• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudos isotópicos (Pb, O, H, S) em zonas alteradas e mineralizadas do depósito cupro-aurífero Visconde, província mineral de Carajás

SILVA, Antonia Railine da Costa January 2013 (has links)
Submitted by Flasleandro Oliveira (flasleandro.oliveira@cprm.gov.br) on 2014-01-29T18:09:05Z No. of bitstreams: 1 diss_antonia_railine.pdf: 3577433 bytes, checksum: e4bbf1c0a3052410021560a67f0cddb9 (MD5) / Approved for entry into archive by Flasleandro Oliveira (flasleandro.oliveira@cprm.gov.br) on 2014-01-29T18:09:24Z (GMT) No. of bitstreams: 1 diss_antonia_railine.pdf: 3577433 bytes, checksum: e4bbf1c0a3052410021560a67f0cddb9 (MD5) / Made available in DSpace on 2014-01-29T18:09:33Z (GMT). No. of bitstreams: 1 diss_antonia_railine.pdf: 3577433 bytes, checksum: e4bbf1c0a3052410021560a67f0cddb9 (MD5) Previous issue date: 2013
2

Recuperação de metais com alto valor agregado utilizando sistemas aquosos bifásicos / Recovery of high values metals using aqueous two-phases systems

Lemos, Leandro Rodrigues de 05 July 2012 (has links)
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2017-03-02T16:20:51Z No. of bitstreams: 1 texto completo.pdf: 1027005 bytes, checksum: a619f4461ffb781e72e23a04a87e5edc (MD5) / Made available in DSpace on 2017-03-02T16:20:51Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1027005 bytes, checksum: a619f4461ffb781e72e23a04a87e5edc (MD5) Previous issue date: 2012-07-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho foram desenvolvidos novos sistemas aquosos bifásicos (SAB), constituídos por polímeros ((poli(óxido de etileno), massa molar 1500 g mol -1 e poli(óxido de propileno), massa molar 400 gmol -1 ) e sais orgânicos (citrato, tartarato, succinato ou acetato) de sódio. Os SAB L64+Na 2 C 4 H 4 O 6 +H 2 O e L64+MgSO 4 +H 2 O foram utilizados para estudar o comportamento de extração de Cu(II) e Zn(II). Os efeitos da concentração do complexante 1-(2-piridilazo)-2-naftol (PAN), pH do meio reacional, natureza do eletrólito formador do sistema e comprimento da linha de amarração (CLA) do SAB, sobre a porcentagem de extração (%E) dos íons metálicos foram investigados. Cu(II) apresentou extração satisfatória (%E = (92,5 ± 1,6) %) em pH = 3,0, enquanto o melhor pH para extração do Zn(II) (%E = 97,8 ± 1,4) %) foi 11. O SAB L64+Na 2 C 4 H 4 O 6 +H 2 O, em pH = 3,0 e proporção PAN/Metal = 3 apresentou a melhor fator de separação (S Cu,Zn = 204) entre os íons estudados. O SAB L35+MgSO 4 +H 2 O foi aplicado para estudar o comportamento de extração de diversos íons metálicos. Em pH = 3,0 e razão PAN/Metal = 3 foram obtido valores de fator de separação entre 10 3 e 10 4 entre o Cu(II) e os concomitantes Al(III), Fe(III), Cd(II), Mn(II), Ni(II), Co(II) ou Zn(II). Este sistema foi aplicado para recuperar cobre de concentrado mineral de cobre, onde o Cu(II) foi extraído para a fase superior (FS) (%E = (90.4 ± 1.1) %), enquanto os outros metais concentraram-se na fase inferior. Os SAB L64+Li 2 SO 4 +H 2 O, L64+Na 3 C 6 H 5 O 7 +H 2 O, L64+(NH 4 ) 3 C 6 H 5 O 7 +H 2 O e PEO1500+ Na 3 C 6 H 5 O 7 +H 2 O foram utilizados para estudar o comportamento de extração de Ag e alguns concomitantes (Cu, Fe e Zn) na presença dos agentes extratores difeniltiocarbazona (Dz) ou tiocianato (SCN - ). O Ag(I) e o Cu(II) foram extraídos preferencialmente para a FS na presença de Dz, enquanto que utilizando SCN - isso ocorre apenas para o Ag(I). O SAB PEO1500+Na 3 C 6 H 5 O 7 +H 2 O em pH = 1,0 e razão SCN - /Ag = 500 apresentou os melhores resultados para separar Ag(I) (%E = (99,9 ± 1,1) %) e os outros íons (Cu(II) (%E = (19,7 ± 0,8) %), Fe(III) (%E = (12,7 ± 0,4) %) ou Zn(II) (%E = (24,8 ± 0,9) %). Este sistema foi aplicado para recuperar prata presente em pilhas botão, ricas em Ag e Zn, obtendo %E = (99,3 ± 2,0) % e %E = (6,09 ± 0,89) % para prata e zinco, respectivamente. / In this work, new aqueous two-phase systems (ATPS) composed by polymer ((poly(ethylene oxide), molecular weight 1500 g mol -1 or poly(propylene oxide), molecular weight 400 g mol -1 ), salt (sodium citrate, sodium tartrate, sodium succinate or sodium acetate) and water were developed. The ATPS L64+Na 2 C 4 H 4 O 6 +H 2 O and L64+MgSO 4 +H 2 O were applied to study the extraction behavior of Cu(II) and Zn(II). The effects of the following parameters on the percentage of extraction (%E) of the metallic ions were evaluated: (i) amount of the extractant 1-(2-pyridylazo)-2-naphthol (PAN); (ii) type of ATPS-forming of electrolyte; (iii) pH; and (iv) tie-line length (TLL). Cu(II) was efficiently extracted at pH = 3.00 (%E = (92.5 ± 1.6) %) and the highest value of %E for Zn(II) was observed at pH = 11.0 (%E = (97.8 ± 1.4) %). A separation factor (S) between Cu(II) and Zn(II) of 204 were obtained using L64+Na 2 C 4 H 4 O 6 +H 2 O system, at pH = 3,00 and molar ratio (PAN/metal) = 3. Moreover, the ATPS L35+MgSO 4 +H 2 O was used to investigate the extraction and separation of Cu(II) from several metallic ions. At pH = 3,0 and molar ratio (PAN/metal) = 3, high values of separation factor were obtained (10 3 to 10 4 ) between Cu(II) and the concomitants Al(III), Fe(III), Cd(II), Mn(II), Ni(II), Co(II) or Zn(II). To evaluate the feasibility of the ATPS for the recovery of copper from real samples, the system was also applied to a leachate of copper concentrate ore and Cu(II) was mostly extracted to top phase (TP) (%E = (90.4 ± 1.1) %), while the others metallic concomitants remained in bottom phase (BP). Finally, the ATPS L64+Li 2 SO 4 +H 2 O, L64+Na 3 C 6 H 5 O 7 +H 2 O, L64+(NH 4 ) 3 C 6 H 5 O 7 +H 2 O and PEO1500+ Na 3 C 6 H 5 O 7 +H 2 O were used to perform extraction studies of Ag and several concomitants (Cu, Fe e Zn) in the presence of the extractants diphenylthiocarbazone (Dz) or potassium thiocyanate (KSCN). With the addition of Dz to the system, Ag(I) and Cu(II) were extracted to TP, while in the presence of KSCN, only Ag concentrated preferentially in polymer-enriched phase. An efficient separation among Ag(I) and the others metallic ions were obtained using PEO1500+Na 3 C 6 H 5 O 7 +H 2 O ATPS, at pH = 1,00 and molar ratio (KSCN/Ag) = 500, conditions in which Ag(I) presented (%E = (99,9 ± 1,1) %) and the %E values for Cu(II), Fe(III) and Zn(II) were (19,7 ± 0,8) %, (12,7 ± 0,4) % and (24,8 ± 0,9) %, respectively. Moreover, the same system was applied to silver extraction from a leachate of button cells, obtaining %E = (99,3 ± 2,0) % and %E = (6.09 ± 0,89) % for silver and zinc, respectively.
3

Estudos isotópicos (Pb, O, H, S) em zonas alteradas e mineralizadas do depósito cupro-aurífero Visconde, Província Mineral de Carajás

SILVA, Antonia Railine da Costa 05 June 2013 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-02-25T18:48:01Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosIsotopicosZonas.pdf: 3577467 bytes, checksum: ceb7632af67c8a3b5664f57bf77a59a5 (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2015-02-26T14:28:17Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosIsotopicosZonas.pdf: 3577467 bytes, checksum: ceb7632af67c8a3b5664f57bf77a59a5 (MD5) / Made available in DSpace on 2015-02-26T14:28:17Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosIsotopicosZonas.pdf: 3577467 bytes, checksum: ceb7632af67c8a3b5664f57bf77a59a5 (MD5) Previous issue date: 2013 / UFPA - Universidade Federal do Pará / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / INCT/GEOCIAM - Instituto Nacional de Ciência e Tecnologia de Geociências da Amazônia / O depósito cupro-aurífero Visconde está localizado na Província Mineral de Carajás, a cerca de 15 km a leste do depósito congênere de classe mundial Sossego. Encontra-se em uma zona de cisalhamento de direção WNW-ESE, que marca o contato das rochas metavulcanossedimentares da Bacia Carajás com o embasamento. Nessa zona ocorrem outros depósitos hidrotermais cupro-auríferos com características similares (Alvo 118, Cristalino, Jatobá, Bacaba, Bacuri, Castanha), que têm sido enquadrados na classe IOCG (Iron Oxide Copper-Gold), embora muitas dúvidas ainda existam quanto a sua gênese, principalmente no que diz respeito à idade da mineralização e fontes dos fluidos, ligantes e metais. O depósito Visconde está hospedado em rochas arqueanas variavelmente cisalhadas e alteradas hidrotermalmente, as principais sendo metavulcânicas félsicas (2968 ± 15 Ma), o Granito Serra Dourada (2860 ± 22 Ma) e gabros/dioritos. Elas registram diversos tipos de alteração hidrotermal com forte controle estrutural, destacando-se as alterações sódica (albita + escapolita) e sódico-cálcica (albita + actinolita ± turmalina ± quartzo ± magnetita ± escapolita), mais precoces, que promoveram a substituição ubíqua de minerais primários das rochas e a disseminação de calcopirita, pirita, molibdenita e pentlandita. Dados isotópicos de oxigênio e hidrogênio de minerais representativos desses tipos de alteração mostram que os fluidos hidrotermais foram quentes (410 – 355°C) e ricos em 18O (δ18OH2O= +4,2 a 9,4‰). Sobreveio a alteração potássica, caracterizada pela intensa biotitização das rochas, a qual ocorreu concomitantemente ao desenvolvimento de foliação milonítica, notavelmente desenhada pela orientação de palhetas de biotita, que precipitaram de fluidos com assinatura isotópica de oxigênio similar à dos estágios anteriores (δ18OH2O entre +4,8 e +7,2‰, a 355°C). Microclina e alanita são outras fases características desse estágio, além da calcopirita precipitada nos planos da foliação. A temperaturas mais baixas (230 ± 11°C), fluidos empobrecidos em 18O (δ18OH2O = -1,3 a +3,7‰) geraram associações de minerais cálcico-magnesianos (albita + epidoto + clorita ± calcita ± actinolita) que são contemporâneas à mineralização. Valores de δ18DH2O e δOH2O indicam que os fluidos hidrotermais foram inicialmente formados por águas metamórficas e formacionais, a que se misturou alguma água de fonte magmática. Nos estágios tardios, houve considerável influxo de águas superficiais. Diluição e queda da temperatura provocaram a precipitação de abundantes sulfetos (calcopirita ± bornita ± calcocita ± digenita), os quais se concentraram principalmente em brechas tectônicas - os principais corpos de minério - que chegam a conter até cerca de 60% de sulfetos. Veios constituídos por minerais sódico-cálcicos também apresentam comumente sulfetos. A associação de minerais de minério e ganga indica uma assinatura de Cu-Au- Fe-Ni-ETRL-B-P para a mineralização. Os valores de δ34S (-1,2 a +3,4‰) de sulfetos sugerem enxofre de origem magmática (proveniente da exsolução de magmas ou da dissolução de sulfetos das rochas ígneas pré-existentes) e precipitação em condições levemente oxidantes. Datação do minério por lixiviação e dissolução total de Pb em calcopirita forneceu idades de 2736 ± 100 Ma e 2729 ± 150 Ma, que indicam ser a mineralização neoarqueana e, a despeito dos altos erros, permite descartar um evento mineralizador paleoproterozoico. A idade de 2746 ± 7 Ma (MSDW=4,9; evaporação de Pb em zircão), obtida em um corpo granítico não mineralizado (correlacionado à Suíte Planalto) que ocorre na área do depósito, foi interpretada como a idade mínima da mineralização. Assim, a formação do depósito Visconde teria relação com o evento transpressivo ocorrido entre 2,76 e 2,74 Ga, reponsável pela inversão da Bacia Carajás e pela geração de magmatismo granítico nos domínios Carajás e de Transição. Esse evento teria desencadeado reações de devolatilização em rochas do Supergrupo Itacaiúnas, ou mesmo, provocado a expulsão de fluidos conatos salinos aprisionados em seus intertícios. Esses fluidos teriam migrado pelas zonas de cisalhamento e reagido com as rochas (da bacia e do embasamento) pelas quais se movimentaram durante a fase dúctil. As concentrações subeconômicas do depósito Visconde devem ser resultado da ausência de grandes estruturas que teriam favorecido maior influxo de fluidos superficiais, tal como ocorreu na formação dos depósitos Sossego e Alvo 118. / The Cu-AuVisconde deposit is located in the Carajás Mineral Province, northern Brazil, about 15 km east of the world-class Sossego deposit. It lies within a regional WNW–ESE-striking shear zone that marks the contact between the ~2.76 Ga metavolcano-sedimentary rocks of the Carajás Basin and the basement units. Other Cu- Au deposits with similar characteristics (Bacaba, Castanha, Alvo 118, Cristalino, Jatobá) occur along this shear zone. They have been included in the IOCG class, although much controversy exists regarding their genesis, particularly with respect to the mineralization age and source of fluids, ligands and metals. TheVisconde deposit is hosted by Archean rocks, mainly felsic metavolcanic rocks (2968 ± 15 Ma), the Serra Dourada granite (2860 ± 22 Ma), and gabbro/diorites. These rocks are variably sheared and reveal various types of hydrothermal alteration with strong structural control. The earliest types are the sodic (albite-scapolite) and sodic-calcic alterations (albiteactinolite ± tourmaline ± quartz ± magnetite ± scapolite ± epidote), which promoted ubiquitous replacement of the rock primary minerals and precipitaton of disseminated chalcopyrite, pyrite, molybdenite and pentlandite. Oxygen isotope data of representative minerals from these stages show that the hydrothermal fluids were hot (410 – 355°C) and 18O-rich (δ18OH2O = +4.2 to +9.4‰). The following potassic stage is characterized by intense biotitization of the rocks, which developed concomitantly a mylonitic foliation highlighted by the remarkable orientation of biotite flakes. This mica precipitated from fluids with similar oxygen isotope signature to that of the previous stages (δ18OH2O = +4.8 to +7.2‰, at 355°C). Microcline and allanite are other typical minerals of this stage, in addition to chalcopyrite that deposited along the foliation planes. At lower temperatures (230 ± 11°C), 18O-depleted fluids (δ18OH2O = -1.3 to +3.7‰) generated a calcic-magnesian mineral assemblage (albite + epidote + chlorite ± actinolite ± calcite) present mostly in veins and contemporaneous with the main mineralization. The δ18OH2O and δDH2O data indicate that the hydrothermal fluids were initially formed by metamorphic and formation waters, possibly with some contribution of magmatic water. At later stages, there was a considerable influx of surface water. The resulting fluid dilution and cooling might have accounted for the abundant precipitation of sulphides (chalcopyrite ± bornite ± chalcocite ± digenite) mainly in tectonic breccias, whose matrix contains up to 60% sulphides. These breccias represent the most important ore bodies, although sulphides also occur in veins together with sodic-calcic minerals. The mineral associations assign a Cu-Au-Fe-Ni-ETRL-B-P signature to the ore. The sulphur isotope composition (δ34SCDT= -1.2 to 3.4‰) is compatible with a magmatic source for sulphur, which could have been either exsolved from a crystallizing granitic magma or dissolved from sulphides originally present in preexisting igneous rocks. Additionally, it indicates relatively reducing conditions for the fluid. Dating of chalcopyrite by Pb leaching and total dissolution techniques yielded ages of 2736 ± 100 Ma and 2729 ± 150 Ma. Despite the large errors, they point to a Neoarchean age for the mineralization and preclude a Paleoproterozoic mineralizing event. The age of 2746 ± 7 Ma (MSDW = 4.9; Pb evaporation on zircon), obtained for a non-mineralized granitic intrusion present in the deposit area and correlated to the Planalto Suite, was considered as the minimum age for the mineralization. Thus, the Visconde deposit genesis could be related to the 2.76-2.74 Ga transpressive tectonothermal event that was responsible for the inversion of the Carajás basin and generation of granitic magmatism in the Carajás and Transition domains. Such an event should have triggered devolatilazion reactions in the Itacaiunas Supergroup rocks, producing metamorphic fluids or even driving off water trapped in the pores of the basin rocks. These fluids migrated along regional shear zones and reacted with both the basin and basement rocks through which they moved during the ductile regime. The subeconomic concentrations of the Visconde deposit might be the result of the absence of prominent structures that would otherwise favor a greater influx of fluids, as it seems to have been the case in the Sossego and Alvo 118 deposits.
4

Microquímica e mineralogia de processos do minério de cobre de Salobo, Carajás

CHOQUE FERNANDEZ, Oscar Jesus 18 March 2002 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-17T12:30:22Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_MicroquimicaMineralogiaProcessos.pdf: 54015172 bytes, checksum: fa20ff557d69274a079b4fb7a5801e46 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-17T16:24:41Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_MicroquimicaMineralogiaProcessos.pdf: 54015172 bytes, checksum: fa20ff557d69274a079b4fb7a5801e46 (MD5) / Made available in DSpace on 2017-04-17T16:24:42Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_MicroquimicaMineralogiaProcessos.pdf: 54015172 bytes, checksum: fa20ff557d69274a079b4fb7a5801e46 (MD5) Previous issue date: 2002-03-18 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / O depósito de cobre do Salobo, localizado na região de Carajás, sudeste do Pará, é reconhecidamente uma das maiores reservas de cobre no país. Apesar de já terem sido desenvolvidos vários estudos mineralógicos sobre este minério, ele ainda desperta muitas controvérsias quanto à origem, dando lugar a diversas interpretações como: "minério de Cu e de óxido de Fe vulcanogênico", "sulfeto maciço vulcanogênico" e "óxidos de ferro (Cu-U-Au-ETR)". Quando comparado com outros exemplos conhecidos mundialmente, ele se apresenta como um exemplo raro de mineralização cupro-aurífera. O minério tem características particulares: mineralização disseminada, granulação fina e rocha mineralizada extremamente dura, que impõem sérias dificuldades à produção de concentrados de cobre. Por essa complexidade o minério é, metalurgicamente, difícil de ser tratado, razão pela qual é constantemente submetido a reavaliações geológicas e tecnológicas. A literatura disponível sobre o depósito de cobre do Salobo é expressiva, porém, trabalhos detalhados sobre microquímica e caracterização tecnológica na cominuição, inexistem ou são de extrema reserva da empresa Salobo Metais S.A. Esses foram os alvos deste trabalho. As análises microquímicas, usando microssonda eletrônica e MEV/SDE, em amostras de testemunhos de furos de sondagem e de pilhas de minério (galeria de pesquisa G3) do Salobo, permitiram identificar que a mineralização sulfetada do depósito de Salobo é constituída por bornita (4 %), calcocita (2 %) e calcopirita (0,5 %), além de proporções variáveis de molibdenita, cobaltita, saflorita, niquelina, siegenita, ouro, prata, grafita, ilmenita, hematita, Te-Ag, uraninita e minerais contendo terras-raras. Estes minerais ocorrem hospedados em dois conjuntos de formações ferríferas, as quais são formadas essencialmente de: a) magnetita e faialita maciça e eventualmente bandadas e, b) biotita e magnetita bandadas. Esses conjuntos (com magnetita 53 % e silicatos 40 %), contêm proporções variá,veis de granada, anfibólio, quartzo, plagioclásio e quantidades subordinadas de fluorita, bem como greenalita, minnesotaíta, stilpnomelana, apatita, monazita, allanita e, ocasionalmente siderita, goethita e malaquita. Pode-se observar uma íntima associação dos sulfetos com os termos rochosos/minérios mais ricos em magnetita. Os sulfetos de cobre ocorrem em cristais < 3,0 mm e grãos finos irregulares disseminados, finas bandas alternadas e/ou foliadas com os silicatos, vênulas e/ou stringers, diminutas inclusões, intercrescimentos mirmequíticos bornita/calcocita e bornita/calcopirita e, substituições bornita-calcocita e bornita-calcopirita. A formação dessas fases resultou de processos complexos e caracterizados por controles composicionais, principalmente pelo enriquecimento em Fe nessas fases. Soluções sólidas de bornita e calcopirita formadas a altas temperaturas deram lugar a esses excessos de ferro. As razões atômicas de Cu/Fe da bornita (4,3-4,9) e calcopirita (média de 0,9) a altas temperaturas permitiram a coexistência em equilíbrio de bornita-calcopirita e, portanto dos intercrescimentos de bomita/calcopirita . Os conteúdos de Fe (máximo 0,96 %) na calcocita podem ter sido incorporados a altas temperaturas, quando a estrutura estava altamente desordenada. Lamelas alongadas de calcopirita seguindo a orientação {111} da bornita, bem como os intercrescimentos bornita/calcocita e bornita/calcopirita sugerem que sejam produtos de exsolução. Se bem que essas fases se encontram associadas com vários minerais em diferentes paragêneses, as feições do minério têm sido drasticamente afetadas pelo metamorfismo, dificultando a reconstrução da sua evolução metamórfica mineral. A moagem produziu mudanças físicas no tamanho de grão do minério do Salobo e, segundo o tempo de residência, curto ou longo, do mineral no moinho, modificou a reologia da polpa. Isso estabeleceu tamanhos de corte a - 270 # (53 µm a 80 % em peso passante, moagem de 4 horas a seco e 2 horas a úmido) que se mostraram adequados à concentração do um minério de cobre. A moagem produziu diferentes frações volumétricas dos sulfetos de cobre nas partículas; assim, para tamanhos de corte < 53 µm as frações foram > 6 % volume, sendo de maior significado entre 26,9 e 7,5 µm (7 a 15 %). A modificação física mostra, ainda, maiores proporções de magnetita que silicatos, com clara incidência da densidade do óxido de ferro na classificação pela ciclonagem. Mineralogicamente, ocorrem os mesmos minerais identificados no ROM, porém com modificações químicas nos sulfetos de cobre. A magnetita é a principal fase dos produtos cominuídos, e a greenalita é de maior ocorrência entre os silicatos, junto com fluorita. As proporções químicas de S, Fe e Cu da bornita, calcocita e calcopirita diferem levemente do run-of-mine (ROM) e das estequiométricas, variando em função do tamanho de grão (maior variação química em tamanhos de grão de 26,9 a 7,5 µm que de 2360 a 37 µm). O ferro pode alcançar até 6,0% em peso na calcocita. As variações químicas em S, Cu e Fe deram lugar à formação dos sulfetos ternários bornita, caracterizada como "misturas complexas" ricas em ferro (Cu4,34-4,76Fe1,03-1,04S4,0) e calcopirita Cu0,93Fe1,08S2,0 rica em ferro (como uma extensão de solução sólida da calcopirita). A partir da oxidação de calcocita, com elevada incorporação de Fe na sua estrutura, formaram-se, também os sulfetos binários djurleíta e digenita Cu1,77-1,84Fe0,04-0,06S1,0. Esses sulfetos de cobre, ternários (Cu-Fe-S) e binários (Cu-S), podem ter sido formados no estágio inicial de oxidação, com alterações superficiais induzidas pela temperatura (25°C até elevadas temperaturas) e a cominuição. Esses sulfetos formados e controlados pelas relações de fase no sistema Cu-Fe-S, foram a resposta ao equilíbrio de fases. As variações na composição química dos sulfetos de cobre, com deficiências catiônicas em cobre, permitiram uma variação composicional lenta, menor que quando há um excesso de cobre catiônico ou Fe que permitiu uma variação composicional maior. Essas deficiências formaram superfícies oxidadas dos sulfetos de cobre, com diferentes produtos de oxidação M1-nS e nM(OH)2. As variações químicas mostraram ser dependentes do tamanho de grão, com oxidações menores em tamanhos > 53 µm e maiores oxidações em tamanhos < 53 µm, isto causado por uma combinação de área superficial e a fase calcocita mais passível de ser oxidada. O excesso do ferro, provindo de partículas coloidais altamente reativas pode ter sido gerado no material do moinho, na ação abrasiva das partículas e na provável oxidação de magnetita, produzindo uma variação no ambiente químico do moinho e dando lugar a processos de corrosão eletroquímica. O minério cominuído conserva as texturas lepidoblásticas dos silicatos biotita, faialita e greenalita e granoblásticas de magnetita (ou grãos de bornita, calcocita e calcopirita). Eles são dependentes da característica xistosa das formações ferríferas da jazida. Os grãos dos sulfetos de cobre, liberados e misturados com alta porcentagem de magnetita e silicatos, mostram-se intensamente fraturados e erodidos, em grupos de cristais de bornita e calcocita (assumindo contatos lineares com os agregados idiomórficos a hipidiomórficos de magnetita) e mostrando, ainda, preenchimento de cracks e/ou fraturas de greenalita, que dificultam a liberação mineral. As liberações de sulfetos de cobre aumentam gradativamente quando o tamanho de grão é mais fino (mais de 50 % em tamanhos de grão < 29,6 µm). Somente nas frações < 37 µm (campo de liberação acumulada CLA90), as partículas contendo sulfetos de cobre começam a migrar para graus mais elevados de liberação, mas essa tendência pode ser insuficiente para propósitos de concentração dos sulfetos, devido à maior presença de sulfetos ainda sem liberar da ganga. Além da forte recristalização metamórfica das formações ferríferas e dureza elevada; dos tamanhos de grão extremamente variáveis de 5 a 300 µm dos sulfetos e; da complexidade mineralógica (associações mineralógicas, disseminações, intercrescimentos complexos) do minério, as investigações microquímicas no ROM e nos produtos de cominuição, revelaram uma significativa variação composicional nos sulfetos de cobre. O ferro, presente no retículo mineral dos sulfetos, é o contaminante causador das modificações químicas (razões Cu/Fe) dos sulfetos, influindo na qualidade de concentrados de cobre no processamento mineral. Já está também bastante bem estabelecido que entre os sulfetos de cobre e outros componentes de polpas na moagem e flotação (água, espécies coletores ou modificantes) ocorre uma interação por mecanismos eletroquímicos produzindo espécies oxidadas, em que a composição química do mineral em questão é muito importante. A alternativa tecnológica adequada para tratar os concentrados de cobre, com base nos estudos mineralógicos e microquímicos no run-of-mine (ROM) e nos produtos de cominuição, parece ser a hidrometalúrgica, pois podem aproveitar-se a produção de grãos finos e usar a remoagem para a produção de grãos ultrafinos. Estes podem ser submetidos a processos de oxidação dos sulfetos a fim de promover a extração do cobre. Finalmente a extração do cobre metálico pode seguir o processo de extração solvente/ eletrorrecuperação (SX/EW). / The Salobo deposit, located in Carajás, southeastern of Pará, is one of the largest copper reserves in Brazil. Although severa! mineralogical studies have been developed for this ore, its origin is still controversial, with severa! interpretations, such as volcanogenic copper-bearing oxide and voicanogenic massive sulfide and iron oxide (Cu-U-Au-REE). In comparison with other well-known deposits, it is a rare example of mineralization. Particular characteristics such as disseminated mineralization, fine grain and its hardness impose serious difficulties to copper concentrates production. Due to ore complexity it is difficult the metallurgical treatment, reasons why it is constantly submitted to geological and technological reevaluations. The literature on Salobo deposit is expressive but detailed works about microchemistry and technological characterization in comminution are rare or restricted to Salobo Metais S.A. company. The objectives of this work dealt with these questions. Microchemical analyses using microprobe and SEM/EDS in samples of holes and ore piles (research gallery G3) of Salobo, allowed the identification of sulfide mineralization with bornite (4%), chalcocite (2%) and chalcopyrite (0.5%), and variable proportions of molybdenite, cobaltite, safflorite, niqueline, siegenite, gold, silver, graphite, ilmenite, hematite, Te-Ag, uraninite and REE minerais. These minerais occur in schist iron formations where the deposit es found: a) magnetite and massive fayalite, eventually banded and b) banded biotite and magnetite. These groups considered as gangue (magnetite 53% and silicates 40%) contain minor amounts of gamet, amphibole, quartz, plagioclase and subordinate amounts of fluorite, greenalite, minnesotaite, stilpnomelane, apatite, monazite, allanite and occasionally siderite, goethite and malachite. Sulfides are preferentially concentrated in magnetite rich iron formations. Copper sulfides occur as crystals less than 3.0 mm and as disseminated fine grains, with fine alternated banded and/or foliated silicates, veiniets and/or long/short stringers, tiny inclusions, bornite/chalcocite and bornite/chalcopyrite mirmekitic intergrowth and bornite-chalcocite and bornite-chalcopyrite substitutions. These minerais were formed by complex processes and are characterized by compositional controls, mainly for the presence of Fe in them. Solid solutions of bomite and chalcopyrite were formed at high temperatures and gave way to those iron excesses. Atomic radios Cu/Fe of bomite (4.3-4.9) and chalcopyrite (average of 0.9) at high temperatures allowed the co-existence of bornite-chalcopyrite equilibrium and therefore of bornite/chalcopyrite. Iron contents (maximum 0.96%) in chalcocite have been incorporated at those temperatures when the structure is highly disordered. Chalcopyrite lamellaes following the { 111 } orientation in bornite as well as the bornite/chalcocite and bornite/chalcopyrite intergrowth suggest exsolution. Although those phases are associated with severa' minerais in different paragenesis, the ore features have been affected drastically by metamorphism difficulting the reconstruction of its pre-metamorphic evolution. Ore grinding produced physical changes in the grain size and according to time, long or short, of mineral comminution the pulp reologie is modified. That process originates a grain size - 270 # (53 µm), 80 % wt. passing, grounding time on 4 hours (dry) and 2 hours (humid) adapted to copper concentration. Different volumetric fractions of copper sulfides in particles were obtained through both processes: larger fraction (6 % volume) to grain sizes < 53 µm and with a prevailing fraction (7 to 15 % volume) ranging from 26.9 to 7.5 µm. Physical modification shows larger magnetite proportions than silicate ones with a clear incidence of magnetite density in the hydrocyclone classification. Mineralogically, in the comminuted products, occur the same minerals established in ROM but with chemical modifications in copper sulfides. Magnetite is the main host for sulfides and greenalite is more frequent among the silicates, fluorite being also common. Proportions of S, Fe and Cu in bornite, chalcocite and chalcopyrite are variable relative to ROM and stoichiometry, varying in function of the grain size (larger chemical variation in grain sizes of 26.9 to 7.5 pm than on the 2360 to 37µm fraction). Iron can reach up to 6.0% wt. in chalcocite. Chemical variations in S, Cu and Fe formed ternary sulfides: bornite, characterized as "complex mistures" rich in iron (Cu4.34-4.76Fe1.03-1.04S4.0) and chalcopyrite rich in Fe Cu0.93Fe1.08S2.0 (as a solid solution extension of chalcopyrite). Chalcocite oxidation and high values of Fe in its structure also contributed to the reaction of binary sulfides: djurleite and digenite Cu1.77-1.84Fe0.04-0.06S1.0. Those ternary (Cu-Fe-S) and binary (Cu-S) copper sulfides have been formed in the initial oxidation state with superficial alterations induced by temperature (25°C on) and comminution. These sulfides were formed and controlled by the phase relationships in the Cu-Fe-S system. Low copper content in sulfides leads to a slower chemical variation than there is an excess of iron. These variations favoured the appearance of oxidized surfaces on copper sulfides with different products of oxidation [M1-nS and nM(OH)2]. Chemical variations showed to be dependent on the grain size, with smaller oxidations in sizes > 53 µm and larger oxidations in sizes <53 µm, caused by a combination of surface area and ability of chalcocite to be oxidized. Iron excess mainly as highly reactive colloidal particles could have been generated by: mill material, abrasive action of particles and probable magnetite oxidation, producing chemical variation in mill atmosphere and electrochemical corrosion processes. Comminuted ore conserves the lepidoblastic textures of the silicates biotite, fayalita and greenalite and granoblastics of magnetite or bornite, chalcocite and chalcopyrite grains. Crystals of copper sulfides, liberated and mixed with high percentage of magnetite and silicates are intensively fractured and eroded and sometimes fullfilling cracks and/or fractures of greenalite. They difficult the sulfide liberation. Copper sulfide liberations increase gradually when the grain size is finer (more than 50 % in grain sizes < 29.6 µm). Only in fractions < 37 µm (Cumulative liberation yield CLY90), the copper bearing particles begin to migrate and for higher degrees of liberation though such tendency can still be insufficient for the purposes of sulfide concentration. Besides the strong metamorphic recrystallization of the schists of ore formations, its high hardness, the extremely variable grain sizes of sulfides (5 to 300 µm) and the mineralogical ore complexity (mineralogical associations, disseminations, intergrowth complexes), this microchemical investigations, in ROM and in comminution products, revealed a significant chemical variation in copper sulfides. Iron present in sulfide mineral reticules is the main contaminant to chemical modifications (Cu/Fe ratio) influencing the quality of copper concentrate in mineral processing. It has been already established that between copper sulfides and other components of pulps during grinding and flotation (water, species collectors or modifiers) occur an interaction through electrochemical mechanisms producing oxidized species, where the chemical composition of the mineral in question is very important. The technological alternative adapted to treat the copper concentrate, with basis in mineralogical and microchemical studies in run-of-mine and comminution products, seems to be the hydrometallurgy because they can take advantage the production of fine grains and to use the reground for ultrafine grains production. These can be submitted to oxidation processes of sulfides to promote copper extraction. Finally the metallic copper extraction can follow the solvent extraction/electrowinning (SX/EW) process.

Page generated in 0.4378 seconds