• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 7
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 16
  • 14
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ADRENOCORTICOSTEROID RECEPTOR EFFECTS ON HIPPOCAMPAL NEURON VIABILITY

McCullers, Deanna Lynn 01 January 2001 (has links)
Glucocorticoid activation of two types of adrenocorticosteroid receptors (ACRs), themineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), influences hippocampalneuron vulnerability to injury. Excessive activation of GR may compromise hippocampalneuron survival after several types of challenge including ischemic, metabolic, and excitotoxicinsults. In contrast, MR prevents adrenalectomy-induced loss of granule neurons in the dentategyrus. The present thesis addresses the respective roles of MR and GR in modulating neuronalsurvival following two forms of neuronal injury, excitotoxicity and traumatic brain injury. MaleSprague-Dawley rats were pretreated with MR antagonist spironolactone or GR antagonistmifepristone (RU486) and subsequently injected with kainic acid, an excitotoxic glutamateanalog, or injured with a controlled cortical impact. Twenty-four hours following injury,hippocampal neuron survival was measured to test the hypotheses that MR blockade wouldendanger and GR blockade would protect hippocampal neurons following injury. MessengerRNA levels of viability-related genes including bcl-2, bax, p53, BDNF, and NT-3 were alsomeasured to test the hypothesis that ACR regulation of these genes wouldcorrelate with neuronal survival. In addition, ACR mRNA levels were measured followingreceptor blockade and injury to test the hypothesis that glucocorticoid signaling is alteredfollowing neuronal injury via regulation of ACR expression.Mineralocorticoid receptor blockade with spironolactone increased neuronal vulnerability toexcitotoxic insult in hippocampal field CA3, and GR blockade with RU486 prevented neuronalloss after traumatic brain injury in field CA1. These results are consistent with the hypothesesthat MR protects and GR endangers hippocampal neurons. Adrenocorticosteroid receptorblockade decreased mRNA levels of the anti-apoptotic gene bcl-2 in select regions of uninjuredhippocampus, yet ACR regulation of bcl-2 did not consistently correspond with measures ofneuronal survival after injury. Kainic acid decreased MR mRNA levels in CA1 and CA3, whileboth kainic acid and controlled cortical impact dramatically decreased GR mRNA levels indentate gyrus. These data suggest that injury modulation of glucocorticoid signaling throughregulation of ACR expression may influence hippocampal neuron viability following injury.
12

Prévention de l'insuffisance cardiaque par l'antagonisation du récepteur des minéralocorticoïdes dans un contexte de syndrome métabolique : une étude intégrative du phénome, du transcriptiome et du miRNOme / Prevention of heart failure by the antagonisation of the mineralocorticoid receptor in the context of metabolic syndrome : an integrative study of the phenome, transcriptome and miRNome

Youcef, Gina 19 December 2014 (has links)
L’utilisation d’antagonistes du récepteur aux minéralocorticoïdes (ARM) a prouvé son efficacité dans le traitement de l’insuffisance cardiaque (IC). Un des facteurs de risque majeur de l’IC, le syndrome métabolique (SMet), est également associé à une production augmentée d’aldostérone et une activation excessive de son récepteur. Dans ce contexte, nous avons émis l’hypothèse que l’utilisation des ARM pouvait être appliquée pour cibler les facteurs de risques du SMet et prévenir la progression subséquente vers l’IC. Dans ce projet, des rats Spontanément Hypertendus et développant une IC (rats SHHF) portant ou non une mutation du récepteur de la leptine (« cp ») conduisant à un SMet (respectivement SHHFcp/cp et SHHF+/+) ont été utilisés comme modèle expérimental. Les animaux ont reçu soit un placebo soit le traitement ARM (Eplérénone, Eplé) dès l’âge de 1.5 à 12.5 mois et leurs paramètres métaboliques et cardiovasculaires ont été régulièrement évalués. Les fonctions moléculaires altérées dans le coeur et le tissu adipeux lors du développement du SMet et la progression de l’IC, ainsi que celles modulées par l’action de l’Eplé ont été caractérisées par l’analyse du transcriptome et miRNome des animaux. Nos résultats montrent que les rats SHHFcp/cp développent à 12.5 mois une hypertrophie cardiaque excentrique associée à une dilatation du ventricule gauche (VG) et une fraction d’éjection diminuée comparés aux SHHF+/+. Alors que l’Eplé ne modifie pas les paramètres métaboliques et cardiovasculaires des SHHF+/+, Les rats Eple-SHHFcp/cp présentent une moindre prise de masse corporelle ainsi qu’une moindre dyslipidémie. Sans effet sur la pression artérielle (PA), ni le transcriptome et miRNome adipeux, les animaux SHHFcp/cp traités présentent en outre une moindre dilatation et hypertrophie de leur VG, une fraction d’éjection, un temps de relaxation isovolumique et un ratio E/A plus élevés. Les analyses du transcriptome et miRNome cardiaques révèlent que l’Eplé induit une diminution significative de l’expression de gènes impliqués dans le remodelage et l’inflammation myocardiques ainsi qu’une augmentation de l’expression de gènes relatifs à l’oxydation des acides gras dans le coeur. L’intégration et l’exploration bioinformatique des profils d’expression du transcriptome et du miRNome ont permis d’établir des réseaux de régulation de l’expression génique potentiellement impliqués dans les mécanismes physiopathologiques à l’oeuvre chez les rats SHHF obèses et dans ceux impactés par le traitement. Dans leur ensemble, nos données montrent que l’initiation d’un traitement ARM lors du développement du SMet permet d’atténuer l’obésité et la dyslipidémie et d’améliorer les paramètres de structure et fonction cardiaque. De façon intéressante, ces effets cardioprotecteurs sont obtenus via des mécanismes indépendants de la diminution de la PA, les analyses du transcriptome/miRNome cardiaque indiquent un mécanisme basé sur une diminution des processus de remodelage et d’inflammation ainsi qu’ une restauration de la fonction de métabolisme énergétique des acides gras au niveau myocardique / Mineralocorticoid Receptor Antagonists (MRA) are clinically beneficial in individuals with chronic heart failure (HF). One of the major risk factors for HF, the metabolic syndrome (MetS), has been also reported to be associated with increased aldosterone production and excessive MR activation. In this context, we hypothesized that the use of MRA could be applied to target the MetS features and prevent the subsequent progression towards HF. In this project, Spontaneously Hypertensive Heart failure rats (SHHF) carrying or not a mutation in the leptin receptor (« cp ») leading to MetS development (SHHFcp/cp and SHHF+/+respectively) were used as experimental model. Animals from both genotypes were given either the selective MRA (Eplerenone, Eple) or placebo from 1.5 to 12.5 months of age and their metabolic and cardiovascular parameters were regularly monitored. The molecular functions altered in the heart and visceral adipose tissues as MetS develops and progresses towards HF as well as those modulated by Eple action were characterized by the analysis of animal’s transcriptome and miRNome. Our data showed that SHHFcp/cp exbiting MetS developed at 12.5 months of age eccentric cardiac hypertrophy associated with left ventricular (LV) dilatation and reduced ejection fraction (EF) as compared to SHHF+/+. While Eple did not induced differences in metabolic and cardiovascular phenotypes in SHHF+/+ rats, Eple-SHHFcp/cp had lower body weight gain and less dyslipidemia. Without effects on blood pressure (BP) and adipose transcriptome and miRNome, Eple-SHHFcp/cp rats had lower LV dilatation and hypertrophy, higher ejection fraction, isovolumic relaxation time and E/A ratio. Transcriptome and miRNome analysis of cardiac tissues revealed that Eple markedly reduced the expression of several genes involved in cardiac remodeling and inflammatory processes and increased the expression of genes related to cardiac fatty acid oxidation and metabolism. The integration and the bioinformatic exploration of transcriptome and miRNome expression profiles allowed the construction of gene regulatory networks potentially involved in the physiopathological mechanisms occuring in the SHHFcp/cp rats and those impacted by the treatment. Altogether, our data demonstrated that treatment with Eple during MetS development attenuated SHHFcp/cp weight gain and dyslipidemia contributing to the amelioration of their cardiac structural and functional parameters. Interestingly, those beneficial cardioprotective effects were obtained via mechanisms independent of BP lowering, the analysis of cardiac transcriptome/miRnome revealed that Eple may have acted by depressing cardiac remodeling and inflammatory processes and restoring the function of fatty acid metabolism in the myocardium
13

Epithelial Sodium Channels in the Brain: Effect of High Salt Diet on Their Expression

Amin, Md. Shahrier 28 June 2011 (has links)
Statement of the problem: The epithelial sodium channels (ENaC) play an important role in regulation of blood pressure (BP). Although the genes are identical in Dahl salt sensitive (S) and Dahl salt resistant (R) rats, expression of ENaC subunits is increased in kidneys of S rats on high salt diet. Intracerebroventricular (icv) infusion of ENaC blocker benzamil prevents Na+ induced hypertension. It was not known whether ENaC subunits are expressed in the brain and whether or not brain ENaC plays a role in regulation of [Na+] in CNS. Hypothesis: 1. Epithelial sodium channels are expressed in the brain. 2. Expression of ENaC is increased in the kidneys and brain of Dahl S rats on high salt diet. 3. ENaC in the brain contributes to regulation of [Na+] in the CSF and brain interstitium. Methods of investigation: We studied expression and distribution of the ENaC subunits and assessed the effects of icv infusion of Na+-rich aCSF in Wistar rats or high salt diet in Dahl S rats in different areas of the brain. Function of ENaC in the choroid plexus was evaluated by studying the effects of benzamil and ouabain on Na+ transport. Major findings: In Wistar rats, both mRNA and protein of all three ENaC subunits are expressed in brain epithelia and magnocellular neurons in the supraoptic (SON) and paraventricular (PVN) nucleus. ENaC abundance is higher on the apical versus basolateral membrane of choroid cells. Benzamil decreases Na+ influx into choroid cells by 20-30% and increases CSF [Na+] by ~8 mmol/L. Na+ rich aCSF increases apical membrane expression of βENaC in the choroid cells and of α and βENaC in basolateral membrane of ependymal cells, but has no effect on neuronal ENaC. Expression of ENaC is higher in choroid cells and SON of Dahl S versus R rats and the higher expression persists on a high salt diet. High salt attenuates the ouabain blockable efflux of Na+ from choroid cells and has no effect on CSF [Na+] in Dahl R rats. In contrast, high salt does not attenuate ouabain blockable efflux of 22Na+ and CSF [Na+] increases in Dahl S. Main Conclusion: ENaC in the brain contributes to Na+ transport into the choroid cells and appear to be involved in reabsorption of Na+ from the CSF. Aberrant regulation of Na+ transport and of Na+K+ATPase activity, might contribute to increases in CSF [Na+] in Dahl S rats on high-salt diet. ENaC in magnocellular neurons may contribute to enhanced secretion of mediators such as ‘ouabain’ leading to sympathetic hyperactivity in Dahl S rats.
14

Epithelial Sodium Channels in the Brain: Effect of High Salt Diet on Their Expression

Amin, Md. Shahrier 28 June 2011 (has links)
Statement of the problem: The epithelial sodium channels (ENaC) play an important role in regulation of blood pressure (BP). Although the genes are identical in Dahl salt sensitive (S) and Dahl salt resistant (R) rats, expression of ENaC subunits is increased in kidneys of S rats on high salt diet. Intracerebroventricular (icv) infusion of ENaC blocker benzamil prevents Na+ induced hypertension. It was not known whether ENaC subunits are expressed in the brain and whether or not brain ENaC plays a role in regulation of [Na+] in CNS. Hypothesis: 1. Epithelial sodium channels are expressed in the brain. 2. Expression of ENaC is increased in the kidneys and brain of Dahl S rats on high salt diet. 3. ENaC in the brain contributes to regulation of [Na+] in the CSF and brain interstitium. Methods of investigation: We studied expression and distribution of the ENaC subunits and assessed the effects of icv infusion of Na+-rich aCSF in Wistar rats or high salt diet in Dahl S rats in different areas of the brain. Function of ENaC in the choroid plexus was evaluated by studying the effects of benzamil and ouabain on Na+ transport. Major findings: In Wistar rats, both mRNA and protein of all three ENaC subunits are expressed in brain epithelia and magnocellular neurons in the supraoptic (SON) and paraventricular (PVN) nucleus. ENaC abundance is higher on the apical versus basolateral membrane of choroid cells. Benzamil decreases Na+ influx into choroid cells by 20-30% and increases CSF [Na+] by ~8 mmol/L. Na+ rich aCSF increases apical membrane expression of βENaC in the choroid cells and of α and βENaC in basolateral membrane of ependymal cells, but has no effect on neuronal ENaC. Expression of ENaC is higher in choroid cells and SON of Dahl S versus R rats and the higher expression persists on a high salt diet. High salt attenuates the ouabain blockable efflux of Na+ from choroid cells and has no effect on CSF [Na+] in Dahl R rats. In contrast, high salt does not attenuate ouabain blockable efflux of 22Na+ and CSF [Na+] increases in Dahl S. Main Conclusion: ENaC in the brain contributes to Na+ transport into the choroid cells and appear to be involved in reabsorption of Na+ from the CSF. Aberrant regulation of Na+ transport and of Na+K+ATPase activity, might contribute to increases in CSF [Na+] in Dahl S rats on high-salt diet. ENaC in magnocellular neurons may contribute to enhanced secretion of mediators such as ‘ouabain’ leading to sympathetic hyperactivity in Dahl S rats.
15

Epithelial Sodium Channels in the Brain: Effect of High Salt Diet on Their Expression

Amin, Md. Shahrier 28 June 2011 (has links)
Statement of the problem: The epithelial sodium channels (ENaC) play an important role in regulation of blood pressure (BP). Although the genes are identical in Dahl salt sensitive (S) and Dahl salt resistant (R) rats, expression of ENaC subunits is increased in kidneys of S rats on high salt diet. Intracerebroventricular (icv) infusion of ENaC blocker benzamil prevents Na+ induced hypertension. It was not known whether ENaC subunits are expressed in the brain and whether or not brain ENaC plays a role in regulation of [Na+] in CNS. Hypothesis: 1. Epithelial sodium channels are expressed in the brain. 2. Expression of ENaC is increased in the kidneys and brain of Dahl S rats on high salt diet. 3. ENaC in the brain contributes to regulation of [Na+] in the CSF and brain interstitium. Methods of investigation: We studied expression and distribution of the ENaC subunits and assessed the effects of icv infusion of Na+-rich aCSF in Wistar rats or high salt diet in Dahl S rats in different areas of the brain. Function of ENaC in the choroid plexus was evaluated by studying the effects of benzamil and ouabain on Na+ transport. Major findings: In Wistar rats, both mRNA and protein of all three ENaC subunits are expressed in brain epithelia and magnocellular neurons in the supraoptic (SON) and paraventricular (PVN) nucleus. ENaC abundance is higher on the apical versus basolateral membrane of choroid cells. Benzamil decreases Na+ influx into choroid cells by 20-30% and increases CSF [Na+] by ~8 mmol/L. Na+ rich aCSF increases apical membrane expression of βENaC in the choroid cells and of α and βENaC in basolateral membrane of ependymal cells, but has no effect on neuronal ENaC. Expression of ENaC is higher in choroid cells and SON of Dahl S versus R rats and the higher expression persists on a high salt diet. High salt attenuates the ouabain blockable efflux of Na+ from choroid cells and has no effect on CSF [Na+] in Dahl R rats. In contrast, high salt does not attenuate ouabain blockable efflux of 22Na+ and CSF [Na+] increases in Dahl S. Main Conclusion: ENaC in the brain contributes to Na+ transport into the choroid cells and appear to be involved in reabsorption of Na+ from the CSF. Aberrant regulation of Na+ transport and of Na+K+ATPase activity, might contribute to increases in CSF [Na+] in Dahl S rats on high-salt diet. ENaC in magnocellular neurons may contribute to enhanced secretion of mediators such as ‘ouabain’ leading to sympathetic hyperactivity in Dahl S rats.
16

Cardiac Sympathetic Innervation and PGP 9.5 Expression by Cardiomyocytes in Rats After Myocardial Infarction. Effects of Central MR Blockade

Drobysheva, Anastasia 07 November 2013 (has links)
Central mechanisms involving aldosterone - mineralocorticoid receptor (MR) activation mediate the increase in sympathetic tone after myocardial infarction (MI). We hypothesized that an increase in cardiac sympathetic activity (CSA) post MI facilitates cardiac sympathetic axonal sprouting, and that central MR blockade attenuates CSA and reduces cardiac sympathetic hyperinnervation post MI. Western blotting and qRT-PCR were used to assess protein and gene expression, and fluorescent immunohistochemistry was used to study changes in sympathetic innervation. Tyrosine hydroxylase (TH) and Norepinephrine transporter protein content in the non-infarcted base of the heart remained unaltered. In contrast, protein gene product (PGP 9.5) protein was significantly increased 2 fold in the base of the heart, and 6 fold in the peri-infarct area at 1 wk post MI, and associated with increased ubiquitin expression. Cardiac myocytes rather than sympathetic axons were identified as the main source of elevated PGP 9.5 expression. At the infarct border sympathetic hyperinnervation was observed with a 4 fold increase in growth associated protein 43 (GAP 43), a 2 fold increase in TH and a 50% increase in PGP 9.5 positive fibers when compared to the epicardial side of the left ventricle in sham rats. Central infusion of the MR blocker eplerenone at 5 ug/day for 9 days post MI markedly attenuated the increase in TH, GAP 43 and PGP 9.5 nerve densities at the infarct border. Central MR blockade may attenuate sympathetic hyperinnervation by several mechanisms, including decreasing CSA post MI, or affecting expression or function of nerve growth factor protein. Marked PGP 9.5 expression occurs in cardiomyocytes early post MI, which may contribute to the increase in ubiquitin and the early cardiac remodeling post MI.
17

Implication de la Lipocaline 2 dans les effets physiopathologiques du récepteur minéralocorticoïde dans le système cardiovasculaire. / Implication of Lipocalin 2 in the pathophysiological effects of the mineralocorticoid receptor in the cardiovascular system

Tarjus, Antoine 30 September 2014 (has links)
Les pathologies cardiovasculaires sont la première cause de mortalité dans le monde. Parmi les mécanismes participant à ces pathologies figurent l'activation de la voie de signalisation minéralocorticoïde. Notre laboratoire a précédemment identifié la Lipocaline 2 (Lcn2) comme cible directe du complexe aldostérone/récepteur minéralocorticoïde (RM) dans le système cardiovasculaire. Lcn2, aussi appelée Neutrophil Gelatinase Associated Lipocalin (NGAL), est une protéine circulante, membre de la famille des lipocalines. Elle est décrite comme participant à l'inflammation ou comme régulant l'activité et la stabilité de la métalloprotéinase matricielle 9. L'objectif de ce travail de thèse est d'étudier l'implication possible de Lcn2 dans les effets pathologiques pro-fibrosants et pro-inflammatoires du complexe aldostérone/RM dans le système cardiovasculaire. Pour ce faire, des souris présentant une inactivation globale et constitutive de Lcn2 (KO Lcn2), ainsi que leurs contrôles, ont été soumises à un traitement mimant une sur-activation de la voie minéralocorticoïde (traitement néphrectomie-aldostérone-sel) durant 4 semaines. Ce travail a mis en évidence le rôle de Lcn2 dans le développement de la fibrose périvasculaire et l'inflammation induite par le complexe aldo/RM ainsi que dans l'augmentation de pression artérielle. En revanche, Lcn2 n'intervient pas dans la fibrose interstitielle ni dans la dysfonction vasculaire. Les mécanismes d'action de la Lipocaline 2 dans ces différents phénomènes pathologiques restent à élucider. En conclusion, les résultats obtenus montrent l’implication directe de Lcn2 dans les effets pro-fibrosants du complexe aldo/RM au niveau cardiovasculaire, suggérant une potentielle cible thérapeutique dans la fibrose cardiovasculaire. / Cardiovascular diseases are the leading cause of death worldwide. Among the mechanisms involved in these pathologies, there is the activation of the mineralocorticoid signaling pathway. Our laboratory has previously identified Lipocalin 2 (Lcn2) as a direct target of the aldosterone/mineralocorticoid receptor (MR) complex in the cardiovascular system. Lcn2, also called Neutrophil Gelatinase Associated Lipocalin (NGAL), is a circulating protein, a member of the lipocalin family. It is described as being involved in inflammation or as regulating the activity and stability of matrix metallopeptidase 9. The aim of this work is to investigate the possible involvement of Lcn2 in pro-fibrotic and pro-inflammatory pathological effects of aldosterone/MR complex in the cardiovascular system. For this purpose, mice with constitutive and overall Lcn2 inactivation (Lcn2 KO) and their littermates were subjected to a treatment mimicking overactivation of the mineralocorticoid pathway (nephrectomy-aldosterone-salt treatment) during 4 weeks. This work has highlighted the role of Lcn2 in the development of perivascular fibrosis and inflammation induced by the complex aldo/MR and in the blood pressure increase. However, Lcn2 is not involved in interstitial fibrosis or vascular dysfunction. The action of Lipocalin 2 in these pathological phenomena mechanisms remains to be elucidated. In conclusion, the results show the direct involvement of Lcn2 in the pro-fibrotic effects of aldo/MR complex in the cardiovascular system, suggesting a potential therapeutic target in cardiovascular fibrosis.
18

Epithelial Sodium Channels in the Brain: Effect of High Salt Diet on Their Expression

Amin, Md. Shahrier January 2011 (has links)
Statement of the problem: The epithelial sodium channels (ENaC) play an important role in regulation of blood pressure (BP). Although the genes are identical in Dahl salt sensitive (S) and Dahl salt resistant (R) rats, expression of ENaC subunits is increased in kidneys of S rats on high salt diet. Intracerebroventricular (icv) infusion of ENaC blocker benzamil prevents Na+ induced hypertension. It was not known whether ENaC subunits are expressed in the brain and whether or not brain ENaC plays a role in regulation of [Na+] in CNS. Hypothesis: 1. Epithelial sodium channels are expressed in the brain. 2. Expression of ENaC is increased in the kidneys and brain of Dahl S rats on high salt diet. 3. ENaC in the brain contributes to regulation of [Na+] in the CSF and brain interstitium. Methods of investigation: We studied expression and distribution of the ENaC subunits and assessed the effects of icv infusion of Na+-rich aCSF in Wistar rats or high salt diet in Dahl S rats in different areas of the brain. Function of ENaC in the choroid plexus was evaluated by studying the effects of benzamil and ouabain on Na+ transport. Major findings: In Wistar rats, both mRNA and protein of all three ENaC subunits are expressed in brain epithelia and magnocellular neurons in the supraoptic (SON) and paraventricular (PVN) nucleus. ENaC abundance is higher on the apical versus basolateral membrane of choroid cells. Benzamil decreases Na+ influx into choroid cells by 20-30% and increases CSF [Na+] by ~8 mmol/L. Na+ rich aCSF increases apical membrane expression of βENaC in the choroid cells and of α and βENaC in basolateral membrane of ependymal cells, but has no effect on neuronal ENaC. Expression of ENaC is higher in choroid cells and SON of Dahl S versus R rats and the higher expression persists on a high salt diet. High salt attenuates the ouabain blockable efflux of Na+ from choroid cells and has no effect on CSF [Na+] in Dahl R rats. In contrast, high salt does not attenuate ouabain blockable efflux of 22Na+ and CSF [Na+] increases in Dahl S. Main Conclusion: ENaC in the brain contributes to Na+ transport into the choroid cells and appear to be involved in reabsorption of Na+ from the CSF. Aberrant regulation of Na+ transport and of Na+K+ATPase activity, might contribute to increases in CSF [Na+] in Dahl S rats on high-salt diet. ENaC in magnocellular neurons may contribute to enhanced secretion of mediators such as ‘ouabain’ leading to sympathetic hyperactivity in Dahl S rats.
19

Cardiac Sympathetic Innervation and PGP 9.5 Expression by Cardiomyocytes in Rats After Myocardial Infarction. Effects of Central MR Blockade

Drobysheva, Anastasia January 2013 (has links)
Central mechanisms involving aldosterone - mineralocorticoid receptor (MR) activation mediate the increase in sympathetic tone after myocardial infarction (MI). We hypothesized that an increase in cardiac sympathetic activity (CSA) post MI facilitates cardiac sympathetic axonal sprouting, and that central MR blockade attenuates CSA and reduces cardiac sympathetic hyperinnervation post MI. Western blotting and qRT-PCR were used to assess protein and gene expression, and fluorescent immunohistochemistry was used to study changes in sympathetic innervation. Tyrosine hydroxylase (TH) and Norepinephrine transporter protein content in the non-infarcted base of the heart remained unaltered. In contrast, protein gene product (PGP 9.5) protein was significantly increased 2 fold in the base of the heart, and 6 fold in the peri-infarct area at 1 wk post MI, and associated with increased ubiquitin expression. Cardiac myocytes rather than sympathetic axons were identified as the main source of elevated PGP 9.5 expression. At the infarct border sympathetic hyperinnervation was observed with a 4 fold increase in growth associated protein 43 (GAP 43), a 2 fold increase in TH and a 50% increase in PGP 9.5 positive fibers when compared to the epicardial side of the left ventricle in sham rats. Central infusion of the MR blocker eplerenone at 5 ug/day for 9 days post MI markedly attenuated the increase in TH, GAP 43 and PGP 9.5 nerve densities at the infarct border. Central MR blockade may attenuate sympathetic hyperinnervation by several mechanisms, including decreasing CSA post MI, or affecting expression or function of nerve growth factor protein. Marked PGP 9.5 expression occurs in cardiomyocytes early post MI, which may contribute to the increase in ubiquitin and the early cardiac remodeling post MI.
20

Les cibles moléculaires du récepteur minéralocorticoïde dans le coeur / Molecular targets of the mineralocorticoïd receptor in the heart

Gravez, Basile 27 February 2015 (has links)
L’hormone minéralocorticoïde aldostérone en se fixant à son récepteur, le récepteur minéralocorticoïde (RM), module la réabsorption de sodium au niveau du rein. De nombreuses étude sont rapporté l’implication du complexe aldostérone/RM dans les pathologies cardiovasculaires, sans que les voies de signalisation activées soient encore entièrement élucidées à ce jour. Ce travail de thèse se propose d’approfondir les connaissances sur les mécanismes de la signalisation cardiaque du RM à travers deux objectifs principaux i) l’identification de nouvelles cibles moléculaires du RM dans lecoeur et ii) la compréhension des effets physiopathologiques de son activation. Par une approche pharmacologique, nous avons montré que le diurétique torasémide n’est pas capable de bloquer la voie de signalisation minéralocorticoïde dans la lignée cellulaire de cardiomyocyte transfectée avec le RM,H9C2-RM+. L’étude de l’activité transcriptionnelle du RM cardiaque a concerné la majeure partie de ce travail de thèse. Par une approche gène candidat, nous avons mis en évidence que l’expression dugène codant pour le facteur de croissance du tissu conjonctif (CTGF, pour connective tissue growthfactor) est augmentée par le RM et que l’aldostérone potentialise cet effet in vivo. Nous avons pu localiser CTGF spécifiquement dans les cardiomyocytes, et une étude in vitro nous a permis d’identifier que le RM se lie au niveau d’éléments de réponse hormonale dans le promoteur du gène codant pour CTGF. Des souris surexprimant le RM humain spécifiquement dans les cardiomyocytes et traitées avec de l’aldostérone ou de la corticostérone ont permis une exploration plus large des gènesdifférentiellement exprimés par les deux ligands du RM dans le coeur. L’analyse des transcriptomes cardiaques de ces souris et de leurs contrôles montre qu’une augmentation modeste de la concentration plasmatique en aldostérone induit dans le coeur l’expression de gènes impliqués dans le cycle cellulaire comme la Cycline B1 ou sa kinase associée Cdk1 (pour Cyclin-dependent kinase 1). Nous avons montré également que l’aldostérone active la prolifération des cellules endothéliales cardiaques. / The mineralocorticoid hormone aldosterone binding its receptor, the mineralocorticoid receptor (MR),regulates the renal reabsorption of sodium. Several studies showed the involvement of the aldosterone/MR complex in cardiovascular diseases, even if the activated signalling pathways are still unclear. This thesis work has been established to increase the knowledge on the mechanisms of thecardiac signalling of MR using two main purposes i) the identification of new molecular targets of the MR in the heart and ii) the understanding of the pathophysiological effects of its activation. Apharmacological approach showed that the diuretic torasemide cannot block the mineralocorticoid signalling in the cell line cardiomyocytes transfected with MR, H9C2-MR+. The study of the MR’s cardiac transactivation activity formed the most important part of this thesis work. We demonstrated with a candidate gene approach that the MR increases the expression of the gene coding the connective tissue growth factor (CTGF) and the aldosterone increases even more this effect in vivo. We foundCTGF specifically expressed in cardiomyocytes and we identified in vitro that the MR binds tohormonal responsive elements on the promoter of the gene coding CTGF. In order to investigate the whole genes differentially expressed by the two ligands of MR in the heart, we treated mice with cardiomyocyte-targeted human MR over expression and their controls with aldosterone or corticosterone. The cardiac transcriptomic analyses show that the majority of aldosterone-regulatedgenes is involved in cell division as Cyclin B1 or Cyclin-dependent kinase 1 (Cdk1). Also, we identified that aldosterone promotes cardiac endothelial cells proliferation.

Page generated in 0.0623 seconds