving high API grades are the non-uniform initial as-cast microstructure and the large grains that result from grain growth at high temperature. The production of APIX80 and higher grade steels can only be achieved through a comprehensive research initiative that combines careful control of solidification, homogenization, thermomechanical-processing, cooling and coiling. </p> <p> This contribution examines the solid state microstructure evolution of microalloyed steels under simulated TSCDR conditions. The grain growth kinetics in delta-ferrite and austenite were studied separately using two model alloys. At high temperatures and in the absence of precipitation, the growth kinetics in both delta-ferrite and austenite appeared to follow a simple parabolic growth law. The measured grain growth kinetics was then applied to the problem of grain-size control during the process of TSCDR. Several strategies of controlling and refining the grain size were examined. The kinetics of delta-ferrite to austenite phase transformation was investigated using a quenching dilatometer; the results showed that the austenite phase formed along the original delta grain boundaries, and that the precipitation of austenite at the delta-ferrite grain boundaries effectively pins delta grain growth. The kinetics of the phase transformation was modeled using a local equilibrium model that captures the partitioning of the substitutional elements during the transformation. </p> <p> A novel delta-ferrite/austenite duplex microstructure is proposed to achieve fine and uniform high-temperature microstructure. The grain growth of the matrix phase (delta-ferrite) is controlled by the coarsening mechanism of pinning phase (austenite). The effectiveness of this delta/austenite duplex microstructure was validated experimentally and analyzed in details using a physically-based model. </p> / Thesis / Doctor of Philosophy (PhD)
693

Colloidal Processing, Microstructural Evolution, and Anisotropic Properties of Textured Ultra-High Temperature Ceramics Prepared Using Weak Magnetic Fields

Shiraishi, Juan Diego 09 February 2024 (has links)
The texturing of ultra-high temperature ceramics (UHTCs) using weak magnetic fields is studied and developed for the first time. Textured UHTCs were prepared by magnetically assisted slip casting (MASC) in weak magnetic field (B ~ 0.5 T). Analytical calculations describing the balance of torques acting on the suspended particles suggested that texture would form at such low magnetic fields. The calculations include a novel contribution of Stokes drag arising from the inhomogeneous velocity profile of the fluid during slip casting. Experimental proof-of-concept of the theoretical calculations was successfully demonstrated. Calculations of Lotgering orientation factor (LOF) based on the intensities of the (00l) family of peaks measures by XRD revealed strong c-axis crystalline texture in TiB2 (LOF = 0.88) and ZrB2 (LOF = 0.79) along the direction of the magnetic field. Less texture was achieved in HfB2 (LOF = 0.39). In all cases, the density of the textured materials was less than that of control untextured materials, indicating that texturing hindered the densification. The findings from this work confirm the potential for more cost-effective, simple, and flexible processes to develop crystalline texture in UHTCs and other advanced ceramics and give new insight into the mechanisms of magnetic alignment of UHTCs under low magnetic fields. The microstructural evolution during slip casting and pressureless sintering is investigated. The interplay between magnetic alignment and particle packing was investigated using XRD and SEM. During MASC, the suspended particles rotate into their aligned configuration. Particles that deposit at the bottom of the mold near the plaster of Paris substrate have their alignment slightly disrupted over a ~220 μm-thick region. The aligned suspended particles lock into an aligned configuration as they consolidate, leading to a uniform degree of texturing across the entire sample height of several millimeters upon full consolidation of the particle network. If the magnetic field is removed before the particles fully consolidate, the suspended particles re-randomize their orientation. Grain size measurements done using the ASTM E112 line counting method on SEM images revealed anisotropic microstructures in green and sintered textured ZrB2 materials. Smaller effective grain sizes were observed in the direction of c-axis texture than the directions perpendicular to the texture. Grain aspect ratios of 1.20 and 1.13 were observed in materials where the c-axis texture directions were parallel (PAR) and perpendicular (PERP) to the slip casting direction, respectively. Constraint of the preferred a-axis grain growth direction in the textured materials inhibited their densification compared to the untextured material. The PERP material with the preferred grain growth direction constrained along the casting direction had smaller average grain sizes than the PAR material which contained the preferred grain growth directions in the circular plane normal to the casting direction. Compression testing suggests a trend towards higher strength and stiffness in materials with higher density. Classical catastrophic brittle failure was observed in the untextured materials, but in the textured materials some samples exhibited a multiple failure mode. The PERP material tended to exhibit superior strength and stiffness to the PAR material in the classical brittle failure mode due to the orientation of the stiffer a-axis along the loading direction and smaller average grain size in the plane normal to the loading direction in the PERP condition. In the multiple failure mode, the PAR material tended to reach higher strength values after the initial failure and reach slightly higher strains before ultimate failure due to the orientation of the compliant c-axis along the loading direction and ability of the grains elongated in the plane normal to the loading direction to rearrange themselves after initial failure(s). Regardless of density or texture condition, all ZrB2 samples survived thermal shock resistance (TSR) testing. Samples were heated to 1500°C in air, held for 30 minutes, then quenched in room temperature air. After TSR testing, oxide layers formed on the surface of the materials. The specific mass gain and oxide layer thickness tended to increase with increasing porosity and were dramatically increased when open porosity was dominant as in the CTRL 1900 condition. After TSR testing, the compressive strength and strain at failure were both higher compared to the as-sintered materials. The increases in the average compressive strength were 20%, 76%, and 57% in the CTRL, PAR, and PERP conditions, respectively. The combination of the presence of the oxide layer shifting the onset of macroscale damage to higher strain values, the dissipation of load in the more porous region near the oxide layer, and the constraining effect of the oxide layer acting against the expansion of the material contributed to reinforcement of the samples after TSR testing. The CTRL material outperformed the textured materials on average in terms of strength and stiffness due to the higher density. The results suggest that reinforcement was more effective in the PAR condition than the PERP, which may be caused by the formation of a homogenous oxide layer on the PAR while the PERP formed an anisotropic layer. The work presented in this dissertation lays the foundation for affordable, energy efficient preparation of UHTCs and other ceramic materials. Equipment costs are reduced by 3 orders of magnitude, and the operating costs and energy consumption are greatly reduced. Facilitation of the preparation of textured materials opens the door to renewed investigations into their processing and performance. This work describes in detail for the first time the relationships between processing, microstructure, and properties of a textured UHTC part, providing a model for future research. Finally, the findings in this work can be used to guide process optimization, exploration of complex shapes and microstructures, and design of manufacturing schemes to create specialty textured parts for demanding structural and functional applications. / Doctor of Philosophy / Textured ultra-high temperature ceramics (UHTCs), special materials with melting temperatures above 3000°C and potential for use in thermal protection of Mach 5+ aircraft and spacecraft, were prepared by magnetically assisted slip casting (MASC) in a weak magnetic field for the first time. The magnetic field was supplied by commercially available permanent magnets which was applied to a liquid-like slurry with UHTC particles floating in it to orient the UHTC particles with their c-crystal axis along the magnetic field direction. Calculations which described the balance of rotational forces acting to align or misalign the suspended particles suggested that the UHTC particles would align in the weak magnetic field. This prediction was realized. After the liquid in the slurry was removed during MASC to leave behind an aligned particle network, the samples were densified by heating in the absence of air to 2100°C for one hour. In titanium diboride (TiB2) and zirconium diboride (ZrB2), two of the most relevant UHTC materials, strong texture was achieved; 88% and 79% of the crystals in the material were aligned along the original magnetic field direction. This is the first time that this has been reported in the scientific literature. In hafnium diboride (HfB2), only 39% of the grains were aligned. The textured materials all had lower density than the untextured materials prepared alongside them using conventional slip casting. The relationship between magnetic alignment and particle packing was investigated by observing the microstructure. During MASC, the suspended particles rotate into their aligned configuration. Particles that deposit at the bottom of the mold near the plaster of Paris substrate have their alignment slightly disrupted over a ~220 μm-thick region. The aligned suspended particles lock into an aligned configuration as they consolidate, leading to a uniform degree of texturing over across the entire sample height of several millimeters upon full consolidation of the particle network. If the magnetic field is removed before the particles fully consolidate, the suspended particles re-randomize their orientation. The findings from this work confirm the potential for more cost-effective, simple, and flexible processes to develop crystalline texture in UHTCs and other advanced ceramics and give new insight into the mechanisms of magnetic alignment of UHTCs under low magnetic fields. Because of the magnetic alignment of the particles, it is expected that the microstructure would show some difference along and across the direction that the alignment formed along the applied magnetic field. In order to determine that, the size of the grains (particles joined to each other during densification) in the materials are measured along different directions in the sample chosen for their orientational relationship to the magnetic field and casting directions. Smaller effective grain sizes were observed along the direction of magnetically aligned crystalline texture than the directions perpendicular to the texture. Because of how the crystal axes of the particles are aligned, there are differences in how the particles join each other during densification, and that results in an anisotropic microstructure where different grain sizes as a function of the magnetic field direction and the texture direction. Compression testing conducted by squeezing the samples at a fixed rate suggests a trend that indicates the samples are stronger and stiffer when the density is higher, as expected. Untextured samples abruptly failed after reaching their maximum strength value in a manner typical of brittle ceramics. Some textured samples failed in this way, but some failed at low strength values then climbed back up in strength repeatedly until they eventually gave out completely, in a crumbly mode. In the classical brittle failure mode, the PERP material with c-axis texture aligned along the sample diameter, perpendicular to the loading direction, tended to exhibit superior strength and stiffness to the PAR material with c-axis texture oriented along the height and loading directions of the sample because the stiffer crystal axis was oriented along the loading direction and the average grain size seen by the load head was smaller. In the crumbly mode, the PAR material tended to reach higher strength values after initial failure and ultimately fail later in a crumblier mode because the more compliant crystal axis was oriented along the loading direction and the grains elongated in the plane perpendicular to the loading direction could rearrange themselves better after initial failure(s) to bear more load. Regardless of density or texture condition, all ZrB2 samples survived thermal shock resistance (TSR) testing, meaning that the samples remained fully intact after experiencing a big difference in temperature in very short time. Samples were heated in a furnace to 1500°C in air, held for 30 minutes, removed from the furnace, and cooled in air. After TSR testing, the samples developed an oxide layer on the outside, in a similar manner to rust forming on a piece of metal. How much it oxidized per unit area and how thick that oxide layer was increased with increasing porosity. These quantities increased dramatically when the pores connected the interior of the sample to the outside, as in the CTRL 1900 condition. After TSR testing, the samples were stronger by 20%, 76%, and 57% in the CTRL, PAR, and PERP conditions, respectively, indicating that the oxide layer was responsible for an enhancement in strength. The results suggest that increase of strength of the oxide layer was more effective in the PAR condition than the PERP, which is believed to be caused by the formation of a homogenous oxide layer on the PAR while the PERP formed an anisotropic layer. The work presented in this dissertation reduces the start-up equipment costs associated with magnetic alignment processes by 1000 times and lays the foundation for affordable, energy efficient preparation of UHTCs and other ceramic materials. The simplicity of this technique makes it easier for future researchers to study textured materials. This work describes in detail for the first time the relationships between processing, microstructure, and properties of a textured UHTC part, providing a model for future research. Finally, the findings in this work can be used to guide process optimization, exploration of complex shapes and microstructures, and design of manufacturing schemes to create specialty textured parts for demanding applications.
694

Microstructure-Property Relations Throughout The Powder Metallurgy Process

Tucker, Laura Arias 15 December 2007 (has links)
To produce crack free powder compacts with desirable mechanical properties and uniform densities, a predictive finite element simulation of the powder metallurgy process is necessary (compaction and sintering). The finite element method, through the use of appropriate constitutive material models captures the microstructure-property history after compaction and sintering. A FC-0205 cylinder and FC-0208 automotive main bearing cap were compacted to investigate the microstructure changes at different locations within the parts. Measurements of the pore volume fraction, pore size, pore nearest neighbor, pore aspect ratio, and grain size were performed after compaction for the cylinder after compaction and after compaction and sintering for the MBC. An image analysis methodology was created to measure density in the main bearing cap, and to validate future model results. A comparison between the image analysis and the Archimedes immersion methods demonstrated the reliability of the methods.
695

Experiments And Modeling Of Fatigue And Fracture Of Aluminum Alloys

Jordon, J Brian 13 December 2008 (has links)
In this work, understanding the microstructural effects of monotonic and cyclic failure of wrought 7075-T651 and cast A356 aluminum alloys were examined. In particular, the structure-property relations were quantified for the plasticity/damage model and two fatigue crack models. Several types of experiments were employed to adapt an internal state variable plasticity and damage model to the wrought alloy. The damage model was originally developed for cast alloys and thus, the model was modified to account for void nucleation, growth, and coalescence for a wrought alloy. In addition, fatigue experiments were employed to determine structure-property relations for the cast alloy. Based on microstructural analysis of the fracture surfaces, modifications to the microstructurally-based MultiStage fatigue model were implemented. Additionally, experimental fatigue crack results were used to calibrate FASTRAN, a fatigue life prediction code, to small fatigue-crack-growth behavior. Lastly, a set of experiments were employed to explore the damage history effect associated with cast and wrought alloys and to provide motivation for monotonic and fatigue modeling efforts.
696

The Order Book, Order Flow, and the Impact of Order Cancellations on Equity Index Futures

Bennett, Sara E. 14 June 2012 (has links)
No description available.
697

Experimental input for the design of metallic glass/crystalline composites

Hutchinson, Nicholas W. January 2013 (has links)
No description available.
698

Microstructure and Damage Evolution During Short Term Creep of Modified 9Cr-1Mo Steel used in Generation IV Nuclear Energy Systems

Tammana, Deepthi 27 October 2014 (has links)
No description available.
699

Real Effects of High Frequency Trading

Hanson, Thomas Alan 24 July 2014 (has links)
No description available.
700

What's the Story? Micro- and Macro- Analyses of Narratives from Children with ADHD and LI

Hamilton, Alexa Kate 30 April 2015 (has links)
No description available.

Page generated in 0.0581 seconds