• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 7
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 16
  • 14
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Association of Mineralocorticoid Receptor Antagonist Use With All-Cause Mortality and Hospital Readmission in Older Adults With Acute Decompensated Heart Failure / 急性心不全入院患者に対するミネラルコルチコイド受容体拮抗薬投与と退院後の予後との関連

Yaku, Hidenori 24 September 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22042号 / 医博第4527号 / 新制||医||1039(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 佐藤 俊哉, 教授 湊谷 謙司, 教授 稲垣 暢也 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
22

Sex Differences in the Binding of Type I and Type II Corticosteroid Receptors in Rat Hippocampus

Turner, Barbara B. 29 May 1992 (has links)
Binding parameters of soluble Type I and Type II receptors were assessed in hippocampus of adult, adrenalectomized, male and female rats. No sex differences in the number of either Type I or Type II receptors could be demonstrated between gonadally intact animals. When females treated with 17β-estradiol benzoate (10 μg/day) were compared with males, a statistically significant reduction in Type II receptors was observed in the females; progesterone produced no further decrease in receptor numbers. The amount of tissue-associated corticosteroid-binding globulin in gonadally intact animals (perfused with dextran-saline) was twice as great in females as males. Sex-dependent differences in these gonadally intact rats were found in the affinity, measured as the dissociation constant (Kd), of both the Type I and Type II receptors. For both receptors, affinity in cytosols from females was reduced. The difference for the Type II receptor was slight, but the Kd value of the type I receptor was several-fold higher in females. The difference in affinity was evident with both natural and synthetic steroid ligands. There appears to be little, if any, difference in affinity between the hippocampal Type I and the Type II receptors in females. This suggests that the occupancy of Type I receptors in females is substantially less than that of males at low circulating concentrations of corticosteroids.
23

Contribuição do receptor GPER para as alterações de reatividade vascular em artérias mesentéricas de resistência produzidas pela aldosterona: influência do diabetes mellitus / Contribution of GPER for vascular reactivity changes in mesenteric resistance arteries produced by aldosterone: influence of diabetes mellitus

Ferreira, Nathanne dos Santos 05 June 2014 (has links)
O diabetes é uma doença crônica que afeta mais de 8% da população mundial. As alterações vasculares estão relacionadas às principais complicações do diabetes. A aldosterona contribui para a disfunção endotelial após a ativação do receptor mineralocorticóide (MR). Recentemente, foi demonstrado que a aldosterona ativa o receptor de estrógeno acoplado à proteína G (GPER). A ativação de GPER está relacionada a efeitos benéficos na vasculatura. Entretanto, ainda não existem estudos em artérias de resistência relacionando aldosterona e GPER e essa interação no diabetes. Dessa forma, o presente estudo testou a hipótese de que a aldosterona ativando receptores GPER promove efeitos benéficos na vasculatura, mas esses efeitos estão diminuídos no diabetes. Os objetivos foram investigar os níveis de expressão de GPER nos animais controle e db/db [camundongos com mutação no receptor de leptina que desenvolvem obesidade e diabetes tipo 2], quais efeitos da aldosterona são mediados por ativação de GPER e quais mecanismos envolvidos nessa ativação e verificar se estão alterados no diabetes. O grupo diabético apresentou maior expressão de GPER, mas não de MR. A aldosterona promoveu aumento da resposta máxima contrátil à fenilefrina (PE) somente no grupo controle, que foi revertido pelo uso do antagonista de GPER, G15. No grupo diabético, a resposta à PE já é aumentada, o uso dos antagonistas de MR e GPER reduziram a resposta da PE. A aldosterona ainda reduziu a potência de relaxamento da acetilcolina (ACh) em ambos os grupos, por ativação de MR. O antagonismo de GPER por G15 promoveu um redução adicional na potência do relaxamento no grupo controle, mas não afetou a resposta do grupo diabético. Esses achados confirmam a hipótese de que GPER exerce um papel benéfico na vasculatura e esse efeito é perdido no diabetes. Nossos resultados contribuem para a compreensão dos mecanismos que a aldosterona influencia os danos vasculares no diabetes através da ativação de receptores MR e GPER. / Diabetes is a chronic disease that affects more than 8 % of the world population. Vascular changes are related to the major complications of diabetes. Aldosterone contributes to endothelial dysfunction after activation of the mineralocorticoid receptor (MR). It was recently shown that aldosterone also activates the G protein-coupled estrogen receptor (GPER) and induces non genomic effects. The activation of GPER by estrogen or G1 is related to beneficial effects on the vasculature. However, there are no studies demonstrating the relationship between aldosterone and GPER in diabetes mellitus. Therefore, we hypothesized that the beneficial effects of aldosterone mediated by the activation of GPER receptors on vascular reactivity are decreased in diabetes mellitus. Female control and diabetic (db/db) mice [leptin receptor knockout mice that develop obesity and type 2 diabetes] were used. We determined the expression of GPER and the effect of aldosterone in the presence of MR and GPER antagonists in arteries from control and db/db mice and the major signaling pathways involved. The diabetic group showed increased GPER expression, but not MR. In the presence of aldosterone the control increased the maximal contractile response to phenylephrine (PE), and this increase was reversed by the use of GPER antagonist, G15. The response to PE is already increased in the diabetic group. Although aldosterone did not cause further increase the use of MR and GPER antagonists reduced the maximum response to PE at the same level of control. Aldosterone also reduced the potency of acetylcholine (ACh)-induced relaxation in both groups by the activation of MR. GPER antagonism caused further decrease in the potency of ACh-induced relaxation in the control group, while not affecting the response of the diabetic group. These findings confirm the hypothesis that the beneficial effects of aldosterone mediated by the activation of GPER receptors are decreased in diabetes mellitus. Our results contribute to understanding the mechanisms that aldosterone influences the vascular damage in diabetes through activation of MR and GPER receptors.
24

Expressão gênica dos receptores de cortisol no músculo de bovinos Nelore e associação com características endócrinas, metabólicas e qualidade da carne / Gene expression of cortisol receptors in muscle of Nellore cattle and association with endocrine and metabolic characteristics and meat quality

Silva, Barbara 18 February 2013 (has links)
O estresse provoca alterações significativas no metabolismo dos animais, provocando a liberação de hormônios glicocorticoides. Estas alterações do metabolismo têm efeito anabólico sobre o metabolismo proteico muscular, podendo afetar os processos bioquímicos de transformação do músculo em carne. O presente trabalho teve como objetivo geral (i) verificar as relações entre variáveis endócrinas e metabólicas associadas ao estresse e características indicadoras de qualidade da carne, em animais castrados e não-castrados; (ii) avaliar a expressão gênica dos receptores mineralocorticoide (MR) e glicocorticoide (GR) em variáveis endócrinas, metabólicas e relacionadas à qualidade da carne de bovinos Nelore castrados e não-castrados. Para tal, 130 animais foram abatidos entre os anos de 2009 e 2011. Amostras de sangue foram coletadas antes e depois do abate para mensuração das concentrações de ACTH e cortisol. Amostras do músculo Longissimus dorsi foram coletadas durante os abates para mensuração do glicogênio e lactato, bem como, para análises de expressão gênica (RT-qPCR). Para as análises de maciez, foram coletadas amostras maturadas por um, sete e 14 dias. Para expressão gênica foram determinados os genótipos dos animais para três marcadores relacionados ao MR (MR1_1, MR1_2 e MR1_3) e dois ao GR (GR2_1 e GR2_2), por meio de PCR em tempo real. Foi verificado que animais castrados apresentam pH 24 horas menores e carnes mais macias ao sétimo e 14º dias de maturação, bem como, concentrações de cortisol (in vivo e post mortem) e lactato significativamente superiores aos animais não-castrados. O marcador MR1_3 apresenta expressão gênica significativamente diferenciada. Os animais com genótipo GA apresentaram 57,27% mais transcritos quando comparados aos animais GG. A expressão gênica do MR e GR foi significativamente relacionada às concentrações de cortisol in vivo e post mortem, porém não influenciou as concentrações de ACTH (in vivo e post mortem), glicogênio e lactato. A expressão gênica do MR e GR não foi relacionada às características indicadoras da qualidade da carne. / The stress causes significant changes in the metabolism of the animals causing the release of glucocorticoid hormones. These metabolic changes have anabolic effect on muscle protein metabolism, affecting the biochemical processes of transformation of muscle on meat. This study aimed to (i) examine relationships between endocrine and metabolic variables associated with stress and meat quality characteristics in castrated and non-castrated animals, (ii) evaluate mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) gene expression in endocrine and metabolic characteristics and related this to meat quality of Nellore castrated and non-castrated animals. To this end, 130 animals were slaughtered between the years 2009 and 2011. Blood samples were collected before and after slaughter to measure concentrations of ACTH and cortisol. Longissimus dorsi muscle samples were collected during slaughter for measurement of glycogen and lactate, as well for gene expression analyzes (RT-qPCR). For the shear force analyzes, samples were aged for one, seven and 14 days. For gene expression analysis, genotypes of three markers related to MR (MR1_1, MR1_2 and MR1_3), and the two related to GR (GR2_1 and GR2_2) were determined via real-time PCR. It was observed that castrated have lower pH value at 24 hours than non-castrated animals, and tender meat on the seventh and 14th day of aging, such as cortisol (in vivo and post mortem) and lactate concentrations significantly superior to non-castrated animals. Gene expression of MR1_3 was significantly different. Animals with GA genotype had 57.27% more transcripts than GG genotype. The gene expression of MR and GR was significantly related to cortisol concentrations in vivo and post mortem, but did not influence the concentrations of ACTH (in vivo and post mortem), glycogen and lactate. The MR and GR gene expression was not related to the meat quality characteristics.
25

The interaction of environmentally relevant pollutants with nuclear hormone receptors of European flounder (Platichthys flesus)

Colliar, Louise January 2012 (has links)
Nuclear hormone receptors (NHRs) are ligand-activated transcriptions factors which transduce the effects of various hormones as well as nutritional and other environmental signals. They thus function to maintain physiological homeostasis by integrating the tissue expression of specific target genes to regulate a wealth of biological processes including reproduction, development, metabolism and environmental adaptation. Mounting evidence indicates NHRs are the target of endocrine disrupting compounds (EDCs), exogenous chemicals, often of anthropogenic origin, which disrupt NHRs and thus the processes under their control. EDCs can interfere with NHR signalling by activating receptors (agonists), by inhibiting the actions of the receptor (antagonists), or by disrupting endogenous hormone synthesis, secretion, transport or metabolism. Much of the focus to date has been on the risk of EDCs to reproductive functions, via estrogen and androgen NHRs in humans, and also in aquatic organisms. However environmental pollutants also have the potential to interact with other NHRs, particularly in aquatic environments, and cause dysregulation of other critical physiological processes, including energy homeostasis, immune functions and the stress response. To address this possibility a reporter gene assay was developed, allowing the high-throughput screening of pollutants for their interactions with piscine NHRs with critical roles in energy homeostasis, stress reponse and immune functions, namely the peroxisome proliferator-activated receptors (PPARs) and corticosteroid receptors (CRs) from European plaice (Pleuronectes platessa) and European flounder (Platichthys flesus), respectively. Complementary DNA (cDNA) sequences encoding the ligand-binding domains of PPARs and CRs, critical for receptor-ligand interactions and receptor activation, were ligated to the DNA-binding domain (DBD) of the yeast Gal4 transcription activator protein to create experimental expression plasmid constructs. Co-transfection of these expression plasmids into the fathead minnow (FHM) cell line with an upstream-activating sequence (UAS)-firefly luciferase reporter gene plasmid increased luciferase expression in the presence of known PPAR and CR ligands. Several aquatic pollutants including pharmaceuticals, industrial by-products and biocides were tested for their potential to disrupt PPAR and CR functions by interacting with these receptors in an agonistic or antagonistic manner. Several fibrates, a group of pharmaceutical compounds used to treat dyslipidemia in humans by targeting the PPARs, were able to activate plaice Gal4-PPARα and Gal4-PPARβ in the reporter gene assay, indicative of an interaction with PPAR receptors in non-target species. Fibrates which did not activate Gal4-PPARα were able to inhibit the activation of Gal4-PPARα by the PPARα-specific agonist, Wy14643, suggesting differential effects of fibrates on human and flounder PPARs. In addition some metabolites of widespread phthalate ester pollutants were also agonists of the Gal4-PPARα and Gal4-PPARβ constructs. The Gal4-PPARγ construct was unresponsive to almost all the compounds tested, including the mammalian PPARγ agonist, rosiglitazone. The exception to this was the phthalate metabolite monobenzylphthalate, which induced a small increase in firefly luciferase in Gal4-PPARγ transfected cells. All of the above effects required concentrations of at least 10 µM, which are unlikely to be encountered in the aquatic environment. In contrast bis(tributyltin) oxide (TBTO), a notorious environmental pollutant, inhibited Gal4-PPARα and Gal4-CR constructs at concentrations as low as 1 nM and 100 nM, respectively. These concentrations are lower than those reported in aquatic environments, or in fish tissues, making TBTO a candidate endocrine disruptor in fish by inhibiting PPARα and CR signalling. A European flounder cDNA microarray was used to investigate the trasnscriptional responses of flounder hepatocytes to TBTO (10 nM) exposure. Exposure to TBTO and Wy14643, both alone and in combination, indicated a TBTO-driven downregulation of several potential PPARα-target genes with functions in the immune system, the proteasome, and lipid metabolism, although, based on mammalian comparisons, some potential PPARα-target genes were also upregulated, indicating differences in mammalian and fish PPAR-target genes or reflecting the complexity of organisms at a higher organisational level than cell-based assay systems. However, the microarray-based approach was useful in formulating further hypotheses about the effects of TBTO on PPARα signalling. Overall, these results indicate that exogenous chemicals entering the aquatic environment can interfere with NHRs with functions in energy homeostasis, immune functions and stress, in non-target organisms. The cell-based reporter gene assay is a useful tool for identifying potential endocrine disruptors which target PPARs and CRs and would be a useful method in a first tier testing approach, limiting the use of live animal models and enabling investigation into specific receptors which are targets of endocrine disrupting compounds. Although more work is required to confirm the physiological consequences of TBTO inhibition of PPARα, the results presented here indicate that organisms inhabiting TBTO-polluted environments may experience suppression of the immune system, an increase in non-functional or misfolded proteins through suppression of genes involved in the ubiquitin/proteasome system and a disruption in lipid homeostasis.
26

Contribuição do receptor GPER para as alterações de reatividade vascular em artérias mesentéricas de resistência produzidas pela aldosterona: influência do diabetes mellitus / Contribution of GPER for vascular reactivity changes in mesenteric resistance arteries produced by aldosterone: influence of diabetes mellitus

Nathanne dos Santos Ferreira 05 June 2014 (has links)
O diabetes é uma doença crônica que afeta mais de 8% da população mundial. As alterações vasculares estão relacionadas às principais complicações do diabetes. A aldosterona contribui para a disfunção endotelial após a ativação do receptor mineralocorticóide (MR). Recentemente, foi demonstrado que a aldosterona ativa o receptor de estrógeno acoplado à proteína G (GPER). A ativação de GPER está relacionada a efeitos benéficos na vasculatura. Entretanto, ainda não existem estudos em artérias de resistência relacionando aldosterona e GPER e essa interação no diabetes. Dessa forma, o presente estudo testou a hipótese de que a aldosterona ativando receptores GPER promove efeitos benéficos na vasculatura, mas esses efeitos estão diminuídos no diabetes. Os objetivos foram investigar os níveis de expressão de GPER nos animais controle e db/db [camundongos com mutação no receptor de leptina que desenvolvem obesidade e diabetes tipo 2], quais efeitos da aldosterona são mediados por ativação de GPER e quais mecanismos envolvidos nessa ativação e verificar se estão alterados no diabetes. O grupo diabético apresentou maior expressão de GPER, mas não de MR. A aldosterona promoveu aumento da resposta máxima contrátil à fenilefrina (PE) somente no grupo controle, que foi revertido pelo uso do antagonista de GPER, G15. No grupo diabético, a resposta à PE já é aumentada, o uso dos antagonistas de MR e GPER reduziram a resposta da PE. A aldosterona ainda reduziu a potência de relaxamento da acetilcolina (ACh) em ambos os grupos, por ativação de MR. O antagonismo de GPER por G15 promoveu um redução adicional na potência do relaxamento no grupo controle, mas não afetou a resposta do grupo diabético. Esses achados confirmam a hipótese de que GPER exerce um papel benéfico na vasculatura e esse efeito é perdido no diabetes. Nossos resultados contribuem para a compreensão dos mecanismos que a aldosterona influencia os danos vasculares no diabetes através da ativação de receptores MR e GPER. / Diabetes is a chronic disease that affects more than 8 % of the world population. Vascular changes are related to the major complications of diabetes. Aldosterone contributes to endothelial dysfunction after activation of the mineralocorticoid receptor (MR). It was recently shown that aldosterone also activates the G protein-coupled estrogen receptor (GPER) and induces non genomic effects. The activation of GPER by estrogen or G1 is related to beneficial effects on the vasculature. However, there are no studies demonstrating the relationship between aldosterone and GPER in diabetes mellitus. Therefore, we hypothesized that the beneficial effects of aldosterone mediated by the activation of GPER receptors on vascular reactivity are decreased in diabetes mellitus. Female control and diabetic (db/db) mice [leptin receptor knockout mice that develop obesity and type 2 diabetes] were used. We determined the expression of GPER and the effect of aldosterone in the presence of MR and GPER antagonists in arteries from control and db/db mice and the major signaling pathways involved. The diabetic group showed increased GPER expression, but not MR. In the presence of aldosterone the control increased the maximal contractile response to phenylephrine (PE), and this increase was reversed by the use of GPER antagonist, G15. The response to PE is already increased in the diabetic group. Although aldosterone did not cause further increase the use of MR and GPER antagonists reduced the maximum response to PE at the same level of control. Aldosterone also reduced the potency of acetylcholine (ACh)-induced relaxation in both groups by the activation of MR. GPER antagonism caused further decrease in the potency of ACh-induced relaxation in the control group, while not affecting the response of the diabetic group. These findings confirm the hypothesis that the beneficial effects of aldosterone mediated by the activation of GPER receptors are decreased in diabetes mellitus. Our results contribute to understanding the mechanisms that aldosterone influences the vascular damage in diabetes through activation of MR and GPER receptors.
27

Expressão gênica dos receptores de cortisol no músculo de bovinos Nelore e associação com características endócrinas, metabólicas e qualidade da carne / Gene expression of cortisol receptors in muscle of Nellore cattle and association with endocrine and metabolic characteristics and meat quality

Barbara Silva 18 February 2013 (has links)
O estresse provoca alterações significativas no metabolismo dos animais, provocando a liberação de hormônios glicocorticoides. Estas alterações do metabolismo têm efeito anabólico sobre o metabolismo proteico muscular, podendo afetar os processos bioquímicos de transformação do músculo em carne. O presente trabalho teve como objetivo geral (i) verificar as relações entre variáveis endócrinas e metabólicas associadas ao estresse e características indicadoras de qualidade da carne, em animais castrados e não-castrados; (ii) avaliar a expressão gênica dos receptores mineralocorticoide (MR) e glicocorticoide (GR) em variáveis endócrinas, metabólicas e relacionadas à qualidade da carne de bovinos Nelore castrados e não-castrados. Para tal, 130 animais foram abatidos entre os anos de 2009 e 2011. Amostras de sangue foram coletadas antes e depois do abate para mensuração das concentrações de ACTH e cortisol. Amostras do músculo Longissimus dorsi foram coletadas durante os abates para mensuração do glicogênio e lactato, bem como, para análises de expressão gênica (RT-qPCR). Para as análises de maciez, foram coletadas amostras maturadas por um, sete e 14 dias. Para expressão gênica foram determinados os genótipos dos animais para três marcadores relacionados ao MR (MR1_1, MR1_2 e MR1_3) e dois ao GR (GR2_1 e GR2_2), por meio de PCR em tempo real. Foi verificado que animais castrados apresentam pH 24 horas menores e carnes mais macias ao sétimo e 14º dias de maturação, bem como, concentrações de cortisol (in vivo e post mortem) e lactato significativamente superiores aos animais não-castrados. O marcador MR1_3 apresenta expressão gênica significativamente diferenciada. Os animais com genótipo GA apresentaram 57,27% mais transcritos quando comparados aos animais GG. A expressão gênica do MR e GR foi significativamente relacionada às concentrações de cortisol in vivo e post mortem, porém não influenciou as concentrações de ACTH (in vivo e post mortem), glicogênio e lactato. A expressão gênica do MR e GR não foi relacionada às características indicadoras da qualidade da carne. / The stress causes significant changes in the metabolism of the animals causing the release of glucocorticoid hormones. These metabolic changes have anabolic effect on muscle protein metabolism, affecting the biochemical processes of transformation of muscle on meat. This study aimed to (i) examine relationships between endocrine and metabolic variables associated with stress and meat quality characteristics in castrated and non-castrated animals, (ii) evaluate mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) gene expression in endocrine and metabolic characteristics and related this to meat quality of Nellore castrated and non-castrated animals. To this end, 130 animals were slaughtered between the years 2009 and 2011. Blood samples were collected before and after slaughter to measure concentrations of ACTH and cortisol. Longissimus dorsi muscle samples were collected during slaughter for measurement of glycogen and lactate, as well for gene expression analyzes (RT-qPCR). For the shear force analyzes, samples were aged for one, seven and 14 days. For gene expression analysis, genotypes of three markers related to MR (MR1_1, MR1_2 and MR1_3), and the two related to GR (GR2_1 and GR2_2) were determined via real-time PCR. It was observed that castrated have lower pH value at 24 hours than non-castrated animals, and tender meat on the seventh and 14th day of aging, such as cortisol (in vivo and post mortem) and lactate concentrations significantly superior to non-castrated animals. Gene expression of MR1_3 was significantly different. Animals with GA genotype had 57.27% more transcripts than GG genotype. The gene expression of MR and GR was significantly related to cortisol concentrations in vivo and post mortem, but did not influence the concentrations of ACTH (in vivo and post mortem), glycogen and lactate. The MR and GR gene expression was not related to the meat quality characteristics.
28

Neuronal Glucocorticoid Receptor Regulation of Brain Derived Neurotrophic Factor Expression / Régulation de l’expression du brain-derived neurotrophic factor par le récepteur des glucocorticoïdes dans le neurone

Chen, Hui 21 September 2017 (has links)
Dans le système nerveux central (SNC), l'hippocampe est une structure majeure pour les fonctions cognitives et comportementales. Le Brain-Derived Neurotrophic Factor (BDNF), un acteur clé dans ces fonctions neuronales, est fortement exprimé dans l'hippocampe. La structure du gène Bdnf murin est complexe, comportant 8 exons non codants (I à VIII), chacun avec un promoteur spécifique (1 à 8) et un exon IX codant commun. Les glucocorticoïdes (GC) exercent des actions pleiotropes sur ces processus neuronaux en se liant et en activant le récepteur des glucocorticoïdes (GR), et le récepteur des minéralocorticoïdes (MR). Le GR est un facteur de transcription, modulant la transcription de ses gènes cibles, en se liant directement aux éléments de réponse des glucocorticoïdes ou en interagissant indirectement sur d’autres facteurs de transcription. Il a été suggéré que l'expression de Bdnf est régulée par le stress et les concentrations élevées de GC. Cependant, il reste à définir si BDNF est un gène cible du GR et quels sont les mécanismes moléculaires impliqués. Dans ce travail, nous avons démontré que les fortes concentrations de GC diminuent l'expression de l'ARNm de Bdnf via le GR dans divers modèles cellulaires neuronaux. Dans des cultures primaires de neurones hippocampiques de souris et dans les cellules BZ, les transcrits de BDNF contenant l’exon IV et VI sont reprimés par le GR. Par ailleurs les transfections transitoires démontrent que l’activité du promoteur 4 est diminuée par GR. Les expériences de mutagenèse et de ChIP ont révélé que la répression induite par le GR sur l'expression et l’activité transcriptionnelle de Bdnf implique un petit fragment de 74 bp situé dans le promoteur en amont de l'exon IV. La localisation précise de l’interaction génomique du GR et les facteurs de transcription potentiels mis en jeu restent à identifier. Ce travail a contribué à une meilleure compréhension des mécanismes impliqués dans la régulation de l’expression de Bdnf par GR. Il apporte de nouveaux éléments sur les interactions moléculaires et fonctionnelles entre la signalisation GC et celle de BDNF dans les neurones, d’importance majeure dans la physiopathologie du SNC. / In the central nervous system (CNS), the hippocampus is a structure of major importance for cognitive and behavioral functions. The brain-derived neurotrophic factor (BDNF), a key player in such neuronal functions is highly expressed in the hippocampus. Rodent Bdnf gene structure is relatively complex, composed of 8 noncoding exons (I to VIII), each one with a specific promoter (1 to 8), and one common coding exon IX. Glucocorticoids (GC) exert pleiotropic actions on neuronal processes by binding to and activating the glucocorticoid receptor (GR), as well as the mineralocorticoid receptor (MR). GR functions as a transcription factor, directly by interacting to glucocorticoid response elements or indirectly by interacting with other transcription factors, leading to the regulation of target gene transcription. It has been suggested that Bdnf expression is regulated by stress and high GC concentrations. However, it remains to define whether Bdnf is a GR target gene and what are the underlying molecular mechanisms. Herein, we demonstrate that high GC levels downregulate total Bdnf mRNA expression via GR in various in vitro neuron-like cellular models. In primary cultures of mouse hippocampal neurons and BZ cells, BDNF IV- and VI-containing transcripts are involved in this regulatory mechanism. Moreover, in transient transfections, promoter 4 activity was reduced by activated GR. Furthermore, ChIP analysis and mutagenesis experiments demonstrate that the GR-induced repression on Bdnf expression and transcriptional activities occurs through GR binding to a small 74 bp promoter sequence upstream of exon IV. The exact GR binding site on DNA and its putative transcription factor partners are currently under investigation. Altogether, these findings contribute to a better understanding of the mechanisms by which GR represses BDNF expression. Our study brings new insights into the molecular interactions between GC signaling and BDNF signaling in neurons, both important pathways in the pathophysiology of the CNS.
29

Identification et régulation transcriptionnelle des gènes cibles du récepteur des minéralocorticoïdes dans les cellules rénales / Identification and Transcriptionnal Regulation of the Mineralocorticoid Recepetor Target Genes in Renal Cells

Le Billan, Florian 06 October 2017 (has links)
Le récepteur minéralocorticoïde (MR), activé par l’aldostérone, exerce de nombreuses fonctions pléïotropes, notamment au niveau rénal où il régule l’homéostasie hydrosodée. Des dysfonctionnements de la signalisation minéralocorticoïde sont impliqués dans des pathologies majeures chez l’Homme. Dans ce travail, nous avons identifié par ChIP sequencing le premier cistrome du MR dans une lignée cellulaire rénale humaine. La caractérisation des cibles génomiques a permis de décrire l’élément de réponse spécifique du MR, et de démontrer l’existence de deux modes d’action pour le MR : par liaison directe à l’ADN, ou indirecte via la liaison à d’autres facteurs de transcription. Le MR est physiologiquement confronté à une dualité face au récepteur glucocorticoïde (GR) avec lequel il partage un ligand, le cortisol, et des cibles génomiques, dont le gène PER1. Sur ce dernier, les deux récepteurs se distinguent par des recrutements dynamiques et cycliques différents, variants selon l’hormone, et contemporains de celui de partenaires transcriptionnels, régulant ainsi des effets à court ou à long-terme. Enfin, par ChIP en série et en tandem, nous avons montré que le MR et le GR agissent sous forme d’homodimères ou d’hétérodimères.L’identification du cistrome du MR, et la caractérisation de ses mécanismes d’action moléculaires, améliore notre compréhension de la physiopathologie de la signalisation minéralocorticoïde, et pourrait aboutir, notamment par le développement d’antagonistes sélectifs du MR comme la Finérénone, à de nouvelles stratégies thérapeutiques. / The mineralocorticoid receptor (MR), activated by aldosterone, exhibits numerous pleiotropic functions, most notably at the renal level where it regulates electrolytic homeostasis. Dysfunctions in the mineralocorticoid signaling pathway are involved in major diseases in Human. During this work, we have identified by ChIP sequencing the first MR cistrome in a human renal cell lineage. The characterization of the identified genomic targets allowed us to define a specific MR responsive element, and to demonstrate the existence of two transactivation processes for MR: through direct binding to DNA or through indirect interaction via binding to other transcription factors. MR is physiologically confronted with a duality with the glucocorticoid receptor (GR), since they share a common ligand, cortisol, and some of their genomic targets, whose PER1 gene. On the latter, MR and GR are distinguished by different dynamic and cyclical recruitment, varying according to hormone, and coordinated with the one of transcriptional partners, translating into the regulation of short-term and long-term effects. Finally, by serial and tandem ChIP experiment, we have demonstrated that MR and GR act as homodimer and as heterodimer.Identification of new MR genomic targets and characterization of its molecular mechanisms of action, improve our understanding of the pathophysiology of the mineralocorticoid signaling pathway. This could ultimately, notably through the development of selective MR antagonists like Finerenone, lead to new therapeutic strategies.
30

Role of Adenosine A1 Receptors in Native Coronary Atherosclerosis, In-stent Stenosis, and Coronary Blood Flow Regulation in Metabolic Syndrome and Exercise

Long, Xin 08 April 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Adenosine is widely thought to elicit coronary vasodilation and attenuate smooth muscle cell (SMC) proliferation, thereby providing cardioprotection. We cloned the porcine adenosine A1 receptor (A1R) subtype and found that it paradoxically stimulated proliferation of cultured coronary SMC by the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) signaling pathways, thus suggesting A1R dysregulation could play a role in coronary artery disease (CAD), restenosis, and regulation of coronary blood flow (CBF). We utilized the Ossabaw swine model of metabolic syndrome (MetS) to test the hypothesis that A1R activation contributes to development of CAD, in-stent stenosis, and CBF regulation. Swine were fed standard chow (Lean) or excess calorie atherogenic diet for over 20 weeks, which elicited MetS characteristics and coronary atherosclerosis compared to Lean. We observed increased A1R in native CAD in MetS, which was reversed by exercise training, and upregulation of A1R expression and A1R-ERK1/2 activation in an in vitro organ culture model of CAD. Intracoronary stent deployment followed by different durations of recovery showed A1R upregulation occurred before maximal in-stent stenosis in vi vivo. More importantly, selective A1R antagonism with 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX)-eluting stents decreased coronary ERK1/2 activation and reduced in-stent stenosis comparable to Taxus® (paclitaxel-eluting stents). A1R antagonism potentiated vasodilatory effects of some vasodilators other than adenosine in porcine coronary microcirculation under basal conditions. Short-term exercise training around stenting prevented stent-induced microvascular dysfunction and attenuated native atheroma in the genetically lean Yucatan swine. Conclusions: A1R upregulation and activation contributes to coronary in-stent stenosis in vivo in MetS, plays a role in the development of coronary atherosclerosis in vitro, and might involve in CBF dysregulation in dyslipidemia and stenting. Exercise training decreased A1R expression in atherosclerosis, reduced native atheroma, and prevented stent-induced microvascular dysfunction. Selective pharmacological antagonism of A1R holds promise for treatment of CAD.

Page generated in 0.0896 seconds