Spelling suggestions: "subject:"ineral admixture"" "subject:"hineral admixture""
1 |
Effects Of Granulated Blast Furnace Slag Trass And Limestone Fineness On The Properties Of Blended CementsDelibas, Tughan 01 January 2012 (has links) (PDF)
The aim of this research was to determine the effects of the fineness of different mineral additives on loss on ignition, heat of hydration, physical, mechanical and chemical properties of blended cements. For that purpose, portland cement clinker was replaced with granulated blast furnace slag (GBFS), natural pozzolan (NP) and limestone (L) at 6%, 20% and 35% replacement levels. Blended cements containing GBFS and NP were ground to a fineness of 3000, 5000 and 6000 cm2/g. Cements containing L were ground to 3000 cm2/g, 4000 cm2/g and 4500 cm2/g. All of the blended cement types mentioned above were both interground and separately ground to the specified fineness levels. Therefore, a total of 57 different cements were produced. Loss on ignition, heat of hydration, chemical, mechanical and physical analyses were performed on the produced cements. Moreover, the chemical analyses of the cements were obtained for cement particles finer (-45&mu / m) and coarser (+45&mu / m) than 45 &mu / m in order to determine the ingredients of -45 &mu / m, which is known to be more reactive.
As a result it was shown that the grindability differences of the cement ingredients affect the properties of blended cements. An increase in the specific surface area increases both the compressive strength and heat of hydration values and adversely affects the loss on ignition
values. The results also showed that if the cement particles were ground finer, it was more prone to moisture which resulted in higher loss on ignition values after longer periods.
|
2 |
Identification of Concrete Incompatibilities Using Cement Paste RheologyJang, Se Hoon 2009 May 1900 (has links)
The complex interaction between cement and chemical/mineral admixtures in concrete mixtures sometimes leads to unpredictable concrete performance in the field which is generally defined as concrete incompatibilities. Cement paste rheology measurements instead of traditional workability tests (i.e., slump cone test) can have great potential in detecting those incompatibilities in concrete before the concrete is placed, which can, in turn, avoid related workability problems and setting time as well as heat evolution abnormalities. The objectives of the present study were to examine the applicability of the dynamic shear rheometer (DSR) to measure cement paste rheology, and to identify cement and mineral/chemical admixture incompatibilities, based on the determined rheological parameters.
The DSR was modified and optimized for cement paste rheology measurements. Two different modes of operations (i.e., static and dynamic methods) with the modified DSR were investigated to measure representative rheological parameters as well as to identify cement and chemical/mineral admixture incompatibility. The conventional plastic viscosity and yield stress are measured in static mode and storage modulus curve, as a function of time, is measured in dynamic mode. The rate of change of plastic viscosity (RPV) as another static rheological parameter and the modeled magnitude parameter ?, from the dynamic rheological method, showed great potentialities as acceptance criteria to identify incompatible mixtures. The heat of hydration data from isothermal conduction calorimeter tests and setting time results for the studied mixtures have strongly supported the rheology based observations as supporting tools. Based on the main tests results, the acceptance criteria were set up using the rheological parameters in accordance with heat of hydration data. This will ultimately help material suppliers, concrete producers, and other users to detect problematic combinations of concrete ingredients before a given concrete mixture is placed.
|
3 |
Komparativna analiza osnovnih svojstava konstrukcijskih betona spravljenih sa različitim vrstama lakih agregata / A comparative analysis of the basic properties of structural concrete made with different types of lightweight aggregatesLukić Ivan 09 April 2015 (has links)
<p>U disertaciji su prikazani rezultati sopstvenog eksperimentalnog istraživanja na osnovu kojih je izvršena komparativna analiza uticaja različitih vrsta lakih agregata i vrste i količine cementa na osnovna fizičko-mehanička svojstva lakoagregatnih betona. Takođe, analizirana je i mogućnost zamene dela cementa mineralnim dodacima u cilju smanjenja negativnih uticaja proizvodnje betona na životnu sredinu. Rezultati su pokazali da je primenom svih analiziranih vrsta agregata moguće dobiti konstrukcijski lakoagregatni beton, čak i sa manjim količinama cementa, odnosno sa zamenom dela cementa mineralnim dodacima, kao i da je moguće uspostaviti pouzdane korelacione veze između pojedinih svojstava betona i primenjenih komponentnih materijala.</p> / <p>In dissertation are presented results of own experimental research of a<br />comparative analysis of the impact of different types of lightweight<br />aggregates and the type and quantity of cement on basic physical and<br />mechanical properties of structural lightweight concrete. Also, the possibility<br />of replacing part of cement with mineral admixtures is analyzed in order to<br />reduce the negative impact of concrete production on the environment. The<br />results showed that it is possible to obtain structural lightweight aggregate<br />concrete with all types of lightweight aggregates and even with lower<br />quantities of cement or with a replacement of part of a cement with mineral<br />admixtures. Also, it is possible to establish a reliable correlation between<br />certain properties of concrete and used component materials.</p>
|
4 |
L’impact du séchage au jeune âge sur la carbonatation des matériaux cimentaires avec additions minérales / The impact of drying at the early age of the carbonation cementitious materials with mineral admixturesBertin, Matthieu 27 November 2017 (has links)
De nos jours, l’utilisation de liants à faible teneur en clinker est de plus en plus courante. Or la cinétique de réaction des additions minérales utilisées est plus lente que celle du clinker. Si les conditions de cure ne sont pas adaptées, le matériau aura une structure poreuse plus importante, ce qui le rendra plus sensible à la pénétration des agents agressifs extérieurs comme le CO2 ou les Cl-. La carbonatation du béton est l’un des principaux phénomènes pouvant diminuer la durée de vie d’une structure en béton armé. En effet, elle entraine une diminution du pH de la solution interstitielle qui a pour conséquence une dépassivation des armatures, puis la corrosion de ces dernières si les conditions s’y prêtent.L’objectif de cette thèse est d’étudier l’impact de la carbonatation au jeune âge sur des liants à faible teneur en clinker. Pour cela l’étude se compose de deux aspects : le premier est l’étude de l’impact de l’hydratation et de la carbonatation sur les propriétés de transport et les isothermes de sorption hydrique, et le second est l’étude de l’impact du couplage hydratation-séchage-carbonatation sur la microstructure et la structure poreuse. Pour le premier aspect, les propriétés de transport étudiées sont la diffusion de l’O2, la diffusion de la vapeur d’eau, la perméabilité à l’eau liquide qui sont des données d’entrée dans les modèles de carbonatation ainsi que la perméabilité aux gaz qui est un indicateur de durabilité. Pour le second aspect, l’impact du couplage est mesuré par ATG et DRX pour déterminer l’assemblage de phases, de plus de la porosimétrie par intrusion de Mercure et des pesées hydrostatiques sont effectuées pour détecter le changement de la structure poreuse. Les matériaux étudiés sont des pâtes de ciment et des bétons avec un rapport eau/ liant de 0,57 avec l’un des trois liants suivants : CEM I, CEM I +30% de cendres volantes et CEM I +60% de laitiers.Pour le premier aspect, les résultats montrent que pour les pâtes de CEM I le temps de cure a un faible impact sur les isothermes de sorption de vapeur d’eau s’il est compris entre 3 jours et 6 mois. Alors que, pour les pâtes de CEM I + 60% de laitier, l’augmentation du temps de cure accroit significativement la teneur en eau (pour HR=65%, tcure=3 jours et pour tcure=6 mois ) dû à une augmentation de la teneur en C-S-H. D’autre part, la carbonatation entraine une diminution de la teneur en eau de l’échantillon, ainsi que l’amplitude de l’hystérésis. De plus, le gel a une porosité plus grossière. Par ailleurs, la carbonatation entraine une augmentation de la perméabilité aux gaz des matériaux. Pour le second aspect, les résultats montrent que l’utilisation d’additions minérales diminue la résistance à la carbonatation du matériau et que cette résistance augmente avec le temps de cure si l’échantillon contient des additions. La carbonatation de la portlandite, des C-S-H et des aluminates est concomitante. De plus, pour les matériaux aux laitiers, les résultats montrent qu’ils sont plus sensibles à la carbonatation des C-S-H et des aluminates que les CEM I. En effet quand le rapport variation molaire de CaCO3 sur variation molaire de Portlandite est calculé, il vaut 1.8 pour le CEM I et environ 3.5 pour les matériaux aux laitiers. Enfin, la carbonatation entraine une diminution du degré de saturation de l’échantillon. En effet, le degré de saturation à la surface de l’échantillon passe de 50% à 35% après carbonatation pour les échantillons de CEM I et de 50% à 5% pour les échantillons de CEM I + 60% de laitiers. Cette diminution peut s’expliquer par la diminution de la surface spécifique qui est divisée par 2 après carbonatation due à la décalcification des C-S-H. Même si la carbonatation entraine une diminution de porosité cette dernière est trop faible dans ce cas pour contrer cet effet / Nowaday, low clinker content binders are used more and more often. But the kinetics reactions of the supplementary cementitious materials (SCM) are slower than this one of clinker. If the curing conditions are not adapted, material will have a bigger pore structure and becomes more sensitive to the ingress of aggressive species from the environment like the CO2 or Cl-. Carbonation is one of main phenomena which can lead to decrease the life time of reinforced concrete structure. Indeed, it leads to a decrease of pore solution pH which leads to the depassivation of rebar. Then these rebars can be corroded if the conditions are appropriate.The aim of this thesis is to study the impact of carbonation at early age for binder with a low clinker content. This study was composed of two aspects: the first one is focus on the impact of hydration and carbonation on the transport properties and the water vapour sorption isotherms (WVSI), and the second one is focus on the impact of coupling hydration – drying-carbonation on the microstructure and the pore structure. For the first aspect, the studied transport properties was O2 diffusivity, water vapour diffusivity, water liquid permeability which are inputs for carbonation modelling and the intrinsic gas permeability which is a durability factor. For the second aspect, the coupling impact was measured by TGA and DRX to determine the phase assemblage; moreover Mercury intrusion porosimetry (MIP) and hydrostatic weigh were carried out to measure the change in the pore structure. The studied materials were cement pastes and concretes with water to binder ratio of 0.57 with one of the following binders: CEM I, CEM I +30% PFA and CEM I + 60% GGBS.For the first part, results show that a curing time between 3 days and 6 months has a low impact on the WVSI for the CEM I paste. Whereas, in the CEM I +60% GGBS paste, when the curing time increases, the water content increases (for a RH=65%, tcuring=3 days and for tcuring=6 months ), this is due to the increase of the C-S-H content. Moreover, carbonation leads to decrease the water content and the hysteresis becomes flat. Additionally, carbonation leads to increase the intrinsic gas permeability. For the second part, the results show that the use of SCM decreases the carbonation resistance and this resistance increases with the curing time. Carbonation of Portlandite, C-S-H and aluminates occurs in the same time. Moreover, the CEM I +60% GGBS paste are more sensitive to the carbonation of C-S-H and aluminates than the CEM I paste. Indeed, the molar variation of CaCO3 to the molar variation of Portlandite ratio has a value around 3.5 for the CEM I +60% GGBS and 1.8 for the CEM I. Finally, carbonation leads to decrease the water saturation degree at the surface of sample. Indeed, the degree of saturation at the surface of the sample increases from 50% to 35% after carbonation for the CEM I paste and from 50% to 5% for the CEm I +60% GGBS paste. This decrease can be explained by the decrease of the BET specific surface which is divided by 2 after carbonation. It is due to the decalcification of C-S-H. Although carbonation leads to a decrease of porosity, this one is too small in this case to counter this effect
|
5 |
Effect Of Chemical And Mineral Admixtures On The Fresh Properties Of Self Compacting MortarsChristianto, Heru Ari 01 August 2004 (has links) (PDF)
Fresh properties of mortars are important factors in altering the performance of self compacting concrete (SCC). Measurement of the rheological properties of the fine mortar part of concrete is generally used in the mix design of SCC. It can be stated that SCC rheology can be optimized if the fine mortar part of concrete is designed properly. However, measurement of the rheological properties is often impractical due to the need for complex equipment. Therefore, more practical methods of assessing mortar workability are often preferred.
In this study, four mineral admixtures, three superplasticizers (SP) and two viscosity modifying admixtures (VMA) were used to prepare self compacting mortar (SCM). The mineral admixtures included fly-ash, brick powder, limestone powder, and kaolinite. Two of the SPs were polycarboxylate based and another one was melamine formaldehyde based. One of the viscosity modifying admixtures was based on an aqueous dispersion of microscopic silica and the other one was based on high molecular weight hydroxylated polymer.
Within the scope of the experimental program, 43 mixes of SCM were prepared from different materials with keeping the amount of mixing water constant. Workability of the fresh mortar were determined using V - funnel and slump flow tests. The setting time of the mortars, were also determined. The hardened properties that were determined included the ultrasonic pulse velocity (UPV) and the strength which was determined at 7, 28, and 56 days.
It was concluded that among the mineral admixtures used, only fly-ash and limestone powder increased the workability of the mixes. The two polycarboxylate based SPs yield approximately the same workability and the melamine formaldehyde based SP was not as effective as the other two.
|
6 |
Effects Of Retempering With Superplasticizer On Properties Of Prolonged Mixed Mineral Admixture Containing Concrete At Hot Weather ConditionsYazan, Kazim 01 November 2005 (has links) (PDF)
Concrete which is manufactured in a mixing plant to be delivered to construction site in unhardened and plastic stage is called ready-mixed concrete. Because of technical and economical reasons, many mineral and chemical admixtures are used in ready-mixed concrete production.
As a result of extra mixing and delayed placing of ready-mixed concrete (especially at hot weather conditions), there can be many problems about concrete, like slump loss.
Addition of water for retempering concrete is the usual procedure, but addition of water without proper adjustment in mixture proportions, adversely affects compressive strength.
During this study, effects of prolonged mixing and retempering with superplasticizer on properties of fresh and hardened concrete at hot weather conditions are observed. Some of the properties of concrete inspected are compressive strength, splitting tensile strength, slump and air content. All mixes contain air entrainer and water reducer at a standard amount. The difference between mixes comes from kind and amount of mineral admixture which cement is replaced by. During the study, fly ash, blast furnace slag, ground clay brick and natural pozzolan are used at amounts, 25% and 50% of cement. Also, a mixture of pure cement is prepared as control concrete.
15 cm initial slump is planned in the experimental work. After five minutes and at the end of first, second, third and fourth hours of mixing process, if needed retempering process is proceeded with superplasticizer and samples are taken. As a result of retempering with superplasticizer, the aimed slump values are obtained. The effects are than, observed.
As a result of this study, it has been observed that replacing Portland cement with certain mineral admixtures, especially fly ash at certain amounts, can be a solution for slump loss problem, by retarding the slump loss effect of prolonged mixing. Also it has been seen that ground clay brick causes better performance for slump values at lateral stages of mixing with respect to pure Portland cement. Another important observation has been about the increase in the amount of air caused by air entraining admixtures in fresh concrete based on prolonged mixing at hot weather conditions.
|
7 |
Adi??o do res?duo de biomassa da cana-de-a??car em pastas para cimenta??o de po?os petrol?feros produtores de ?leos pesadosAnjos, Marcos Alyssandro Soares dos 02 April 2009 (has links)
Made available in DSpace on 2014-12-17T14:07:02Z (GMT). No. of bitstreams: 1
MarcosASA_capa_ate_cap5.pdf: 2919360 bytes, checksum: 8bb04eb85df77f75f3f1de37bbecc19d (MD5)
Previous issue date: 2009-04-02 / The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell
directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in
phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition
of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance
to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38? C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280?C) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the
permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It
was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive
resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures / A bacia Potiguar tem grandes campos de ?leo viscoso, onde o m?todo de recupera??o utilizado ? a inje??o de vapor; essa opera??o ? realizada injetando-se vapor diretamente
no po?o, sem a prote??o do revestimento atrav?s de isolamento t?rmico, o que provoca a dilata??o do mesmo, provocando assim falhas no cimento colocado no anular, e
conseq?entemente, perda do isolamento hidr?ulico, esta falha tem origem no fen?meno de retrogress?o da resist?ncia ? compress?o devido a convers?o do silicato de c?lcio
hidratado em fases ricas em c?lcio, provocada pelas elevadas temperaturas nos po?os, sujeitos ? recupera??o t?rmica. O presente trabalho avaliou a aplica??o de pastas comp?sitas com adi??o de res?duos de biomassa do baga?o da cana-de-a??car mo?das como aditivo mineral anti-retrogress?o para cimenta??o de po?os petrol?feros sujeitos a recupera??o t?rmica. A adi??o do res?duo mineral foi realizada teores de 10, 20, 30, 40 e 59% em rela??o a massa do cimento, visando melhorar a microestrutura da pasta, sendo ainda produzidas uma pasta de refer?ncia, apenas com cimento e uma pasta com adi??o de 40% de silica flour material consagrado na ind?stria de petr?leo como aditivo antiretrogress?o. Foram avaliados a atividade pozol?nica da cinza atrav?s de DRX, TG/DTG e resist?ncia ? compress?o, determinando-se tamb?m o comportamento f?sico e mec?nico das pastas submetidas a cura com baixas temperaturas (22 e 38?C), al?m da avalia??o do comportamento das pastas submetidas a dois ciclos de cura a alta temperatura (280?C) e press?o (7 MPa). Verificou-se que a cinza de biomassa da cana apresenta rea??o pozol?nica, tendo grande efici?ncia na diminui??o da permeabilidade da pasta por efeito filler, e que as adi??es de cinza em teores de 10, 20 e 30% aumentam a resist?ncia ? compress?o das pastas curadas a baixas temperaturas. Constatou-se ainda que a cinza em teores de 40% e 59% tem ?tima efici?ncia como aditivo antiretrogress?o, pois evitam a diminui??o da resist?ncia ? compress?o e formam silicato de c?lcio hidratado do tipo xenotlita e tobermorita que se apresentam mais resistentes e est?veis as altas temperaturas
|
8 |
Avaliação da capacidade de proteção contra a corrosão da arma-dura induzida por cloretos de concretos com adições minerais e inibidores de corrosão / Evaluation of the ability to protect against corrosion of the gun hard-induced chloride concrete with mineral additions and corrosion inhibitorsLIMA, Marcelo Batista 28 September 2009 (has links)
Made available in DSpace on 2014-07-29T15:18:24Z (GMT). No. of bitstreams: 1
pretextual.pdf: 140883 bytes, checksum: 5d9ee4b9b3884a0032825e604304580f (MD5)
Previous issue date: 2009-09-28 / Increasing the durability of concrete structural elements is primordial, especially those related to power generation in eolic areas that are subjected to the phenomenon of reinforcement corrosion. In this context, this study aims to evaluate the overall protection ability of concrete to the phenomenon of reinforcement corrosion induced by chlorides. To this end, it was adopted a statistical program based on a fractional factorial design in which the variables studied were as follows: the water-binder ratio (0.35, 0.45 and 0.55), the type of mineral admixture (silica fume and blast furnace slag at specific levels), the type of corrosion inhibitor (calcium nitrite, sodium nitrite and amine) and the level of corrosion inhibitor (minimum and maximum recommended by each manufacturer). In the concrete investigations, the tests performed were corrosion potential, polarization resistance and electrochemical impedance. Throughout the experiments, it was possible to testify the beneficial effect of reducing the water-binder ratio. It was also possible to prove the very positive effect of the incorporation of mineral admixtures, especially of silica fume. The satisfactory performance of various inhibitors evaluated was also verified, specially when concrete contains mineral admixtures. A parallel study was conducted to make a comparative analysis of inhibitors at the same range of concentrations (at solid levels of 0.76%, 2.21% and 3.66% of the compound on the cement mass), nevertheless this study have demonstrated that fixing contents for all inhibitor is not appropriated, and the recommended dosages by the manufacturer is the best condition. As the levels recommended by manufacturers, it was found that the higher percentages have not worked well for sodium nitrite otherwise, for amine and nitrite calcium, the higher levels implied better results. Regarding the tannin inhibitor also assessed in the parallel study mentioned above (related to specific inhibitors), its good performance related to corrosion inhibition happened just for the content of 0.76% (the lowest levels). For the other contents, it was verified anomalous results. These results demonstrated that each type of corrosion inhibitor has its optimal concentration for use in concrete. Based on a cost-benefit analysis and evaluating the increase in the concrete value for cubic meter (in R$) in the presence of inhibitors at the same contents, it was verified a relative parity prices among the tested nitrites and an extremely high cost of amine. However, when performing the same analysis but using the levels recommended by the manufacturers for each inhibitor independent, it was found that the large disparity in prices between nitrite and amine was reduced considerably. An assessment of technical and economic feasibility was also performed based on the efficiency of corrosion inhibition and cost per cubic meter of concrete mixtures that did not show a typical depassivation of their stell bar up to the attack age evaluated / O aumento da durabilidade é um aspecto primordial para os elementos estruturais de concreto, em especial aqueles constituintes das estruturas de geração de energia em parques eólicos, sujeitos ao fenômeno de corrosão das armaduras. Nesse contexto, este trabalho tem como objetivo geral avaliar a capacidade de proteção de diferentes concretoS frente ao fenômeno da corrosão da armadura induzida por cloretos. Para tanto, foi adotado um planejamento estatístico baseado em um modelo fatorial fracionado em que as variáveis estudadas foram: a relação água/aglomerante (0,35; 0,45 e 0,55), o tipo de adição mineral (sílica ativa e escória de alto-forno, em teores específicos), o tipo de inibidor de corrosão (nitrito de cálcio, nitrito de sódio e amina) e o teor de inibidor de corrosão (mínimo e máximo recomendado por cada fabricante). Na avaliação dos concretos, foram realizados ensaios de potencial de corrosão, resistência de polarização e impedância eletroquímica. Ao longo de todo experimento foi possível constatar o efeito benéfico da redução da relação a/agl. Também foi possível verificar o efeito extremamente positivo da incorporação das adições minerais, em especial da sílica ativa. Constatou-se também o efeito positivo dos diversos inibidores avaliados, em seus teores mínimo e máximo, beneficio que se mostrou mais pronunciado quando da utilização conjunta com as adições minerais. Um estudo paralelo foi realizado para se fazer uma análise comparativa dos inibidores dentro da mesma faixa de teores empregados (teores de 0,76%; 2,21% e 3,66% de sólidos do aditivo em relação à massa de cimento), no qual se verificou que a utilização desses teores fixos para os diferentes tipos de inibidores não se mostrou tão eficiente quanto em relação à utilização dos aditivos na dosagem de recomendação do fabricante. Quanto a estes teores (recomendados pelos fabricantes), verificou-se que os percentuais mais altos não funcionaram bem para o nitrito de sódio, ao passo que para a amina e para o nitrito de cálcio os teores mais elevados resultaram em melhores resultados. Em relação ao tanino, inibidor que também foi avaliado no estudo paralelo referido anteriormente (específico sobre os inibidores), só houve algum resultado de inibição de corrosão para o teor de 0,76% (mais baixo dos teores), tendo-se obtido resultados anômalos para os outros 2 teores mais altos. Tais resultados permitiram constatar que cada tipo de inibidor de corrosão possui sua concentração ótima de utilização no concreto. Fazendo-se uma análise de custo e avaliando-se o acréscimo em Reais no valor do m3 do concreto proporcionado pelos diversos aditivos inibidores e nos teores de mesma faixa de emprego, verificou-se uma relativa paridade de preços entre os nitritos e um elevadíssimo custo da amina. No entanto, ao se realizar a mesma análise, mas utilizando os teores recomendados pelos fabricantes de cada inibidor, verificou-se que a grande disparidade de preços entre os nitritos e a amina foi reduzida de forma considerável. Uma avaliação da viabilidade técnico-econômica dos concretos também foi realizada, a partir dos dados de eficiência de inibição à corrosão e custo/m3 das misturas que não apresentaram comportamento típico de despassivação de suas armaduras até a idade de ataque considerada
|
Page generated in 0.0751 seconds