• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 30
  • 5
  • Tagged with
  • 114
  • 114
  • 58
  • 57
  • 55
  • 40
  • 38
  • 37
  • 31
  • 26
  • 22
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Nuage hypermassif, chocs et efficacité de formation stellaire / Hypermassive cloud, shock and stellar formation efficiency

Louvet, Fabien 22 September 2014 (has links)
Les étoiles massives, de type O ou B, sont d'une importance capitale pour le budget énergétique des galaxies et l'enrichissement du milieu interstellaire. Néanmoins, leur formation, contrairement à celle des étoiles de type solaire reste sujet à débats, sinon une énigme. Les toutes premières étapes de la formation des étoiles massives ainsi que la formation de leur nuage parent sont des thèmes qui stimulent une grande activité sur les plans théorique et observationnel depuis une décennie. Il semble maintenant acquis que les étoiles massives naissent dans des cœurs denses massifs, qui se forment au travers de processus dynamiques, tels que les flots de gaz collisionnels. Au cours de ma thèse, j'ai mené une étude approfondie de la formation des cœurs denses et des étoiles massives au sein de la structure hypermassive W43-MM1, localisée à 6~kpc du soleil. Dans un premier temps, j'ai montré une corrélation directe entre l'efficacité à former des étoiles et la densité volumique des nuages moléculaires, en décalage avec un certain nombre d'études précédentes. En effet, la distribution spatiale et de masse des cœurs denses massifs en formation au sein de W43-MM1 suggère que ce filament hypermassif est en phase de flambée de formation d'étoiles, flambée d'autant plus grande que l'on se rapproche de son cœur. J'ai comparé ces résultats observationnels aux modèles numériques et analytiques d'efficacité de formation stellaire les plus récents. Cette confrontation permet non seulement d'apporter de nouvelles contraintes sur la formation des filaments hypermassifs, mais suggère aussi que la compréhension de la formation d'étoiles dans les nuages hypermassifs nécessite une description fine de la structure de ces objets exceptionnels. En second lieu, ayant montré que la formation des étoiles massives est fortement dépendante des propriétés des filaments qui les forment, je me suis naturellement intéressé aux processus de formation de ces filaments, grâce à une étude de leur dynamique globale. Plus précisément, j'ai utilisé un traceur de chocs (la molécule de SiO) pour discerner les chocs dûs aux processus locaux de formation des étoiles (jets et flots bipolaires), des chocs dûs aux processus permettant la formation du nuage. J'ai ainsi pu, via une étude sans précédent alliant observations et modélisation de chocs dans une région formant de nombreuses étoiles, montrer l'existence de chocs à basse vitesse, première signature directe de la formation du nuage moléculaire dans lequel les étoiles massives se forment. Ces résultats constituent une étape importante reliant, via des processus dynamiques, la formation des nuages moléculaires à la formation des étoiles massives. / O and B types stars are of paramount importance in the energy budget of galaxies and play a crucial role enriching the interstellar medium. However, their formation, unlike that of solar-type stars, is still subject to debate, if not an enigma. The earliest stages of massive star formation and the formation of their parent cloud are still crucial astrophysical questions that drew a lot of attention in the community, both from the theoretical and observational perspective, during the last decade. It has been proposed that massive stars are born in massive dense cores that form through very dynamic processes, such as converging flows of gas. During my PhD, I conducted a thorough study of the formation of dense cores and massive stars in the W43-MM1 supermassive structure, located at ~ 6 kpc from the sun. At first, I showed a direct correlation between the star formation efficiency and the volume gas density of molecular clouds, in contrast with scenarii suggested by previous studies. Indeed, the spatial distribution and mass function of the massive dense cores currently forming in W43-MM1 suggests that this supermassive filament is undergoing a star formation burst, increasing as one approaches its center. I compared these observational results with the most recent numerical and analytical models of star formation. This comparison not only provides new constraints on the formation of supermassive filaments, but also suggests that understanding star formation in high density, extreme ridges requires a detailed portrait of the structure of these exceptional objects. Second, having shown that the formation of massive stars depends strongly on the properties of the ridges where they form, I studied the formation processes of these filaments, thanks of the characterization of their global dynamics. Specifically, I used a tracer of shocks (SiO molecule) to disentangle the feedback of local star formation processes (bipolar jets and outflows) from shocks tracing the pristine formation processes of the W43-MM1 cloud. I was able, via an unprecedented study combining observations and modeling of shocks in a starbust region, to show the existence of widespread low velocity shocks, that are the first direct signature of the formation of the massive molecular cloud from which massive stars form.These results are an important step connecting, via dynamical processes, the formation of molecular clouds to the formation of massive stars.
62

Star formation across cosmic time and its influence on galactic dynamics / La formation des étoiles au cours de l'histoire de l'univers et son influence sur la dynamique des galaxies

Freundlich, Jonathan 01 December 2015 (has links)
Les observations montrent qu'il y a dix milliards d'années, les galaxies formaient bien plus d'étoiles qu'aujourd'hui. Comme les étoiles se forment à partir de gaz moléculaire froid, cela signifie que les galaxies disposaient alors d'importants réservoirs de gaz, et c'est ce qui est observé. Mais les processus de formation d'étoiles pourraient aussi avoir été plus efficaces : qu'en est-il ? Les étoiles se forment dans des nuages moléculaires géants liés par leur propre gravité, mais les toutes premières étapes de leur formation demeurent relativement mal connues. Les nuages moléculaires sont eux-mêmes fragmentés en différentes structures, et certains scénarios suggèrent que les filaments interstellaires qui y sont observés aient pu constituer la première étape de la formation des coeurs denses dans lesquels se forment les étoiles. En quelle mesure leur géométrie filamentaire affecte-t-elle les coeurs pré-stellaires ? Des phenomènes de rétroaction liés à l'évolution des étoiles, comme les vents stellaires et les explosions de supernovae, participent à la régulation de la formation d'étoiles et peuvent aussi perturber la distribution de matière noire supposée entourer les galaxies. Cette thèse aborde l'évolution des galaxies et la formation des étoiles suivant trois perspectives : (i) la caractérisation des processus de formation d'étoiles à des échelles sous-galactiques au moment de leur pic de formation ; (ii) la formation des coeurs pré-stellaires dans les structures filamentaires du milieu interstellaire ; et (iii) les effets rétroactifs de la formation et de l'évolution des étoiles sur la distribution de matière noire des galaxies. / Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.
63

Impact of radiative transfer and chemistry on the formation of molecular clouds / Impact du transfert radiatif et de la chimie sur la formation des nuages moléculaires

Valdivia, Valeska 24 September 2015 (has links)
Le milieu interstellaire (MIS) est un système extrêmement complexe. Il correspond à une échelle intermédiaire entre les étoiles et les galaxies. Le gaz interstellaire est présent dans toute la galaxie, remplissant l’espace entre les étoiles. Une grande diversité de processus couplés, comme la gravité, le champs magnétiques, la turbulence et la chimie, participe à son évolution, faisant de la modélisation du MIS un problème ardu. Une description correcte du MIS nécessite un bon traitement des équations de la magnetohydrodynamique (MHD), de la gravité, du bilan thermique et de l’évolution chimique à l’intérieur du nuage moléculaire.L’objectif de ce travail de thèse est une meilleure compréhension de la formation et de l’évolution des nuages moléculaires, et plus particulièrement de la transition du gaz atomique en gaz moléculaire. Nous avons réalisé des simulations numériques de la formation des nuages moléculaires et de la formation de l’hydrogène moléculaire sous l’influence de la gravité et de la turbulence MHD, en utilisant des estimations précises de l’écrantage par les poussières et de l’auto-écrantage par la molécule H2. Ceci a été calculé grâce à une méthode en arbre, à même de fournir une rapide estimation des densités de colonne.Nous avons trouvé que l’hydrogène moléculaire se forme plus rapidement que prévu par les estimations classiques du fait de l’augmentation de densité locale provoquée par les fluctuations turbulentes du gaz. L’hydrogène moléculaire, formé à des densités plus élevées, peut alors migrer vers les régions plus chaudes et moins denses.Les densités de colonne totale d’hydrogène moléculaire montrent que la transition HI-H2 se produit à des densités de colonne de quelques 10^20 cm−2. Nous avons calculé les populations des niveaux rotationnels de H2 à l’équilibre thermique et intégré le long de plusieurs lignes de visée. Ces résultats reproduisent bien les valeurs observées par Copernicus et FUSE, suggérant que la transition observée et les populations excitées pourraient être une conséquence de la structure multi-phasique des nuages moléculaires. Comme la formation de H2 précède la formation des autres molécules, le H2 chaud pourrait permettre le développement d’espèces endothermiques et éventuellement expliquer certains aspects de la richesse moléculaire observée dans l’ISM. / The interstellar medium (ISM) is a highly complex system. It corresponds to an intermediate scale between stars and galaxies. The interstellar gas is present throughout the galaxy, filling the volume between stars. A wide variety of coupled processes, such as gravity, magnetic fields, turbulence and chemistry, participate in its evolution, making the modeling of the ISM a challenging problem. A correct description of the ISM requires a good treatment of the magnetohydrodynamics (MHD) equations, gravity, thermal balance, and chemical evolution within the molecular clouds.This thesis work aims at a better understanding of the formation and evolution of molecular clouds, specially how they become "molecular", paying particular attention to the transition HI-to-H2. We have performed ideal MHD simulations of the formation of molecular clouds and the formation of molecular hydrogen under the influence of gravity and turbulence, using accurate estimates for the shielding effects from dust and the self-shielding for H2, calculated with a Tree-based method, able to provide fast estimates of column densities.We find that H2 is formed faster than predicted by the usual estimates due to local density enhancements created by the gas turbulent motions. Molecular hydrogen, formed at higher densities, could then migrate toward low density warmer regions.Total H2 column densities show that the HI-to-H2 transition occurs at total column densities of a few 10^20 cm−2. We have calculated the populations of rotational levels of H2 at thermal equilibrium, and integrated along several lines of sight. These two results reproduce quite well the values observed by Copernicus and FUSE, suggesting that the observed transition and the excited populations could arise as a consequence of the multi-phase structure of molecular clouds. As H2 formation is prior to further molecule formation, warm H2 could possibly allow the development of a warm chemistry, and eventually explain some aspects of the molecular richness observed in the ISM.
64

Constraints on the physical properties and chemical evolution of star-forming gas in primeval galaxies / Contraintes sur les propriétés physiques et l’évolution chimique du gaz formant les étoiles dans les galaxies primordiales

Gutkin, Julia 26 September 2016 (has links)
Je présente un nouveau modèle d'émission nébulaire de galaxies à formation d'étoiles, que j'ai développé en combinant un modèle récent de synthèse de populations stellaires avec un code classique de photoionisation. Je détaille les principales caractéristiques de ce nouveau modèle, comme le traitement sophistiqué des abondances individuelles et des déplétions sur les grains de poussière qui permet d'explorer de façon appropriée les signatures des rapports non solaires d'abondances de métaux, et donc les propriétés des galaxies chimiquement jeunes à l'époque de la réionisation. Je présente la grille exhaustive publique de modèles de photoionisation que j'ai créée, explorant de larges éventails de paramètres stellaires et interstellaires. Je décris la capacité des modèles à reproduire simultanément les caractéristiques observationnelles de galaxies à formation d'étoiles dans plusieurs diagrammes de rapports de raies ultraviolettes et optiques, et j'explore l'influence des différents paramètres ajustables des modèles sur les prédictions de rapports de luminosités de raies. Je décris également comment la combinaison de ces modèles avec des modèles de régions d'émission de raies étroites autour de noyaux actifs de galaxies, effectués avec le même code de photoionisation, permet de définir de nouveaux diagnostics de rapports de raies d'émission ultraviolettes et optiques pour distinguer la formation stellaire et l'activité nucléaire dans les galaxies. Enfin, je montre comment le nouveau modèle présenté dans cette thèse a déjà été utilisé pour interpréter avec succès les raies d'émission ultraviolettes et optiques de galaxies naines lentillées à des décalages spectraux entre 2-7. / I present a new model of nebular emission from star-forming galaxies, which I have developed by combining updated stellar population synthesis models with a standard photoionization code. I detail the main features of this new model, such as the recent advances in the theories of stellar interiors and atmospheres it incorporates to interpret the ionizing radiation from star-forming galaxies, and the careful treatment of individual abundances and depletion onto dust grains, which allows one to properly explore the signatures of non-solar metal abundance ratios, and then the properties of chemically young galaxies out to the reionization epoch. I present the public comprehensive grid of photoionization models I have computed, including full ranges of stellar and interstellar parameters. I describe the ability of the models to account simultaneously for observational trends followed by star-forming galaxies in several ultraviolet and optical diagnostic line-ratio diagrams, and I explore the influence of the various adjustable model parameters on predicted line-luminosity ratios. I also describe how the combination of this model with calculations of narrow-line emitting regions from active galactic nuclei computed using the same photoionization code allows one to define new ultraviolet and optical emission-line diagnostics to discriminate between star formation and nuclear activity in galaxies. Finally, I show how the new model presented in this thesis has already been used successfully to interpret the rest-frame ultraviolet and optical line emission of different types of high-redshift star-forming galaxies, mainly lensed dwarf star-forming galaxies at redshift between 2-7.
65

The Role of AGN Feedback in Galaxy Formation / Le rôle de la rétroaction des noyaux actifs dans la formation des galaxies

Bieri, Rebekka 26 September 2016 (has links)
L’objectif de ma thèse porte sur les interactions entre les noyaux actifs de galaxies et le milieu interstellaire des galaxies. En particulier, je mets l’accent sur les deux mécanismes possibles responsables de la production des vents par les trous noirs : les jets et les vents produits par le rayonnement de ces trous noirs. Les simulations hydrodynamiques de haute résolution des galaxies comprenant la rétroac- tion d’un jet ont montré que l’activité des noyaux actifs peut conduire à une pression exces- sive sur les régions denses de formation stellaire dans les galaxies, et donc à augmenter la formation d’étoiles, conduisant à un effet positif de rétroaction. Je montre que ces noyaux actifs induits par pression régulée et formation d’étoiles peuvent aussi être une explica- tion possible des taux de formation stellaire élevés observés dans l’Univers à haut décalage spectral. De plus, j’ai également étudié en détails comment le rayonnement émis à partir d’un disque d’accrétion autour du trou noir agit efficacement avec le milieu interstellaire et entraîne un fort vent galactique, en simulant la propagation des photons à partir des équations hydrodynamiques du rayonnement. Les simulations montrent que la grande luminosité d’un quasar est en effet capable de conduire des vents à grande échelle et à grande vitesse. Le rayonnement infrarouge est nécessaire pour transérer efficacement le gaz par multi-diffusion sur la poussière dans les nuages denses. Le nombre typique de multi-diffusion diminue rapidement quand le nuage central de gaz central se dilate et se rompt, ce qui permet au rayonnement de s’échapper à travers les canaux à faible densité. / Supermassive black holes (SMBHs) are known to reside in the centres of most large galaxies. The masses of these SMBHs are known to correlate with large-scale properties of the host galaxy suggesting that the growth of the BHs and large-scale structures are tightly linked. A natural explanation for the observed correlation is to invoke a self-regulated mechanism involving feedback from Active Galactic Nuclei (AGN). The focus of this thesis is on the interactions between AGN outflows and the ISM and how the feedback impacts the host galaxy. In particular, it focuses on the two possible mechanism of outflows, namely, outflows related to AGN jets and outflows produced by AGN radiation. High resolution, galaxy scale hydrodynamical simulations of jet-driven feedback have shown that AGN activity can over-pressurise dense star-formation regions of galaxies and thus enhance star formation, leading to a positive feedback effect. I propose, that such AGN-induced pressure-regulated star formation may also be a possible explanation of the high star formation rates recently found in the high-redshift Universe. In order to study in more detail the effects of over-pressurisation of the galaxy, I have performed a large set of isolated disc simulations with varying gas-richness in the galaxy. I found that even moderate levels of over-pressurisation of the galaxy boosts the global star formation rate by an order of magnitude. Additionally, stable discs turn unstable which leads to significant fragmentation of the gas content of the galaxy, similar to what is observed in high-redshift galaxies. The observed increase in the star formation rate of the galaxy is in line with theoretical predictions. I have also studied in detail how radiation emitted from a thin accretion disc surrounding the BH effectively couples to the surrounding ISM and drives a large scale wind. Quasar activity is typically triggered by extreme episodes of gas accretion onto the SMBH, in particular in high-redshift galaxies. The photons emitted by a quasar eventually couple to the gas and drive large scale winds. In most hydrodynamical simulations, quasar feedback is approximated as a local thermal energy deposit within a few resolution elements, where the efficiency of the coupling between radiation of the gas is represented by a single parameter tuned to match global observations. In reality, this parameter conceals various physical processes that are not yet fully un- derstood as they rely on a number of assumptions about, for instance, the absorption of photons, mean free paths, optical depths, and shielding. To study the coupling between the photons and the gas I simulated the photon propagation using radiation-hydrodynamical equations (RHD), which describe the emission, absorption and propagation of photons with the gas and dust. Such an approach is critical for a better understanding of the coupling between the radiation and gas and how hydrodynamical sub-grid models can be improved in light of these results...
66

Adsorption on interstellar analog surfaces : from atoms to organic molecules / Adsorption sur surfaces analogues interstellaires : des atomes aux molécules organiques

Doronin, Mikhail 28 September 2015 (has links)
Les interactions gaz-grains jouent un rôle important dans la chimie des milieux interstellaires et protoplanétaires. Le paramètre-clé qui gouverne les échanges entre la surface des grains et la phase gazeuse est l’énergie d’adsorption Ea. Ce travail a pour but de développer une approche jointe expérimentale et théorique afin de déterminer les énergies d’adsorption pour des atomes et molécules d’intérêt astrophysique sur des substrats-modèles des surfaces des grains de poussière interstellaires. Expérimentalement, la méthode employée est la désorption programmée en température (TPD). Le travail a contribué en l’établissement d’une méthode de traitement des courbes de désorption, basée sur une distribution d’énergie d’adsorption et utilisant un set limité de données à plusieurs rampes de chauffage, pour déterminer le couple de paramètres de l’équation de Polanyi-Wigner que sont l’énergie d’adsorption et le préfacteur. D’un point de vue de la chimie théorique, les énergies d’adsorption sont déterminées en utilisant la théorie de la fonctionnelle de la densité (DFT) implémentée dans le module Vienna Ab initio Simulation Package (VASP). Cette méthode permet également d’accéder aux géométries d’adsorption, ainsi qu’aux différents sites sur la surface. La méthode expérimentale a été validée par une comparaison avec un système connu : l’adsorption du méthanol CH3OH sur le graphite. L’adsorption des gaz rares Ar/Kr/Xe sur les glaces d’eau a été étudiée comme un cas d’intérêt pour la planétologie. L’adsorption de l’acétonitrile (CH3CN) et de son isomère l’isoacétonitrile (CH3NC) sur les surfaces de graphite, de quartz et de glaces d’eau a également été étudiée, puisque ces deux molécules sont détectées dans le milieu interstellaire. Les énergies d'adsorption trouvées dans le cadre de ce travail seront intégrées dans la base des données KIDA. / Gas-grain interaction plays an important role in the chemistry of the cold interstellar medium and protoplanetary disks. A key parameter for modeling the exchange between grain surfaces and gas phase is adsorption energy, Ea. This work aims to develop a reliable and systematic experimental/theoretical approach to determine the adsorption energies of relevant atoms and molecules on models of interstellar grain surfaces. Employed experimental technique is the Temperature Programmed Desorption. Developed experimental protocol and data treatment technique based on distribution of adsorption energies and use of a set of heating rates enable to determine the coupled parameters of Polanyi-Wigner equation: adsorption energy Ea and prefactor N. Computational chemistry approach, Density Functional Theory (DFT) as implemented in Vienna Ab initio Simulation Package (VASP) is used to get the insight on the behaviour of the surface-adsorbate systems at the atomic level. This approach allows as well to determine adsorption energies. A presence of multiple adsorption sites with different adsorption energies is predicted. Methanol CH3OH adsorption on graphite is used as a known example to validate the technique. Ar/Kr/Xe adsorption on water ice is studied as a case relevant for planetology. Acetonitrile (CH_3CN) and methyl isocyanide (CH_3NC) adsorption on water ice, quartz and graphite is investigated since those two molecules are both detected in the interstellar medium. Adsorption energies determined in this work will be included in KIDA database.
67

Etude théorique de la formation catalytique de petites molécules sur des modèles de grains interstellaires / Theoretical study of the catalytic formation of small molecules on models of interstellar dusts

Oueslati, Ichraf 13 April 2015 (has links)
L'hydrogène moléculaire est la molécule la plus abondante dans l'Univers. Il est reconnu que cette molécule ne peut se former que par un processus catalytique. Les études théoriques ont été menées très récemment sur la forstérite [010] cristalline et amorphe. C'est dans ce cadre que se situe notre étude qui porte sur les réactions de formation de l'hydrogène moléculaire sur des modèles de surfaces silicées et silicatées.Dans un premier temps, nous avons étudié la réaction d'abstraction par l'hydrogène atomique à partir du tétramethylsilane en phase gazeuse. La CVT incluant la correction SCT a été appliquée pour étudier la cinétique des réactions dans un intervalle de températures allant de 180 K à 2000 K. Etant donnée l'importance de l'effet tunnel à basse température, nous avons entrepris des calculs de dynamique quantique. Pour ce faire, une surface d'énergie potentielle en coordonnées hyper-sphériques a été construite. Le calcul quantique a été réalisé en utilisant une approche à dimensionnalité réduite à deux dimensions appliquée à ce problème de collision réactive colinéaire. Les résultats montrent que H2 est principalement formé dans son état vibrationnel fondamental. La comparaison avec les résultats expérimentaux réalisés dans le domaine de températures 425-570 K montre un accord satisfaisant. Une étude de formation de H2 sur des nanosilicates a été menée. Les méthodes de la DFT ont permis d'identifier les sites de physisorption et de chimisorption d'atomes d'hydrogène, d'étudier la diffusion de l'atome H physisorbé sur le cluster, de déterminer les caractéristiques énergétiques de ces sites et les énergies d'activation pour la désorption et la recombinaison de H2. / Molecular hydrogen is the most abundant molecule in the Universe. It was recognized long ago that the formation of molecular hydrogen most likely occurs on dust grains. Theoretical studies have focused on H2 formation mainly on model graphite surfaces and very recently on polycrystalline and amorphous foresterite [010]. It is within this framework that lies our study addressing the molecular hydrogen formation on new models of siliceous and silicateous surfaces. First, we studied the abstraction reaction by atomic hydrogen from tetramethylsilane in the gas phase. We used accurate methods of quantum chemistry based on the second-order perturbation theory and on the coupled clusters method. The KIEs and SKIEs were highlighted. CVT/SCT correction was applied to compute the reaction kinetics for a wide temperature range (180-2000 K). Given the importance of the quantum tunnelling effects at low temperatures, we investigated state-selected dynamics using quantum dynamics calculations. In order to achieve this purpose, a two-dimensional potential energy surface in the hyperspherical coordinates representation was built. Quantum calculations were performed using a reduced dimensionality approach applied to this collinear reactive collision problem. The comparison with the experimental results, performed within a temperature range between 425 and 570 K, shows a reasonable agreement.The H2 formation on nanosilicates, prototypes of silicate surfaces, was investigated. Using DFT, we identified physisorption and chemisorption sites for hydrogen atoms, then studied the diffusion of physisorbed hydrogen on the nanoclusters and calculated the energy properties and the activation energies for H2 recombination and desorption into the gas phase. Amorphous/porous grains with forsteritic composition tend to dissociate H2 and that the more crystalline/compact silicate grains would tend to catalyse H2 formation.
68

Using quasar absorption lines to probe cold gas in high redshift galaxies / Utilisation des raies d’absorptions dans les spectres de quasars pour étudier le gaz froid dans les galaxies lointaines

Zou, Siwei 26 September 2018 (has links)
Les raies d'absorption de quasars sont des outils efficaces pour étudier le milieu interstellaire dans les galaxies. Dans ce travail, nous étudions un échantillon de soixante-six systèmes absorbants à z<1.5 sélectionnés pour la présence de raies d'absorption de CI intenses dans leurs spectres SDSS. Ils sont observés par les spectrographes X-shooter et UVES du VLT de l'ESO. Nous étudions en tout 17 systèmes observés par X-shooter. Nous déduisons la métallicité, la déplétion par la poussière, le taux d'extinction par la poussière et le taux d'absorption des raies de MgII, MgI, CaII et NaI décalées dans l'infrarouge proche. Nous détectons neuf raies d'absorption de CaII avec W(CaII λ3934)>0.23Å. Nous détectons dix raies d'absorption de NaI dans quatorze systèmes susceptibles d'en montrer. La largeur équivalente médiane de W(NaI λ5891)=0.68Å est plus grande que celles observées dans des nuages proches ayant des densités-colonnes de HI similaires ou dans des systèmes CaII à z<0.7 détectés par le SDSS. La présence systématique de raies d'absorption de NaI dans ces systèmes CI suggère fortement que le gaz environnant est neutre et froid, et donc peut faire partie du gaz moléculaire diffus dans le milieu interstellaire de galaxies à fort décalage vers le rouge. Les raies d'absorption de MgII s'étalent sur plus de 400km/s en Δv pour la moitié de l'échantillon; trois systèmes ont un Δv supérieur à 500 km/s. Tout ceci suggère qu'une fraction importante du gaz froid à fort décalage vers le rouge émane d'environnements perturbés. Nous détectons de l'hydrogène moléculaire dans tous les systèmes dans la limite de détection. / Quasar absorption lines are a powerful tool to study the interstellar medium(ISM) in the galaxies. We study a sample of 66 z >1.5 absorbers selected based on the presence of strong CI absorption lines in SDSS spectra and observed with the ESO-VLT spectrograph X-shooter/UVES. I study 17 systems that are re-observed by X-shooter. I derive metallicities, depletion onto dust, extinction by dust and analyse the absorption from MgII, MgI, CaII and NaI that are redshifted into the near infrared wavelength range. I detect 9 CaII absorptions with W(CaII λ3934) > 0.23 Å out of 14 systems. I detect 10 NaI absorptions in the 11 systems where we could observe this absorption. The median equivalent width (W(NaI λ5891) = 0.68 Å) is larger than what is observed in local clouds with similar HI column densities but also in z<0.7 CaII systems detected in the SDSS. The systematic presence of NaI absorption in these CI systems strongly suggests that the gas is neutral and cold, maybe part of the diffuse molecular gas in the ISM of high-redshift galaxies. The MgII absorptions are spread over more than Δv ~ 400 km/s for half of the systems; three absorbers have Δv > 500 km/s. The kinematics is strongly perturbed for most of these systems which probably do not arise in quiet disks and must be close to regions with intense star formation activity. All this suggests that a large fraction of the cold gas at high redshift arises in disturbed environments. We detect molecular hydrogen in all the systems within the detection limit.
69

Properties of the interstellar medium of the star-forming galaxy, IC10, at various spatial scales / Propriétés du milieu interstellaire dans la galaxie à formation d’étoiles IC10 à diverses échelles spatiales

Polles, Fiorella Lucia 29 September 2017 (has links)
Les propriétés du milieu interstellaire (MIS) influencent fortement l’environnement et les processus menant à la formation d’étoiles qui, à son tour, dicte l’évolution d’une galaxie. Les galaxies naines du Groupe Local sont de parfaits laboratoires pour comprendre comment le contenu en métaux (ou métallicité) du MIS affecte l’interaction entre le gaz, la poussière et les étoiles. Mon travail de thèse porte sur les propriétés physiques des régions HII et du gaz diffus ionisé de la galaxie naine IC10, de métallicité 1/3 solaire. La proximité de cette galaxie (d=700kpc) permet l’analyse du MIS à différentes échelles spatiales: des nuages brillants compacts (25pc) au corps entier de la galaxie formant des étoiles (650pc). Afin de mesurer les propriétés physiques du MIS, j’ai modélisé les raies d’émission en infrarouge observées avec Spitzer et Herschel grâce à des modèles de photoionisation et de photodissociation. Je présente une exploration complète de plusieurs méthodes pour déterminer, de manière la plus fiable et selon les contraintes disponibles, les propriétés du MIS à diverses échelles. J’ai contraint les propriétés des nuages compacts les plus brillants dans IC10 et montré que l’émission à plus grande échelle (300pc) est dominée par celle de ces nuages. Enfin, je démontre le besoin d’un modèle à plusieurs composantes pour reproduire les observations dans leur ensemble. / The properties of the Interstellar Medium (ISM) strongly influence the environment and processes that lead to star-formation, which in turn, drives the evolution of a galaxy. Dwarf galaxies in the Local Group are perfect laboratories to investigate how the metal-poor ISM affects the interplay between gas, dust and stars. In this thesis, I investigate the properties of the HII regions and the diffuse ionized gas of the nearby dwarf galaxy IC10, which has a metallicity of 1/3 solar. Its proximity (d=700 kpc) enables the analysis on different spatial scales: from the compact clumps (~25 pc) to the whole star-forming body of the galaxy (~650pc). In order to measure the physical properties of the ISM, I model the infrared emission lines observed with Spitzer and Herschel with photoionization and photodissociation models. I present an extensive exploration of different methods to determine the most reliable ISM properties, based on the available constraints. I determined the properties of the brightest star-forming clumps within the galaxy and show that the emission at large scales (~300 pc) is dominated by that of the compact, bright clumps that lie within the region. I further demonstrate the need for a multi-component model to fully reproduce the observations.
70

Les nuages moléculaires du complexe local de Persée

Bachiller, Rafael 25 June 1985 (has links) (PDF)
La proximité (= 300 pc du Soleil) et son intense activité de formation d'étoiles, font du complexe de Persée une région unique pour l'étude détaillée des interactions entre les nuages gazeux et les étoiles jeunes. Nous avons étudié au moyen de comptages d'étoiles et ,d'observation de molécules (CO,13 CO ,C18 0, HCO+, H13CO+, NH 3 , HC 3 N) la quasi-totalité du complexe. Dans le nuage moléculaire, nous distinguons 10 condensations (AV ~ 2- 3 mag), de quelques centaines de masses solaires chacune, où se trouvent des coeurs denses (nH2 = 1- 4 10 4 cm- 3 ). Le pourcentage de la masse dans ces coeurs est 2- 5 % de la masse totale. L'émission de 13 CO (J=1-0) est très bien correlée à l'extinction visuelle (dans l'intervalle 1 <= AV <=5 mag ). Cet isotope apparaît comme le traceur privilégié des nuages étendus. Nous mettons en évidence un fort accroissement de la température du gaz au bord nord - est du nuage. Ce chauffage est vraisemblablement dû au champ ultraviolet intense des étoiles 0 et B du voisinage. Le changement systématique de vitesse observé dans le nuage de Persée est expliqué par un mouvement d'expansion. Cet hypothèse s'accorde bien à la distribution à plus grande échelle observée en HI. L'explosion d'une supernova, il y a quelques millions d'années, pourraît être à l'origine de l'expansion.

Page generated in 0.0835 seconds