• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 11
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 105
  • 105
  • 20
  • 20
  • 19
  • 17
  • 17
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Programmable and Tunable Circuits for Flexible RF Front Ends

Ahsan, Naveed January 2008 (has links)
<p>Most of today’s microwave circuits are designed for specific function and specialneed. There is a growing trend to have flexible and reconfigurable circuits. Circuitsthat can be digitally programmed to achieve various functions based on specific needs. Realization of high frequency circuit blocks that can be dynamically reconfigured toachieve the desired performance seems to be challenging. However, with recentadvances in many areas of technology these demands can now be met.</p><p>Two concepts have been investigated in this thesis. The initial part presents thefeasibility of a flexible and programmable circuit (PROMFA) that can be utilized formultifunctional systems operating at microwave frequencies. Design details andPROMFA implementation is presented. This concept is based on an array of genericcells, which consists of a matrix of analog building blocks that can be dynamicallyreconfigured. Either each matrix element can be programmed independently or severalelements can be programmed collectively to achieve a specific function. The PROMFA circuit can therefore realize more complex functions, such as filters oroscillators. Realization of a flexible RF circuit based on generic cells is a new concept.In order to validate the idea, a test chip has been fabricated in a 0.2μm GaAs process, ED02AH from OMMIC<sup>TM</sup>. Simulated and measured results are presented along withsome key applications like implementation of a widely tunable band pass filter and anactive corporate feed network.</p><p>The later part of the thesis covers the design and implementation of tunable andwideband highly linear LNAs that can be very useful for multistandard terminals suchas software defined radio (SDR). One of the key components in the design of a flexibleradio is low noise amplifier (LNA). Considering a multimode and multiband radiofront end, the LNA must provide adequate performance within a large frequency band.Optimization of LNA performance for a single frequency band is not suitable for thisapplication. There are two possible solutions for multiband and multimode radio frontends (a) Narrowband tunable LNAs (b) Wideband highly linear LNAs. A dual bandtunable LNA MMIC has been fabricated in 0.2μm GaAs process. A self tuningtechnique has also been proposed for the optimization of this LNA. This thesis alsopresents the design of a novel highly linear current mode LNA that can be used forwideband RF front ends for multistandard applications. Technology process for thiscircuit is 90nm CMOS.</p>
92

Development and integration of silicon-germanium front-end electronics for active phased-array antennas

Coen, Christopher T. 05 July 2012 (has links)
The research presented in this thesis leverages silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technology to develop microwave front-end electronics for active phased-array antennas. The highly integrated electronics will reduce costs and improve the feasibility of snow measurements from airborne and space-borne platforms. Chapter 1 presents the motivation of this research, focusing on the technological needs of snow measurement missions. The fundamentals and benefits of SiGe HBTs and phased-array antennas for these missions are discussed as well. Chapter 2 discusses SiGe power amplifier design considerations for radar systems. Basic power amplifier design concepts, power limitations in SiGe HBTs, and techniques for increasing the output power of SiGe HBT PAs are reviewed. Chapter 3 presents the design and characterization of a robust medium power X-band SiGe power amplifier for integration into a SiGe transmit/receive module. The PA design process applies the concepts presented in Chapter 2. A detailed investigation into measurement-to-simulation discrepancies is outlined as well. Chapter 4 discusses the development and characterization of a single-chip X-band SiGe T/R module for integration into a very thin, lightweight active phased array antenna panel. The system-on-package antenna combines the high performance and integration potential of SiGe technologies with advanced substrates and packaging techniques to develop a high performance scalable antenna panel using relatively low-cost materials and silicon-based electronics. The antenna panel presented in this chapter will enable airborne SCLP measurements and advance the technology towards an eventual space-based SCLP measurement instrument that will satisfy a critical Earth science need. Finally, Chapter 5 provides concluding remarks and discusses future research directions.
93

Modeling of minority carrier recombination and resistivity in sige bicmos technology for extreme environment applications

Moen, Kurt Andrew 19 November 2008 (has links)
This work presents a summary of experimental data and theoretical models that characterize the temperature-dependent behavior of key carrier-transport parameters in silicon down to cryogenic temperatures. In extreme environment applications such as space-based electronics, accurate models of carrier recombination, carrier mobility, and incomplete ionization of dopants form a necessary foundation for the development of reliable high-performance devices and circuits. Not only do these models have a wide impact on the simulated DC and AC performance of devices, but they also play a critical role in predicting the behavior of important phenomena such as single event upset in digital logic circuits. With this motivation, an overview is given of SRH recombination theory, addressing in particular the dependence of recombination lifetime on temperature and injection level. Carrier lifetime measurement methods are reviewed, and experiments to study carrier lifetimes in the substrate of a commercial SiGe BiCMOS process are presented. The experimental data is analyzed and leveraged in order to develop calibrated TCAD-relevant models. Similarly, an overview of low-temperature resistivity in silicon is presented. Modeling of resistivity over temperature is discussed, addressing the prevailing theoretical models for both carrier mobility and incomplete ionization of dopants. Experimental measurements of the temperature dependence of resistivity in both p-type and n-type silicon are presented, and calibrated TCAD-relevant models for carrier mobility and incomplete ionization are developed. Finally, the ability to integrate these calibrated models within commercial TCAD software is demonstrated. In addition, applications for these accurate temperature-dependent models are discussed, and future directions are outlined for research into cryogenic modeling of fundamental physical parameters.
94

High-efficiency switched-mode power amplifier using gallium nitride on silicon hemt technology /

Panesar, Harpreet, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2007. / Includes bibliographical references (p. 112-118). Also available in electronic format on the Internet.
95

Reconfigurable amplifiers and circuit components for built-in-self testing and self-healing in SiGe BiCMOS technology

Howard, Duane Clarence 22 May 2014 (has links)
The design of reconfigurable microwave and millimeter-wave circuit components and on-chip testing circuitry are demonstrated. These components are designed to enable the mitigation of process faults, aging, radiation effects, and other mechanisms that lead to performance degradation in circuits and systems. The presented work is primarily based on SiGe HBTs in BiCMOS technology and harnesses the inherent resilience of SiGe to mechanisms that degrade transistor performance. However, CMOS FETs are also used in limited applications, such as in the design of switches, op-amps, and DACs. Individual circuit blocks and circuit systems are characterized with the aim of evaluating their performance under nominal conditions as well as in the context of extreme environments and other deleterious phenomena.
96

Etude fondamentale des effets liés aux agressions micro-ondes de fortes puissances et du chaos sur l’électronique (composants, circuits et systèmes) / Fundamental study of effects induced by high power microwaves and chaos on electronics (components, circuits and systems)

Caudron, François 15 February 2012 (has links)
Le travail de thèse s'intéresse aux effets liés aux agressions MFP et du chaos sur l'électronique. Après une étude théorique et expérimentale du couplage électromagnétique entre deux ports d'accès d'impédance 50 Ω réalisés dans une cavité complexe, un nouveau modèle est proposé pour étendre l'étude aux cas des impédances de rayonnements quelconques en s'appuyant sur le principe de Babinet. L'impact des agressions EM intentionnelles sur les circuits "front-end" des récepteurs comme par exemple les circuits limiteurs lorsque les antennes sont agressées en dehors de leur bande passante a été aussi étudié et validé sur plusieurs types d'antennes pour les applications 2,45 GHz et bande-X. Les résultats montrent que pour certaines conditions, il est possible que l'agression EM génère des signaux chaotiques à l'entrée du récepteur. Enfin, deux sources chaotiques ont été étudiées et caractérisées et la possibilité d'enrichir leur spectre est proposée. / The thesis focuses on the effects associated with HPM and Chaos aggressions on electronics. After a theoretical and experimental study of the electromagnetic coupling between two ports of 50 Ω impedance in a complex cavity, a new model based on Babinet principle is proposed to extend the study to the case of any radiation impedances. The impact of intentional EM attacks on the "front end" receiver circuits such as limiters at outside the antennas bandwidth was also studied and validated on several types of antennas for 2.45 GHz an X-band applications. The results show that for certain conditions, it is possible that EM aggression generates chaotic signals in the front end receivers. Finally, two chaotic sources have been studied and characterized. The opportunity to enhance their spectrum is also proposed.
97

Estudo de Superf?cies Seletivas de Frequ?ncia com o Uso de Intelig?ncia Computacional

Barreto, Edwin Luize Ferreira 20 July 2012 (has links)
Made available in DSpace on 2014-12-17T14:56:11Z (GMT). No. of bitstreams: 1 EwinLFB_DISSERT.pdf: 1133428 bytes, checksum: 7db5058d9183e9d7e1e87f596676c111 (MD5) Previous issue date: 2012-07-20 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The main objective of this work is to optimize the performance of frequency selective surfaces (FSS) composed of crossed dipole conducting patches. The optimization process is performed by determining proper values for the width of the crossed dipoles and for the FSS array periodicity, while the length of the crossed dipoles is kept constant. Particularly, the objective is to determine values that provide wide bandwidth using a search algorithm with representation in bioinspired real numbers. Typically FSS structures composed of patch elements are used for band rejection filtering applications. The FSS structures primarily act like filters depending on the type of element chosen. The region of the electromagnetic spectrum chosen for this study is the one that goes from 7 GHz to 12 GHz, which includes mostly the X-band. This frequency band was chosen to allow the use of two X-band horn antennas, in the FSS measurement setup. The design of the FSS using the developed genetic algorithm allowed increasing the structure bandwidth / Este trabalho tem como objetivo principal efetuar a otimiza??o do desempenho de estruturas de superf?cies seletivas de frequ?ncia FSS (Frequency Selective Surface), com patches condutores na forma de dipolos em cruz. A otimiza??o foi realizada atrav?s da identifica??o de valores ?timos para a largura do dipolo e a periodicidade do arranjo, considerando o valor do comprimento do dipolo fixo. Especificamente, objetiva-se determinar valores que permitam aumentar a largura de banda, utilizando um algoritmo de busca bioinspirado com representa??o em n?meros reais. As aplica??es t?picas de estruturas de FSS com patches condutores utilizam frequ?ncias selecionadas atrav?s das faixas de rejei??o. As estruturas de FSS funcionam basicamente como filtros dependendo do tipo de elemento escolhido. A regi?o do espectro eletromagn?tico escolhida para este estudo foi a faixa de 7 GHz a 12 GHz, que inclui basicamente a banda X. Essa regi?o do espectro eletromagn?tico foi escolhida para possibilitar a medi??o do dispositivo com a utiliza??o de antenas de abertura do tipo corneta, que operam na banda X. O projeto da FSS com a utiliza??o do algoritmo gen?tico GA (Genetic Algorithm) permitiu aumentar a largura de banda da estrutura
98

Circuito equivalente e extração de parametros em um amplificador optico a semicondutor / Equivalent circuit and parameters extraction in a semiconductor optical amplifier

Guimarães, Murilo 18 July 2007 (has links)
Orientadores: Evandro Conforti, Cristiano de Melo Galle / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e Computação / Made available in DSpace on 2018-08-09T14:44:31Z (GMT). No. of bitstreams: 1 Guimaraes_Murilo_M.pdf: 2868472 bytes, checksum: 35d629f44273794bf3425431f0abbade (MD5) Previous issue date: 2007 / Resumo: O advento das comunicações por fibras ópticas esteve intrinsecamente ligado aos lasers a diodo semicondutor. Posteriormente, principalmente na área de redes metropolitanas, iniciaram-se as aplicações envolvendo o amplificador óptico a semicondutor (SOA, em inglês). O SOA é muito similar ao laser a diodo semicondutor, pois também amplifica a luz incidente através da emissão estimulada, a qual advém da emissão pelos portadores elétricos da região ativa. Estes são bombeados na região ativa através da corrente elétrica injetada na porta elétrica do SOA. A similaridade não é completa devido ao fato do amplificador não possuir realimentação de luz através de uma cavidade óptica ressonante, uma vez que sua região ativa é terminada por faces anti-refletivas. Dessa forma, a luz é amplificada apenas em uma passagem pela região ativa do SOA, sendo também denominado neste caso, SOA-TW, ou de onda caminhante. Desta forma, fazendo-se uma analogia com circuitos, a diferença SOAlaser é semelhante à diferença amplificador-oscilador eletrônico. Devido a esta semelhança, o estudo desenvolvido no presente trabalho, sobre o comportamento da impedância do amplificador óptico a semicondutor, foi baseado em um modelo equivalente de circuito de microondas desenvolvido para o laser a diodo semicondutor. O comportamento da impedância do SOA, composto por seu encapsulamento e chip, é de extrema importância para o controle e aprimoramento de chaveamento eletro-óptico do SOA em redes de última geração. Visando ao aprofundamento deste estudo, análises teóricas a respeito do laser a diodo semicondutor e do amplificador óptico a semicondutor são apresentados. Em seguida, são apresentados os resultados experimentais, com a extração do circuito equivalente do SOA e sua montagem eletro-óptica, com a comparação entre as respostas experimentais e teóricas. Nas considerações finais discutem-se as sugestões para trabalhos futuros sobre o comportamento da impedância eletro-óptica do SOA / Abstract: The advent of communications using optical fiber was always connected, intrinsically, with the semiconductor diode laser. Later, in metropolitan optical networks, the semiconductor optical amplifier (SOA) was introduced to amplify up to eight channels in a WDM (wavelength division multiplex) system. The semiconductor optical amplifier and the semiconductor laser diode are similar since both of them amplify the input light through stimulated emission, which result from electric carriers that are pumped in the active layer through the injection current in the electrical gate in these devices. The similarity is not complete since the SOA has anti-reflection coatings at the end emission faces. Therefore, the light is amplified by the active layer only in one pass; in this case the SOA is called TW SOA (traveling wave SOA). Due to the similarity between the devices, the present study of the SOA impedance behavior was based in an equivalent model from researches about microwave circuits used in the literature to analyze semiconductor diode lasers. The SOA impedance behavior is given by the chip itself and its package; it is important to control and to improve the electrical-optical switch using the SOA for next generation networks. Looking for a deep knowledge about this research, theoretical analyses of the semiconductor diode lasers and SOA was presented in this research. After it, the experimental results are showed with the extraction of the SOA equivalent circuit and the electrical-optical assembly, and the comparison between the experimental and theoretical results was done. At the end of this work, some suggestions for future works are proposed regarding the behavior of the SOA electrical-optical impedance / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
99

Validation d'un nouveau logiciel de simulation tridimensionnel du Multipactor par le calcul et l'expérimentation / Validation of a new Multipacting three-dimensional simulation software by calculation and experimentation

Hamelin, Thibault 29 June 2015 (has links)
Le multipactor est un phénomène parasite qui se produit dans les dispositifs où l'on transmet une onde hyperfréquence sous vide tels que les tubes électroniques à vide, les cavités résonnantes pour accélérateurs de particules et les circuits micro-ondes à bord des satellites. Il consiste en une avalanche d'électrons mis en mouvement par un champ hyperfréquence. La simulation du multipactor est cruciale dans tout design de structure HF sous vide. Les géométries complexes 3D d'objets imposent de posséder des outils de simulations tridimensionnels pour prédire ce phénomène. Le premier travail de cette thèse a consisté à valider un logiciel de simulation 3D du multipactor, Musicc3D, à la fois par le calcul et l'expérimentation. Une étude théorique à une dimension ainsi qu'une simulation 2D éprouvée ont été réalisées et les résultats du logiciel Musicc3D ont été favorablement confrontés à leurs résultats. Des règles de définition du maillage 3D ont été établies pour un bon fonctionnement de la simulation 3D. Toujours pour valider la simulation, l'ensemble des cavités accélératrices construites par l'IPNO ces dernières années a été simulé et favorablement comparé aux observations de barrières de multipactor quand elles existaient. Dans le but d'exploiter les prédictions de la simulation 3D, mais aussi de la valider et enfin d'être capable de qualifier différents matériaux et/ou états de surfaces, une cavité résonnante équipée de mesures dédiées au multipactor a été construite. Les premiers résultats obtenus avec cette cavité ont été favorablement comparés à la simulation. / Multipacting is a parasitic phenomenon and extremely detrimental in devices where there is a ultra high frequency wave transmitted in a vacuum environment such as vacuum electron tubes, resonant cavities for particle accelerators and microwave circuits on board of satellites. It consists of an avalanche of electrons put in motion by a microwave field. Multipacting simulation is crucial in any HF structure design. The complex 3D geometrics obligates to have three-dimensional simulation tools to predict this phenomenon. The first study in this thesis consisted in validating a 3D simulation software of Multipacting, Musicc3D, by calculation and experimentation. A theoretical study with one dimension and a a tested 2D simulation were carried out and the results of the software Musicc3D were favorably confronted to their results. 3D grid definition rules were established for the proper working of the 3D simulation. Also to validate the simulation, the whole of the park of accelerating cavities built by the IPNO these last years was simulated and favorably compared with the observations of barriers of Multipacting when they existed. With an aim of exploiting the predictions of the 3D simulation, but also to validate it and finally be able to qualify various materials and/or state of surfaces, a resonant cavity equipped with measurements dedicated for Multipacting was built. The first results obtained with this cavity were favorably compared to the simulation.
100

Characterization and Design of Liquid Crystal Polymer (LCP) Based Multilayer RF Components and Packages

Thompson, Dane C. 11 April 2006 (has links)
This thesis discusses the investigation and utilization of a new promising thin-film material, liquid crystal polymer (LCP), for microwave and millimeter-wave (mm-wave [>30 GHz]) components and packages. The contribution of this research is in the determination of LCP's electrical and mechanical properties as they pertain to use in radio frequency (RF) systems up to mm-wave frequencies, and in evaluating LCP as a low-cost substrate and packaging material alternative to the hermetic materials traditionally desired for microwave circuits at frequencies above a few gigahertz (GHz). A study of LCP's mm-wave material properties was performed. Resonant circuit structures were designed to find the dielectric constant and loss tangent from 2-110 GHz under both ambient and elevated temperature conditions. Several unique processes were developed for the realization of novel multilayer LCP-based RF circuits. These processes include thermocompression bonding with tight temperature control (within a few degrees Celsius), precise multilayer alignment and patterning, and LCP laser processing with three different types of lasers. A proof-of-concept design that resulted from this research was a dual-frequency dual-polarization antenna array operating at 14 and 35 GHz. Device characterization such as mechanical flexibility testing of antennas and seal testing of packages were also performed. A low-loss interconnect was developed for laser-machined system-level thin-film LCP packages. These packages were designed for and measured with both RF micro-electromechanical (MEM) switches and monolithic microwave integrated circuits (MMICs). These research findings have shown LCP to be a material with uniquely attractive properties/capabilities for vertically integrated, compact multilayer LCP circuits and modules.

Page generated in 0.0891 seconds