• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 190
  • 15
  • 13
  • 13
  • 12
  • 12
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 203
  • 203
  • 203
  • 84
  • 82
  • 54
  • 41
  • 40
  • 38
  • 34
  • 32
  • 30
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Modelos baseados em técnicas de mineração de dados para suporte à certificação racial de ovinos / Models based on data mining techniques to support breed certification testing in brazilian sheep

Vieira, Fábio Danilo, 1977- 26 August 2018 (has links)
Orientadores: Stanley Robson de Medeiros Oliveira, Samuel Rezende Paiva / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-26T01:06:59Z (GMT). No. of bitstreams: 1 Vieira_FabioDanilo_M.pdf: 3608471 bytes, checksum: 4705c25d2fbd6794b8aa85559e3620a0 (MD5) Previous issue date: 2014 / Resumo: As raças de ovinos localmente adaptadas descendem de animais trazidos durante o período colonial, e durante anos foram submetidas a cruzamentos indiscriminados com raças exóticas. Estas raças de ovinos são consideradas importantes por possuírem características adaptativas às diversas condições ambientais brasileiras. Para evitar a perda deste importante material genético, a Empresa Brasileira de Pesquisa Agropecuária (Embrapa) decidiu incluí-las no seu Programa de Pesquisa em Recursos Genéticos, armazenando-as em seus bancos de germoplasma, sendo que as que possuem maior destaque nacional são as raças Crioula, Morada Nova e Santa Inês. A seleção dos ovinos para compor estes bancos é realizada por meio da avaliação de características morfológicas e produtivas. Entretanto, essa avaliação está sujeita a falhas, pois alguns animais cruzados mantêm características semelhantes àquelas dos animais locais. Desta forma, identificar se os animais depositados nos bancos são ou não pertencentes a uma raça é uma tarefa que exige muita cautela. Em busca de soluções, nos últimos anos houve um aumento significativo no uso de tecnologias que utilizam marcadores moleculares SNP (do inglês Single Nucleotide Polimorphism). No entanto, o grande número de marcadores gerados, que pode chegar a centenas de milhares por animal, torna-se um problema crucial. Para abordar esse problema, o objetivo deste trabalho é desenvolver modelos baseados em técnicas de mineração de dados para selecionar os principais marcadores SNP para as raças Crioula, Morada Nova e Santa Inês. Os dados utilizados neste estudo foram obtidos do Consórcio Internacional de Ovinos e são compostos por 72 animais destas três raças e 49.034 marcadores SNP para cada ovino. O resultado obtido com a conclusão deste trabalho foi um conjunto de modelos preditivos baseados em técnicas de mineração de dados que selecionaram os principais marcadores SNP para identificação das raças estudadas. A partir da intersecção desses modelos identificou-se um subconjunto de 15 marcadores com maior potencial de identificação das raças. Os modelos poderão ser utilizados para certificação das raças de ovinos já depositados nos bancos de germoplasma e de novos animais a serem inclusos, além de subsidiar associações de criadores interessadas em certificar seus animais, bem como o MAPA (Ministério da Agricultura, Pecuária e Abastecimento) no controle de animais registrados. Os modelos gerados poderão ser estendidos para outras espécies animais de produção / Abstract: The locally adapted breeds of sheep are descended from animals brought in during the colonial period, and for years were subjected to indiscriminate crossbreeding with exotic breeds. These breeds of sheep are considered important by having adaptive characteristics to several Brazilian environmental conditions. To avoid the loss of this important genetic material, the Brazilian Agricultural Research Corporation (Embrapa) decided to include them in its Programme of Research in Genetic Resources, storing them in their genebanks, while those with greater national prominence are Creole breeds, Morada Nova and Santa Ines. The selection of sheep to compose these banks is performed through the evaluation of morphological and productive characteristics. However, this assessment is subject to failures, because some crossbred maintains similar characteristics to those of the local animals. Thus, identifying if the animals deposited in banks belong or not to a breed is a challenging task. In search for solutions in recent years there has been a significant increase in the use of technologies that use molecular markers SNP (Single Nucleotide Polimorphism). However, the large number of markers generated, which can reach hundreds of thousands per animal, becomes a crucial issue. To address this problem, the aim of this study is to develop models based on data mining techniques to select the main SNP markers for Creole, Morada Nova and Santa Ines breeds. The data used in this study were obtained from the International Consortium of Sheep and consist of 72 animals e of these three breeds and 49,034 SNP markers for each sheep. The result obtained with this study was a set of predictive models based on data mining techniques to selected major SNP markers to identify the breeds studied. The intersection of the generated models identified a subset of 15 markers, with greater potential for identification of sheep breeds. The models may be used for certification of sheep breeds already deposited in genebanks and new animals to be included, apart from subsidizing breeders associations interested in certifying their animals, as well as MAPA (Ministry of Agriculture, Livestock and Food Supply) in control registered animals. The proposed models can be extended to other species of production animals / Mestrado / Planejamento e Desenvolvimento Rural Sustentável / Mestre em Engenharia Agrícola
132

Desenvolvimento e avaliação de modelos de alerta para a ferrugem do cafeeiro / Development and evaluation of warning models for coffee rust

Di Girolamo Neto, Cesare, 1985- 23 August 2018 (has links)
Orientadores: Luiz Henrique Antunes Rodrigues, Carlos Alberto Alves Meira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-23T06:51:16Z (GMT). No. of bitstreams: 1 DiGirolamoNeto_Cesare_M.pdf: 2582592 bytes, checksum: a61acb99a6b78882f0aef0e7408b48b5 (MD5) Previous issue date: 2013 / Resumo: A ferrugem (causada pelo fungo Hemileia vastatrix Berk. e Br.) é a principal doença do cafeeiro. As perdas da produção causadas por esta doença podem chegar a 50%, caso nenhuma medida de controle seja adotada. O controle da ferrugem pode ser feito com fungicidas, entretanto métodos tradicionais de controle podem levar a aplicações desnecessárias, as quais são responsáveis por gerar gastos excessivos por parte do produtor, na compra e mão de obra para sua aplicação, além de causar impactos ambientais. Ferramentas como modelos de predição, ou alerta, podem ser utilizadas para antecipar quando uma doença de planta pode ocorrer, sendo que uma predição correta evita aplicações desnecessárias de fungicidas. Neste sentido, modelos de alerta para a ferrugem do cafeeiro foram construídos por outros autores, entretanto, após o seu desenvolvimento, estes modelos não foram avaliados com dados externos ao conjunto de treinamento. Estes modelos passaram por um processo de validação neste trabalho e o resultado mostrou um desempenho abaixo do esperado, evidenciando a necessidade de se criarem novos modelos de alerta, com poder de predição maior do que os existentes. O processo de descoberta de conhecimento em bases de dados foi realizado com o objetivo de gerar estes novos modelos de alerta, utilizando técnicas de mineração de dados como: redes neurais artificiais, máquinas de vetores suporte, florestas aleatórias e árvores de decisão. Dados meteorológicos e de espaçamento da lavoura foram às variáveis independentes do conjunto de dados. Os modelos de alerta foram desenvolvidos considerando taxa de progresso da ferrugem como atributo dependente, ou atributo meta, a qual consiste no aumento da incidência entre dois meses subsequentes. Este atributo foi de origem binária, seguindo os limites de 5 e 10 pontos percentuais - p.p. (classe '1' para taxas maiores ou iguais ao limite; classe '0', caso contrário). Foram desenvolvidos modelos de alerta para a cidade de Varginha e para a região Sul de Minas (com adição das cidades de Boa Esperança e Carmo de Minas), para dados entre 1998 e 2011. Os modelos são específicos para lavouras com alta carga pendente ou para lavouras com baixa carga, dado ao café ser uma cultura bianual. Os modelos para a cidade de Varginha obtiveram, no geral, melhor desempenho do que aqueles contendo dados das 3 cidades juntas. Para alta carga pendente de frutos, a taxa de acerto por validação cruzada, foi superior a 85%, considerando o alerta a partir de 5 p.p. Considerando o alerta a partir de 10 p.p., a taxa de acerto se aproximou dos 90%. Já para lavouras com baixa carga pendente, os modelos considerando o alerta a partir de 5 p.p. também chegaram a taxas de acerto próximas a 90%. Houve ainda equilíbrio entre outras medidas de desempenho importantes, como sensitividade, especificidade e confiabilidade positiva ou negativa em todos os modelos. Os modelos mais bem avaliados mostraram ter desempenho superior aos modelos desenvolvidos por outros autores e têm potencial para servir como apoio na tomada de decisão referente à adoção de medidas de controle da ferrugem do cafeeiro / Abstract: Coffee rust (infection by the fungus Hemileia vastatrix Berk. e Br.) can cause up to 50% of yield losses, in the case no protective measures are taken. This disease can be controlled through fungicide applications, however, traditional control methods can lead to unnecessary use of these products, which cause, not only economic losses for the producer, on buying and applying the fungicides, but also major environmental impacts. Tools like warning models can be used to predict when a plant disease may occur and a correct prediction might avoid unnecessary fungicide applications. According to this, some authors developed warning models for coffee rust, nevertheless, after their development, these models were not evaluated by a test set, besides the one used to create it. A Validation procedure was performed over these models, showing that their performance was way low than expected, highlighting the need for new warning models, with better performance than those previously developed. The Knowledge Discovery in Database process was performed intending to develop new warning models by using four data mining techniques: Neural Networks, Support Vector Machines, Random Forests and Decision Trees. Meteorological and crop spacing data were designed as the independent variables. The dependent variable was labeled as the monthly progress rate of coffee rust, which consists on the increase of the incidence levels between two months in a row. It was mapped as a binary attribute, following the limits of five and ten percentage points (p.p.), considering the increase of the infection rate (class '1' for progress rate over or equal the limit, or class '0' otherwise). Models were developed considering 13 years (1998 - 2011) of incoming data for the city of Varginha - Minas Gerais - Brazil and for the South Minas Gerais region (by adding data from two more cities, Boa Esperança and Carmo de Minas). The models developed are specific for high or low fruit loads. Warning models for Varginha obtained, usually, better performance than those developed with data from the three cities. For high fruit load, the accuracy by cross validation was higher than 85%, considering the warning over 5 p.p. Considering the warning over 10 p.p., the accuracy was close to 90%. For low fruit load, the models considering warning over 5 p.p. also obtained accuracy close to 90%. Other important performance measures, such as sensitivity (recall) and specificity, also obtained good values for all of these models. The warning models developed on this study obtained better performance than others previously developed, and have a great potential to be used in decision-making systems, providing further information regarding the correct use of fungicides on controlling the coffee rust / Mestrado / Planejamento e Desenvolvimento Rural Sustentável / Mestre em Engenharia Agrícola
133

Um sistema de recomendação para páginas web sobre a cultura da cana-de-açúcar / A recommender system for web pages regarding sugarcane crop

Barros, Flavio Margarito Martins de 23 August 2018 (has links)
Orientador: Stanley Robson de Medeiros Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola / Made available in DSpace on 2018-08-23T12:56:12Z (GMT). No. of bitstreams: 1 Barros_FlavioMargaritoMartinsde_M.pdf: 2098709 bytes, checksum: 4fad46ce03410953cd3fbac10f9a43bd (MD5) Previous issue date: 2013 / Resumo: Sistemas de informação web oferecem informações em quantidade elevada, tal que a tarefa de encontrar a informação de interesse torna-se desafiadora. A Agencia de Informação Embrapa e um sistema web com o objetivo de organizar, tratar, armazenar e divulgar informações técnicas e conhecimentos gerados pela EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). O portal esta estruturado como uma arvore hierárquica, denominada Arvore de Conhecimento, a qual compreende centenas de paginas web, artigos, planilhas e materiais multimídia. Diariamente o site recebe milhares de acessos tal que os registros dessas visitas são armazenados em um banco de dados. Em domínios onde estão disponíveis informações em quantidade elevada, armazenadas em bancos de dados, as ferramentas de Mineração de Dados são promissoras, pois apresentam recursos para analise e extração de padrões de uso do site para fazer recomendações. Recomendações personalizadas de conteúdo melhoram a usabilidade de sistemas, agregam valor aos serviços, poupam tempo e fidelizam usuários. O objetivo desse trabalho foi projetar, desenvolver e implantar um sistema de recomendação web, baseado em regras de associação, que ofereça recomendações automaticamente de conteúdos da cultura da cana-de-açúcar, de acordo com o perfil da comunidade de usuários. Os dados utilizados nessa pesquisa foram extraídos de um banco de dados de acessos do projeto Agencia de Informação Embrapa. A metodologia utilizada na pesquisa compreendeu a preparação dos dados de visitas ao site para uma estrutura de "lista de acessos", onde estão registradas todas as paginas visitadas por cada usuário. A partir destas listas de acesso, regras de associação entre paginas foram geradas por meio do algoritmo Apriori. O conjunto de regras deu origem a uma base de conhecimento que foi armazenada em um banco de dados para fazer recomendações de conteúdo aos usuários. Como suporte a base de conhecimento, para cada pagina da agencia cana-de-açúcar foi criada uma lista de ate três das paginas mais visitadas. Essas paginas podem ser oferecidas caso haja ausência de recomendações. O sistema de recomendação foi avaliado com uma métrica denominada taxa de rejeição e, por meio de um questionário aplicado a um conjunto de usuários, foi avaliada a usabilidade da Agencia cana-de-açúcar, apos a implantação do sistema. A base de conhecimento, gerada na forma de regras de recomendação, também foi avaliada em relação a estrutura de links da Agencia, para verificar se a lista de recomendações trouxe conhecimentos sobre a estrutura do portal. De acordo com os resultados da pesquisa, por meio das recomendações, usuários encontram informações relevantes associadas as suas visitas, aumentam seu tempo de permanência no site e aumentam o uso e visualização dos conteúdos da Agencia de Informação Embrapa - Arvore cana-de-açúcar. Em paginas com dezenas de links, a base de conhecimento também atua como uma forma de resumo, apontando os principais links nas paginas / Abstract: Web information systems provide a great amount of information, so that the task of retrieving the information of interest becomes a challenge. Embrapa Information Agency is a web system aimed to organize, treat, store and disseminate technical information and knowledge generated by EMBRAPA (Brazilian Agricultural Research Corporation). The Agency's portal is structured as a hierarchical tree, called Knowledge Tree, which comprises hundreds of web pages, articles, spreadsheets and multimedia materials. Everyday this site receives thousands of access and the records of these visits are stored in a database. In domains where information is available in high quantity, stored in databases, Data Mining tools are promising, since they have resources for extraction and analysis of usage patterns of the site to make recommendations. Personalized recommendations of content improve the usability of systems, add value to services, save time and retain users. The aim of this work was to design, develop and deploy a web recommendation system based on association rules, which offers automatically recommendations of sugarcane contents, according to the profile of user community. The data used in this study were extracted from a database of accesses from Embrapa Information Agency. The methodology used in the research included a data preparation procedure to transform website visits into a structured access list, in which all page views by each user are stored. From these access lists, association rules between pages were generated by means of the Apriori algorithm. The set of rules has created a knowledge base that was stored in a database to make content recommendations to users. To support the knowledge base, for each page of the sugarcane Agency was created a list of up to three of the most visited pages. These pages can be offered if there are no recommendations. The recommender system was evaluated by using a metric called bounce rate. In addition, through a questionnaire applied to a set of users, the usability of the sugarcane Agency was evaluated, after the system deployment. The knowledge base generated in the form of recommendation rules was also evaluated in relation to link structure of Agency, to verify if the list of recommendations brought knowledge about the structure of the portal. According to the survey results, users find relevant information associated with their visits, increase their time spent on the site and increase the use and the interest of the contents of sugarcane Agency. In pages with dozens of links, the knowledge base also acts as a form of summarizing them, indicating the main links on the pages / Mestrado / Planejamento e Desenvolvimento Rural Sustentável / Mestre em Engenharia Agrícola
134

Modelos baseados em data mining para classificação multitemporal de culturas no Mato Grosso utilizando dados de NDVI/MODIS / Models based on data mining for classification multitemporal crop in Mato Grosso data using NDVI/MODIS

Lopes, Kelly Marques de Oliveira, 1982- 08 September 2013 (has links)
Orientadores: Laércio Luis Vendite, Stanley Robson de Medeiros Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T13:40:19Z (GMT). No. of bitstreams: 1 Lopes_KellyMarquesdeOliveira_M.pdf: 10053877 bytes, checksum: 2126c76ce80f71b89ec947645274c384 (MD5) Previous issue date: 2013 / Resumo: O desenvolvimento de estudos na área de geotecnologia e o aumento na capacidade de armazenar dados têm melhorado a exploração e os estudos de imagens de satélites obtidas através de sensores orbitais. O mapeamento da cobertura da terra, estimativas de produtividade de culturas e a previsão de safras são informações importantes para o agricultor e para o governo, pois essas informações são essenciais para subsidiar decisões relacionadas à produção, estimativas de compra e venda, e cálculos de importação e exportação. Uma das alternativas para analisar dados de uso e cobertura da terra, obtidos por meio de sensores, é o uso de técnicas de mineração de dados, uma vez que essas técnicas podem ser utilizadas para transformar dados e informações em conhecimentos que irão subsidiar decisões relativas ao planejamento agrícola. Neste trabalho, foram utilizados dados multitemporais sobre o índice de vegetação NDVI, derivados de imagens do sensor MODIS, para o monitoramento das culturas de algodão, soja e milho no estado do Mato Grosso, no período do ano-safra de 2008/2009. O conjunto de dados, fornecido pela Embrapa Informática Agropecuária, foi composto por 24 colunas e 728 linhas, onde as 23 primeiras colunas referem-se aos valores do NVDI, e a última, à cobertura do solo. A metodologia utilizada teve como base o modelo CRISP-DM (Cross Industry Standard Process for Data Mining). Modelos preditivos para classificar dados sobre essas culturas foram elaborados e avaliados por algoritmos de aprendizado de máquina, tais como árvores de decisão (J48 e PART), florestas aleatórias (Random Forest). A seleção de atributos melhorou os valores do índice Kappa e a acurácia dos modelos. Foram geradas regras de classificação para mapear as culturas estudadas (soja, milho e algodão). Os resultados revelaram que os algoritmos de aprendizado de máquina são promissores para o problema de classificação de cobertura do solo. Em particular o algoritmo J48, utilizado em conjunto com a seleção de atributos feito por meio de análise de componentes principais, destacou-se em relação ao demais pela simplicidade e pelos valores apresentados. Os resultados também evidenciaram a presença regiões de cultivo do algodão em outras áreas do estado, fora daquelas estudadas / Abstract: The development of studies in the field of geotechnology and increased ability to store data have improved the exploration and study of satellite images obtained by satellite sensors. The mapping of land cover, estimates of crop productivity and crop forecasting is important information for the farmer and for the government, because this information is essential to support decisions related to production, estimates of purchase and sale, import and calculations and export. An alternative use for data analysis and coverage will be obtained by means of sensors, is the use of data mining techniques since these techniques can be used to transform data and information on the knowledge that will support decisions on agricultural planning. In this work, we used data on the multitemporal vegetation index NDVI derived from MODIS images for monitoring crops of cotton, soybean and corn in the state of Mato Grosso, in the period of the crop year 2008/2009. The dataset supplied by Embrapa Agricultural Informatics, comprised 24 columns and 728 rows, where the 23 first columns refer to the values of NVDI, and the last, the soil cover. The methodology used was based on the model CRISP-DM (Cross Industry Standard Process for Data Mining). Predictive models to classify data on these cultures were prepared and analyzed by machine learning algorithms such as decision trees (J48 and PART), Random Forests (Random Forest). The feature selection improved the Kappa index values and accuracy of the models. Classification rules were generated to map the cultures studied (soy, corn and cotton). The results show that the machine learning algorithms are promising for the problem of classification of land cover. In particular, the J48 algorithm, used in conjunction with feature selection done by principal component analysis, stood out against the other by the simplicity and the values presented. The results also revealed the presence of regions of cotton cultivation in other areas of the state, out of those studied / Mestrado / Matematica Aplicada e Computacional / Mestra em Matemática Aplicada e Computacional
135

Avaliação da sustentabilidade de sistemas agrícolas brasileiros através de ferramentas computacionais / Sustainability assessment of agricultural systems using computational tools

Takahashi, Fabio, 1982- 19 August 2018 (has links)
Orientador: Enrique Ortega Rodriguez / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-19T16:40:26Z (GMT). No. of bitstreams: 1 Takahashi_Fabio_D.pdf: 40746551 bytes, checksum: 8bd4dcf5734dccf888245cfdc1891ae1 (MD5) Previous issue date: 2012 / Resumo: Este estudo utilizou a metodologia emergética para avaliar 39 culturas agrícolas de manejo convencional e 15 culturas agrícolas de manejo orgânico com o objetivo de traçar um perfil da sustentabilidade de alguns produtos da agricultura brasileira. Todas as avaliações foram arquivadas em um banco de dados que pode ser acessado em uma página web dinâmica que foi desenvolvida para divulgar os resultados deste trabalho e permitir que o usuário crie suas próprias avaliações emergéticas de sistemas agrícolas. Na primeira etapa da análise dos resultados, os sistemas foram agrupados em 5 categorias; a) oleaginosas b) grãos c) frutas d) hortaliças, raízes e tubérculos e) hortaliças orgânicas. Técnicas de mineração de dados foram utilizadas para interpretar todo o conjunto de resultados com o objetivo de encontrar relações entre os indicadores emergéticos que classificassem os sistemas de acordo com o manejo e em categorias sugeridas por especialistas de acordo com os valores dos índices emergéticos. A avaliação emergética mostra o melhor desempenho das culturas orgânicas quando comparadas com as culturas de manejo convencional. A mineração de dados se mostrou uma ferramenta eficiente para avaliação de todos os resultados encontrados nesse trabalho, pois foi possível encontrar relações dos indicadores emergéticos que descrevem o comportamento dos sistemas e os classificam em grupos encontrados pela clusterização (sistemas convencionais e sustentáveis; sistemas orgânicos e sustentáveis; sistemas insustentáveis) e também em categorias de acordo com os indicadores emergéticos propostos por especialistas / Abstract: This study used the emergy methodology for assessing 39 conventional crops and 15 organic crops in order to draw a profile of sustainability of some products of Brazilian agriculture. All evaluations were stored in a database that can be accessed in a dynamic web page developed to disseminate the results of this study and allow the user to create his own evaluation of agricultural systems. In the first step of analysis of the results, the systems were grouped into 5 categories: a) oil plants b) fruits c) grains d) vegetables and tubers e) organic. Data mining techniques were used to interpret the whole set of results in order to find relationships among the emergy indicators to classify the systems according to the management and groups established by experts in accordance with the values of emegy indices. The emergy evaluation shows a better performance of organic crops compared with conventional crops. Data mining has proven an effective tool for evaluation of all results found in this study. It was possible to find relations of emergy indicators that describe the behavior of systems and classify them into groups found by clustering ( conventional and sustainable systems; organic and sustainable systems; unsustainable systems) and also into categories according to emergy indicators proposed by experts / Doutorado / Engenharia de Alimentos / Doutor em Engenharia de Alimentos
136

Avaliação da qualidade de cursos superiores a distância / Quality evaluatin of higher distance courses

Lachi, Ricardo Luís, 1977- 21 August 2018 (has links)
Orientador: Heloísa Vieira da Rocha / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-21T18:04:31Z (GMT). No. of bitstreams: 1 Lachi_RicardoLuis_D.pdf: 4478707 bytes, checksum: fe1b464d73bb0d024ceb47d853970c03 (MD5) Previous issue date: 2012 / Resumo: O objetivo deste trabalho foi o de demonstrar que os dados armazenados nos Ambientes Virtuais de Aprendizagem (AVAs) podem ser usados como importantes fontes de informação para avaliar a qualidade dos cursos. Para isso foi construído um modelo de avaliação baseado na coleta de respostas para conjuntos de perguntas específicas relacionadas a aspectos que a literatura define como relevantes para a avaliação de um curso online. A validade e a confiabilidade desses conjuntos de perguntas elaborados são discutidas e, especificamente no caso das perguntas subjetivas, foi apresentada uma comprovação estatística de sua confiabilidade por meio do cálculo do valor do indicador de confiabilidade Alfa de Cronbach, a partir de uma amostra de respostas coletadas. A definição desses conjuntos de perguntas específicas permitiu identificar que dados registrados em um AVA devem ser recuperados e que efetivamente trazem informações importantes para a avaliação do curso online. Por fim, foi desenvolvido todo um suporte computacional, tanto para facilitar a aplicação do modelo de avaliação proposto, quanto para a recuperação de dados registrados em um AVA. Isso comprovou a possibilidade de automatizar e resgatar computacionalmente dados registrados em um AVA e que eles são uma fonte de informação relevante para a avaliação de um curso online. Os resultados obtidos neste trabalho abrangem: a definição de um modelo claro e bem detalhado de quais aspectos devem efetivamente ser considerados na avaliação da qualidade de um curso online; a construção de um sistema computacional denominado SAESD (Sistema de Apoio para a Avaliação de cursos Superiores a Distância) para dar suporte e facilitar a aplicação do modelo de avaliação definido; a construção e o projeto de ferramentas computacionais capazes de recuperar informações relevantes para a avaliação da qualidade de um curso online, abrangendo desde a análise de logs do Sistema Operacional até o padrão de acessos dos participantes do curso online / Abstract: The goal of this study was to demonstrate that the data stored in Virtual Learning Environments (VLEs) can be used as important sources of information to evaluate the quality of a distance course. This way, it was developed an evaluation model based on collection of answers to specific sets of questions related to aspects that literature defines as relevant to the evaluation of an online course. The validity and reliability of these sets of questions are discussed and developed. Particularly, it was calculated the Cronbach's Alpha coefficient for the set of subjective questions in order to prove statistically its validity. These questions helped to identify which data recorded in a VLE should be recovered and which effectively provide important information for the evaluation of an online course. Finally, we developed an entire computer support, both to facilitate the implementation of the proposed evaluation model, and for the recovery of data recorded in a VLE. This demonstrated the possibility to automate and rescue data recorded in a VLE, besides proving they are a source of relevant information to the evaluation of an online course. The main results reached in this work include: the definition of a clear and well detailed model of what aspects should effectively be considered in evaluating the quality of an online course; building a computer system called SAESD to support and help the implementation of the evaluation model defined; the construction and design of computational tools able to retrieve relevant information to online course assessment, which includes, the log analysis of the operating system and the access pattern of the online course participants / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
137

Atribuição de fonte em imagens provenientes de câmeras digitais / Image source camera attribution

Costa, Filipe de Oliveira, 1987- 07 June 2012 (has links)
Orientador: Anderson de Rezende Rocha / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-21T01:46:22Z (GMT). No. of bitstreams: 1 Costa_FilipedeOliveira_M.pdf: 4756629 bytes, checksum: db25cfc98fbdb67c2eee785a37969909 (MD5) Previous issue date: 2012 / Resumo: Verificar a integridade e a autenticidade de imagens digitais é de fundamental importância quando estas podem ser apresentadas como evidência em uma corte de justiça. Uma maneira de se realizar esta verificação é identificar a câmera digital que capturou tais imagens. Neste trabalho, nós discutimos abordagens que permitem identificar se uma imagem sob investigação foi ou não capturada por uma determinada câmera digital. A pesquisa foi realizada segundo duas óticas: (1) verificação, em que o objetivo é verificar se uma determinada câmera, de fato, capturou uma dada imagem; e (2) reconhecimento, em que o foco é verificar se uma determinada imagem foi obtida por alguma câmera (se alguma) dentro de um conjunto limitado de câmeras e identificar, em caso afirmativo, o dispositivo específico que efetuou a captura. O estudo destas abordagens foi realizado considerando um cenário aberto (open-set), no qual nem sempre temos acesso a alguns dos dispositivos em questão. Neste trabalho, tratamos, também, do problema de correspondência entre dispositivos, em que o objetivo é verificar se um par de imagens foi gerado por uma mesma câmera. Isto pode ser útil para agrupar conjuntos de imagens de acordo com sua fonte quando não se possui qualquer informação sobre possíveis dispositivos de origem. As abordagens propostas apresentaram bons resultados, mostrando-se capazes de identificar o dispositivo específico utilizado na captura de uma imagem, e não somente sua marca / Abstract: Image's integrity and authenticity verification is paramount when it comes to a court of law. Just like we do in ballistics tests when we match a gun to its bullets, we can identify a given digital camera that acquired an image under investigation. In this work, we discussed approaches for identifying whether or not a given image under investigation was captured by a specific digital camera. We carried out the research under two vantage points: (1) verification, in which we are interested in verifying whether or not a given camera captured an image under investigation; and (2) recognition, in which we want to verify if an image was captured by a given camera (if any) from a pool of devices, and to point out such a camera. We performed this investigation considering an open set scenario, under which we can not rely on the assumption of full access to all of the investigated devices. We also tried to solve the device linking problem, where we aim at verifying if an image pair was generated by the same camera, without any information about the source of images. Our approaches reported good results, in terms of being capable of identifying the specific device that captured a given image including its model, brand, and even serial number / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
138

Método para identificação de perfis de produtos : estudo de caso automobilístico / Method of identification of product profiles : automotive case study

Miguel, Carlos Henrique, 1983- 27 August 2018 (has links)
Orientador: Antônio Batocchio / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-27T18:08:13Z (GMT). No. of bitstreams: 1 Miguel_CarlosHenrique_M.pdf: 3528187 bytes, checksum: 165344ab93862eb94649f13d1f4a8626 (MD5) Previous issue date: 2015 / Resumo: O objetivo do trabalho foi elaborar um método de identificação de perfis de produto que representa os grupos de características frequentes do produto nas compras efetuadas por seus clientes. Foi feita uma revisão de literatura sobre quais áreas de gestão são influenciadas pela identificação de perfis de produtos, dentre elas: Planejamento de Demanda, Cadeia de Valor, Cadeia de Suprimentos e Cadeia Logística. Mais especificamente, as subáreas mais afetadas são Entrega de Fornecedores Chaves em base no Just In Time e Sistema de Reposição Contínua. As tecnologias de identificação eletrônica de produtos produzidos em série (e. g. RF ID, código de barras e código QR) são formas de identificar cada venda de produto a ser utilizado pelo método. Dentre as técnicas aplicadas no método, os Conjuntos Fuzzy foram utilizados para categorizar as características quantitativas dos produtos, que passaram a ser a entrada para a Análise de Carrinho de Compras, possibilitando determinar cada perfil de produto através de mineração de dados por regras de associação. O Apriori foi um algoritmo apropriado para realizar a Análise de Carrinho de Compras, pois realiza mineração por regras de associação de conjunto de itens frequentes utilizando as regras de interesse: suporte, confiança e lift. O algoritmo está presente no pacote Arules do programa estatístico R. O pacote ArulesViz, que está presente no programa estatístico R, permite visualizar de forma gráfica os relacionamentos entre os itens do produto. O método foi aplicado a uma base de dados de pesquisa do setor automobilístico, retornando com sucesso os perfis de automóvel frequentes dentre as compras efetuadas pelos clientes / Abstract: This study aimed to prepare a product profile identification method representing the groups of common characteristics of the product in the purchases made by its customers. A literature review was made on which areas of management are influenced by the identification of product profiles, such as: Demand Planning, Value Chain, Supply Chain and Logistic Chain. Specifically the Keys Suppliers Delivery sub-areas based on Just in Time and Continuous Replacement System are the most affected. The electronic identification technologies of products produced in series (e.g. RF ID, barcode and QR code) are ways to identify each product sale to be used by the method. Among the techniques applied in the method, Fuzzy Sets were used to categorize the quantitative characteristics of the products, which are now the entrance to the Market Basket Analysis, allowing to find each product profile through data mining for association rules. The Apriori was an appropriate algorithm to perform Market Basket Analysis, as done by mining association rule set of frequent item sets using the rules of interest: support, confidence and lift. The algorithm is present in Arules package of statistical software R. The ArulesViz package, which is present in the R statistical software, displays graphically the relationships between the items of the product. The method was applied to a research database of the automotive sector successfully returning the frequent car profiles from purchases made by customers / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
139

Mineração de dados baseada em inteligência computacional: uma aplicação à determinação da tipologia de curvas de cargas

ALVES, Elton Rafael 13 September 2011 (has links)
Submitted by Samira Prince (prince@ufpa.br) on 2012-06-04T13:43:11Z No. of bitstreams: 2 Dissertacao_MineracaoDadosBaseada.pdf: 5299530 bytes, checksum: ff357bf983c4b641d8b7fd5ed78b78e7 (MD5) license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) / Approved for entry into archive by Samira Prince(prince@ufpa.br) on 2012-06-04T13:43:48Z (GMT) No. of bitstreams: 2 Dissertacao_MineracaoDadosBaseada.pdf: 5299530 bytes, checksum: ff357bf983c4b641d8b7fd5ed78b78e7 (MD5) license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) / Made available in DSpace on 2012-06-04T13:43:48Z (GMT). No. of bitstreams: 2 Dissertacao_MineracaoDadosBaseada.pdf: 5299530 bytes, checksum: ff357bf983c4b641d8b7fd5ed78b78e7 (MD5) license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Previous issue date: 2011 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As concessionárias de energia, para garantir que sua rede seja confiável, necessitam realizar um procedimento para estudo e análise baseado em funções de entrega de energia nos pontos de consumo. Este estudo, geralmente chamado de planejamento de sistemas de distribuição de energia elétrica, é essencial para garantir que variações na demanda de energia não afetem o desempenho do sistema, que deverá se manter operando de maneira técnica e economicamente viável. Nestes estudos, geralmente são analisados, demanda, tipologia de curva de carga, fator de carga e outros aspectos das cargas existentes. Considerando então a importância da determinação das tipologias de curvas de cargas para as concessionárias de energia em seu processo de planejamento, a Companhia de Eletricidade do Amapá (CEA) realizou uma campanha de medidas de curvas de carga de transformadores de distribuição para obtenção das tipologias de curvas de carga que caracterizam seus consumidores. Neste trabalho apresentam-se os resultados satisfatórios obtidos a partir da utilização de Mineração de Dados baseada em Inteligência Computacional (Mapas Auto-Organizáveis de Kohonen) para seleção das curvas típicas e determinação das tipologias de curvas de carga de consumidores residenciais e industriais da cidade de Macapá, localizada no estado do Amapá. O mapa auto-organizável de Kohonen é um tipo de Rede Neural Artificial que combina operações de projeção e agrupamento, permitindo a realização de análise exploratória de dados, com o objetivo de produzir descrições sumarizadas de grandes conjuntos de dados. / The energy utilities, for ensure that your network be reliable, need to perform a procedure for study and analysis based in your functions of delivery of energy in the points of the consumption. This study, generally called of systems planning of electric power distribution, is essential for ensure that variations in the energy demand doesn’t affect the system performance, that should whether keep operating of technique manner and viable economically. In these studies are generally analyzed, demand, typology of load curves, load factor and other aspects of the existing loads. Considering then the importance of the determining of the typologies of load curves for utilities in their planning process, the Electricity Company of Amapá (CEA) conducted a campaign of measures of load curves of the distribution transformers that were utilized for obtainment of the typologies of load curves that characterize your consumers. In this paper presents the satisfactory results obtained as from the utilization of Data Mining based in Computational Intelligence (Self-Organizing Maps of Kohonen) for selection of the typical curves and determination of the typologies of load curves of residential and industrial consumers for the city of Macapá, located in the state of Amapá. The self-organizing map of Kohonen is a type of artificial neural network that combines operations of projection and clustering, allowing the realization of exploratory data analysis, with the goal of producing summarized descriptions of large data sets.
140

Avaliação de um Sistema Escalável de Classificação CNAE Implementado em Cloud Computing

Veronese, Lucas de Paula 17 March 2011 (has links)
Made available in DSpace on 2016-12-23T14:33:35Z (GMT). No. of bitstreams: 1 Lucas de Paula Veronese.pdf: 2538988 bytes, checksum: c17a3042d9904bfe301764e3ca465825 (MD5) Previous issue date: 2011-03-17 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Em problemas de classificação automática de texto com um grande número de rótulos, as bases de dados de treinamento são extensas, o que pode tornar o tempo de classificação proibitivo para os sistemas on-line. Destarte, nossa motivação para a realização deste trabalho veio da necessidade de o Governo Federal implementar no país um Cadastro Sincronizado Nacional (CSN) de empresas, onde a Classificação Nacional de Atividades Econômicas (CNAE) seria parte constituinte. Nesta tarefa de classificação, são associados um ou mais códigos CNAE-Subclasses à descrição de atividades econômicas de empresas. Vale destacar que, em 2009, a tarefa de atribuir ou revisar tais códigos CNAE foi realizada no país cerca de duas milhões de vezes. Diante disto, para a realização deste trabalho, nós investigamos o uso de servidores Web baseado em Cloud Computing devido à escalabilidade e ao baixo custo de desenvolvimento e operação. Pela facilidade de utilização e fornecimento de quotas livres, o servidor de Cloud Computing escolhido para desenvolvimento da aplicação foi o Google App Engine. Desta forma, nós projetamos, implementamos e hospedamos um sistema de classificação de textos dentro de tal servidor. No entanto, o Google App Engine cobra pelo serviço que ultrapassa a quantidade de quota livre (renovável diariamente), então, quanto menor a complexidade do processamento do sistema, menor o custo financeiro da aplicação. Foi feita uma otimização no sistema de armazenamento dos classificadores, aproveitando as características das bases de dados textuais. Houve uma redução do custo computacional do sistema e, em consequência, para a demanda atual de requisições CNAE o custo financeiro anual seria de 2000 dólares americanos. Este é um valor irrisório se comparado aos custos de infra-estrutura, manutenção e energia necessários para realizar um serviço semelhante ao de um servidor Web tradicional / In problems in automatic text classification with a large number of labels, training databases are large, therefore the classification time can become prohibitive for online rating systems. Thus, our motivation for this work came from the need of the Federal Government to implement a Cadastro Sincronizado Nacional (CSN) of companies, where the Classificação Nacional de Atividades Econômicas (CNAE) would compose the system. In this classification task one or more CNAE-Subclasses codes are associated to the description of the economic activities of companies. It is worth noticing that in 2009, the task of assigning codes or revise the CNAE was done in the country about 2 million times. This way, we investigated the use ofWeb servers based on Cloud Computing on its scalability and low cost of development and operation. Due to the ease of use and free quotas, the Cloud Computing server chosen for this application development was Google App Engine. Thus, we designed, implemented and hosted a system of classification of such texts on the server. However, Google App Engine service charges for exceeding the amount of free quota (renewable every day), whereas the lower the complexity of the processing system, the lower the financial cost of implementation. Aiming this, an optimization was performed on the storage system of classifiers, taking advantage of the features of the text base. We successfully reduced the computational cost of the system and, in consequence, it was estimated that for the current demand of requests the CNAE annual financial cost would be $ 2,000. This is a small amount when it is compared to the cost of infrastructure, maintenance and power that would take to perform a similar service to a traditional Web server

Page generated in 0.0998 seconds