• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Search for scalar quarks in e + e - collisions at LEP II

Sushkov, Serge 22 September 2003 (has links)
Diese Dissertation beschäftigt sich mit der Suche nach dem skalaren Top Quark (stop) und dem skalaren Bottom Quark (sbottom) innerhalb des Minimal Supersymmetric Standard Model (MSSM) unter der Annahme der R-Paritätserhaltung. Suchen nach den folgenden Zerfallsmoden des Stop-Quark wurden durchgeführt: stop -> c neutralino_1, stop -> b l sneutrino (wobei l mit gleichen Wahrscheinlichkeiten entweder electron, muon oder tau-lepton ist) und stop -> b tau sneutrino (nur das Tau-Lepton wird berücksichtigt). Zusätzlich wurde der Dreikörperzerfall stop -> b W neutralino_1 im erlaubten Massenbereich M_stop > M_b + M_W + M_neutralino1 >= 86 GeV gesucht. Für das Sbottom-Quark wurde der Zerfall sbottom -> b neutralino_1 studiert. Jede dieser Zerfallsmoden wurde voneinander unabhängig unter der Annahme eines 100 %-igen Verzweigungsverhältnisses untersucht. Für diese Suche wurden Daten aus electron-positron-Kollisionen bei Schwerpunktsenergien im Bereich von 202-208 GeV benutzt. Die Daten wurden im Jahr 2000 von dem L3 Detektor am Large Electron Positron Collider (LEP) am CERN aufgenommen. Ferner wurden die Resultate der Datenanalyse aus dem Jahr 2000 mit Resultaten der Squark-Suche kombiniert, die die L3 Kollaboration in vorhergehenden Jahren bei Schwerpunktsenergien von 161 bis 202 GeV durchgeführt hat. Die untersuchten Squark Zerfallskanäle bestimmen die Topologie der für uns interessanten Ereignisse: 2 Jets (oder b-Jets) + fehlende Energie (+ 2 Leptonen für die Stop-Dreikörperzerfälle). Die stop -> b W neutralino_1 Zerfallstopologie hängt signifikant von den weiteren Zerfällen des W-Bosons ab und kann bis zu 6 Jets im Endzustand haben. Die Annahme der R-Paritätserhaltung impliziert die Stabilität des leichtesten supersymmetrischen Teilchens (des LSP), das das leichteste Neutralino ist. Das LSP wechselwirkt nur schwach und entweicht deswegen unentdeckt. Ein besonderes Merkmal der Signal-Ereignisse ist somit eine erhebliche Menge fehlender Energie. Die sichtbare Energie ist in etwa proportional zu der Massendifferenz zwischen dem Squark und dem LSP. Weil die Standardmodell-Untergrundzusammensetzung vom Anteil der sichtbaren Energie abhängt, hängt die Analyse auch vom Wert von der Massendifferenz ab. Abhängig von der Menge fehlender Energie kann der Standardmodell-Untergrund in drei Kategorien eingeteilt werden: - die zwei-Fermion-Prozesse sind e e -> e e, e e -> mu mu, e e -> tau tau und e e -> e e q q; - die vier-Fermion-Kategorie besteht aus e e -> W W, e e -> W e nu, e e -> Z Z und e e -> Z e e Prozessen; - die zwei-Photon-Untergrundprozesse sind e e -> e e e e, e e -> e e mu mu, e e -> e e tau tau und e e -> e e q q. Der letzte Prozess, e e -> e e q q, trägt den grössten Anteil zu den SM-Untergrundprozessen bei (wegen sehr hohem und stark schwankendem E_miss und dem grössten Wirkungsquerschnitt). Im ersten Schritt der Analyse wurden Events mit der gewünschten Topologie (2 Jets und hohes E_miss) vorselektiert. Die Selektion von Stop- und Sbottom-Ereignissen wurde durch die Minimierung der mit 95 % Confidence Level (C.L.) erwarteten oberen Grenze des Squark-Wirkungsquerschnitts - berechnet aus MC-Vorhersagen - optimiert, wobei der kleine theoretisch vorhergesagte Produktionswirkungsquerschnitt des Squarks berücksichtigt wurde. In allen für den jeweiligen Squark Zerfallskanal optimierten Selektionen stimmt die Anzahl von Daten Events mit der erwarteten Anzahl von Standardmodellprozessen überein: - für den stop -> c neutralino_1 Zerfall wurden 29 Daten-Events beobachtet, wobei 26.5 +- 2.7 Events von den SM-Prozessen erwartet wurden; - für den Dreikörperzerfall stop -> b l sneutrino, wurden 4 Daten-Events selektiert bei einer Standardmodell-Erwartung von 4.0 +- 1.0 Events; - für den Zerfall stop -> b tau sneutrino sind die Daten- und SM-Eventzahlen 5 bzw. 3.9 +- 1.0; - in der Selektion für stop -> b W neutralino_1, wurden 184 Daten Events beobachtet und 181.6 +- 3.0 Events wurden vom Standardmodell vorhergesagt; - für den Bottom Squark Zerfall sbottom -> b neutralino_1 entsprachen die beobachteten 6 Events der SM-Erwartung von 7.7 +- 1.3 Events. Es wurden keine MSSM-Skalar-Quarks in den Daten des Experiments beobachtet und das Resultat der Suche ist negativ. Die modellunabhängige 95 % C.L. obere Grenze für den Squark-Produktionswirkungsquerschnitt wurde aus der gemessenen Anzahl von Daten-Events und der aus dem Standardmodell erwarteten Eventanzahl berechnet. Für die Berechnung der oberen Grenzen der Produktionswirkungsquerschnitte wurden die Resultate der Squark-Suchen aus den L3-Daten bei Schwerpunktsenergien von c.m.s. Energie 202 - 208 GeV mit den Resultaten aus vorherigen Suchen der L3-Kollaboration bei 161 GeV - 202 GeV kombiniert. Eine neue Methode wurde entwickelt, um die kombinierten Grenzen zu berechnen. Die Methode berücksichtigt die statistische Unabhängigkeit jeder Messung und die Abhängigkeit des Squark-Produktionswirkungsquerschnittes von der Schwerpunktsenergie. In der Berechnung wurde den systematischen Unsicherheiten in der Standardmodell-Untergrundabschätzung und der Signal-Selektionseffizienz Rechnung getragen. Für die hier betrachteten Squark-Zerfälle werden typisch folgende oberen Grenzen mit 95 % C.L. für den Squark Produktionswirkungsquerschnitt erhalten: ~ 0.05-0.2 pb (für stop) und ~ 0.05-0.1 pb (für sbottom). Bei den Suchen nach dem Stop-Dreikörperzerfall stop -> b W neutralino_1 wurden die Produktionswirkungsquerschnitte über 0.7-1.0 pb mit 95 % C.L. ausgeschlossen. Innerhalb des Minimal Supersymmetrischen Standard Modells mit R-Paritätserhaltung wurden die unabhängigen Wirkungsquerschnittsgrenzen für den Ausschluss von MSSM Parametern benutzt, insbesondere für die Stop- und Sbottom-Massen. Die Squark-Massen wurden für jeden betrachteten Zerfallskanal in zwei möglichen Szenarien ausgeschlossen: für den maximalen und den (näherungsweise) minimalen theoretischen Wirkungsquerschnitt. Der erste Fall korrespondiert zur maximalen Mischung zwischen den links- und rechtshändigen Squark-Eigenzuständen, $\cos\theta_{LR}$ = 1; der zweite Fall ist definiert durch den Wert von $\cos\theta_{LR}$, bei dem die Squarks vom $Z^0$ Boson entkoppeln. Abhängig vom Wert $\Delta M$ wurden die Squark Massen mit 95 % C.L. bis zu den folgenden Werten ausgeschlossen: - für stop -> c neutralino_1: M_stop < 90-93 GeV (min. Wirkungsquerschnitt), M_stop < 95-96 GeV (max. Wirkungsquerschnitt), - für stop -> b l sneutrino: M_stop < 87-89 GeV (min. Wirkungsquerschnitt), M_stop < 90-91 GeV (max. Wirkungsquerschnitt), - für stop -> b tau sneutrino: M_stop < 83-88 GeV (min. Wirkungsquerschnitt), M_stop < 88-91 GeV (max. Wirkungsquerschnitt), - für sbottom -> b neutralino_1: M_stop < 76-83 GeV (min. Wirkungsquerschnitt), M_stop < 94-97 GeV (max. Wirkungsquerschnitt), In beiden Fällen werden die experimentell beobachteten 95 % C.L. Massen Ausschlussgrenzen mit den aus Monte Carlo Simulationen ohne SUSY Teilchen erwarteten verglichen. Die experimentallen Ausschlussgrenzen Sind verträglich mit den erwarteten. Die mit 95 % C.L. erhaltene obere Grenze für den Stop-Produktionquerschnitt ist im Zerfall stop -> b W neutralino_1 grösser als die zugehörige theoretische Vorhersage. Der Ausschluss mit 95 % C.L. auf Massen war mit dem zur Verfügung stehenden Datensatz aus diesen Grund nicht möglich. Unter der Annahme, dass die Zerfallstopologie der skalaren Quarks der ersten zwei Generationen ähnlich dem Zweikörperzerfall des Stop ist, wurden die Resultate der Suche nach dem Zerfall stop -> c neutralino_1 auch für die Berechnung der Massenausschlussgrenzen für die Squarks der ersten beiden Familien benutzt. Zwei Möglichkeiten wurden hier in Erwägung gezogen: die Massenentartung zwischen vier (scalar u, d, c, s) und fünf (sbottom zusätzlich) Squarks. Die Ausschlussgrenzen mit 95 % C.L. auf die massenentarteten skalaren Quarks in den Fällen der "nur-rechts" oder "links-und-rechts" Eigenzustände sind die folgenden: - für die Massenentartung zwischen vier Squarks: M_squark < 95-96 GeV ("nur-rechts"), M_squark < 99-100 GeV ("links-und-rechts"); - für die Massenentartung zwischen fünf Squarks: M_squark < 96-97 GeV ("nur-rechts"), M_squark < 99-101 GeV ("links-und-rechts"); Mit der Annahme der Gaugino-Vereinigung an der GUT-Skala im MSSM wurden die Grenzen für die vierfach massenentarteten Squarks erneut in der Squark-Gluino Ebene interpretiert. Ferner wurde das absolute Limit auf den MSSM-Parameter M_2, der für tan(beta) = 4 aus anderen L3-SUSY-Suchen (für Chargino, Neutralino und skalare Leptonen) ermittelt worden ist, in ein Gluino-Massenlimit übersetzt. Die mit 95 % C.L. erhaltenen Ausschlussgrenzen in der Squark-Gluino Massenebene sind - M_gluino > 267-314 GeV, - M_squark > 99-100 GeV. / This thesis is devoted to searches for the scalar top and the scalar bottom quarks within the framework of the Minimal Supersymmetric Standard Model (MSSM) with the assumption of R-parity conservation. Searches for the following decay modes of the stop quark have been performed: stop -> c neutralino_1, stop -> b l sneutrino, (where l is either electron, muon or tau-lepton with equal probabilities) and stop -> b tau sneutrino (where only the tau-lepton is considered). In addition, a three body decay stop -> b W neutralino_1 has been searched for in the allowed mass region of M_stop > M_b + M_W + M_neutralino1 >= 86 GeV. For the sbottom quark the decay sbottom -> b neutralino_1 was considered. Each of these decay modes was considered independently assuming a branching ratio of 100 %. For this search, the experimental data of electron-positron collisions at center-of-mass energies (c.m.s.) in the range of 202-208 GeV have been used. These data were collected in the year 2000 by the L3 detector at the Large Electron Positron Collider (LEP) at CERN. The results of the year 2000 data analysis were also combined with results of the squark searches performed by the L3 Collaboration in previous years at center-of-mass energies from 161 up to 202 GeV. The analyzed squark decay channels determine the topology of the events of our interest: 2 jets (or b-jets) + missing energy (+ 2 leptons for stop three body decays). The stop -> b W neutralino_1 decay topology depends significantly on the further decay of the W boson and can have up to 6 jets in the final state. The assumed conservation of R-parity implies stability of the lightest supersymmetric particle (the LSP), which is the lightest neutralino. The LSP interacts only weakly and thus escapes undetected. This leads to a large missing energy as a feature of the signal events. The visible energy is roughly proportional to the difference between the masses of the squark and the LSP, and since the Standard Model background composition depends on the visible energy fraction, the whole analysis depends also on the value of this mass difference. Depending on the magnitude of visible energy, the Standard Model background can be grouped into three categories: - the two-fermion processes are e e -> e e, e e -> mu mu, e e -> tau tau and e e -> q q; - the four-fermion category is composed of e e -> W W, e e -> W e nu, e e -> Z Z and e e -> Z e e processes; - the two-photon background processes are e e -> e e e e, e e -> e e mu mu, e e -> e e tau tau and e e -> e e q q. The last process, e e -> e e q q, constitutes the largest fraction of all SM background processes (due to very high and highly fluctuating missing energy and the highest cross section). At the very first step of the analysis, only the events of interesting topology (with 2 jets and high missing energy) were preselected. Then, taking into account the small value of the theoretically predicted production cross section of the scalar quarks, the selection of stop and sbottom events was optimized by minimization of the 95 % confidence level expected upper limit on the squark cross section using calculated Monte Carlo events. In all selections optimized for each particular squark decay channel, the number of selected data events statistically agrees with the number of events expected from the Standard Model processes: - for stop -> c neutralino_1 decay, 29 data evens were observed, while 26.5 +- 2.7 were expected from the SM processes; - for the three body decay stop -> b l sneutrino, 4 data events were selected and the expectation from the Standard Model is 4.0 +- 1.0 events; - for the decay stop -> b tau sneutrino, the data and SM event numbers are 5 and 3.9 +- 1.0, respectively; - in the selection for stop -> b W neutralino_1, 184 data events were observed and 181.6 +- 3.0 were expected from the Standard Model; - for the bottom squark decay sbottom -> b neutralino_1 the observed 6 events correspond to the SM expectation of 7.7 +- 1.3. Thus, the MSSM scalar quarks were not observed in the experimental data and the search results are negative. The model independent 95 % C.L. upper limits on the squark production cross section have been derived from the numbers of the observed data events and numbers of events expected from the Standard Model. For calculation of the upper cross section limits, the results of the squark searches performed in the L3 data of c.m.s. energy 202 - 208 GeV were combined with results of searches performed by the L3 Collaboration previously in the data of c.m.s. energy from 161 up to 202 GeV. A new method has been developed for calculating such combined limits. This method takes into account the statistical independence of each measurement and the dependency of the squark production cross section on the center-of-mass energy. In this calculation, the systematic uncertainties in the Standard Model background estimation and in the signal selection efficiency have been also accounted for. For the considered squark decays, the typical obtained 95 % C.L. upper limits on the squark production cross section are: ~ 0.05-0.2 pb (for stop) and ~ 0.05-0.1 pb (for sbottom). In the searches for the stop three body decay stop -> b W neutralino_1, the cross sections above 0.7-1.0 pb have been excluded at 95 % C.L. Within the framework of MSSM with conserved R-parity, the experimental model independent cross section limits have been used for exclusion of the MSSM model parameters, in particular, exclusion of the stop and the sbottom masses. For each considered decay channel, the squark masses have been excluded in two possible scenarios: for the maximal and for the (approximately) minimal theoretical cross section. The first case corresponds to the maximal mixing between the left and right squark eigenstates, cos(theta) = 1; the second case is defined by the cos(theta) value, where squarks decouple from the Z boson. Depending on the mass difference between squark and the LSP, the squark masses have been excluded at 95 % C.L. up to the following values: - for stop -> c neutralino_1: M_stop < 90-93 GeV for minimal cross section, M_stop < 95-96 GeV for maximal cross section; - for stop -> b l sneutrino: M_stop < 87-89 GeV for minimal cross section, M_stop < 90-91 GeV for maximal cross section; - for stop -> b tau sneutrino: M_stop < 83-88 GeV for minimal cross section, M_stop < 88-91 GeV for maximal cross section; - for sbottom -> b neutralino_1: M_stop < 76-83 GeV for minimal cross section, M_stop < 94-97 GeV for maximal cross section. For both cases, the experimentally observed 95 \% C.L. mass exclusions are compared to the expected ones, which have been obtained from the Monte-Carlo assuming no SUSY particles. The observed exclusions of the squark masses are at the same level as the expected ones. The obtained 95 % C.L. upper limits on the stop production cross section in the decay stop -> b W neutralino_1 are bigger than the corresponding theoretical predictions, so, the exclusion of masses at 95 % C.L. was not possible with the available data sample. Assuming the topology of decays of the scalar quarks of the first two generations to be similar to the two body decay of the stop, the results of the searches for the decay stop -> c neutralino_1 have been also used for calculation of the mass exclusion limits for the squarks of the first two families. Two possibilities were considered here: the mass degeneracy between four (scalar u, d, c, s) and five (scalar b in addition) squarks. The 95 % C.L. exclusion limits on the mass degenerate scalar quarks for the cases of the "right-only" or "left-and-right" eigenstates are the following: - for the mass degeneration between 4 squarks: M_squark < 95-96 GeV ("right-only"), M_squark < 99-100 GeV ("left-and-right"); - for the mass degeneration between 5 squarks: M_squark < 96-97 GeV ("right-only"), M_squark < 99-101 GeV ("left-and-right"). Using the MSSM assumption about gaugino unification at the GUT scale, the limits on the four mass degenerate squarks have been reinterpreted on the squark-gluino mass plane. Moreover, the absolute limit on the MSSM parameter M_2, obtained for tan(beta) = 4 from other L3 SUSY searches (for chargino, neutralino and scalar leptons), has been translated into a gluino mass limit. The obtained 95 % C.L. exclusions in the squark-gluino mass plane are - M_gluino > 267-314 GeV, - M_squark > 99-100 GeV.
2

Supersimetria e o modelo mínimo supersimétrico /

Holguín Cardona, Sergio Andrés. January 2005 (has links)
Resumo: A supersimetria é um tópico importante na física teórica atual. Em particular, tem-se dedicado grande esforço no estudo das extensões supersimétricas do Modelo Padrão (SM) desde a década de 80. A incorporação da supersimetria no SM resulta em uma grande quantidade de modelos. O modelo com o conteúdo mínimo de partículas assim como de interações é chamado o Modelo Mínimo Supersimétrico (MSSM). DEvido à supersimetria, todos os modelos supersimétricos apresentam diferenças com relação ao SM. A principal delas, além do conteúdo de partículas, está no setor de Higgs. Em particular, o setor de Higgs do modelo MSSM contem cinco graus de liberdade (cinco bósons de Higgs), diferentemente do SM, que contem apenas um bóson de Higgs. Outra diferença importante no caso do MSSM deve-se à mistura dos estados associados pela supersimetria aos bósons de Gauge e aos bósons de Higgs, chamados gauginos e higgsinos respectivamente, cujos autoestados de massa são conhecidos como charginos e neutralinos. Estas partículas desempenham um papel fundamental na possível descoberta da supersimetria na escala de energia de TeV's. / Abstract: Supersymmetry is a fundamental topic in the actual theoretical physics. In particular, since the 80's, huge efforts have been done studying the supersymmetric extensions of the Standard Model (SM). Including supersymmetry in the SM generates a great amount of models. Among all of these, there is one that involves the minimum number of particles and interactions. This model is known as the Minimal Supersymmetric Standard Model (MSSM). Due to the incorporation of supersymmetry, all the extensions have differences in relation with the SM. The most remarkable one, beyond the particles content, lies in the Higgs sector. Particularly, in the MSSM Higg's sector there are five degrees of freedom (five Higgs bosons), in contrast with the SM (just one). Another difference is related wit the higgsino and gaugino mixture. This result in the presence of mass eigenstates known as charginos and neutralinos. The later particles play a fundamental role in the possible test of supersymmetry at the TeV's scales. / Orientador: Fernando Luiz de Campos Carvalho / Coorientador: Rogério Rosenfeld / Mestre
3

Supersimetria e o modelo mínimo supersimétrico

Holguín Cardona, Sergio Andrés [UNESP] 03 1900 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:30Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-03Bitstream added on 2014-06-13T18:53:34Z : No. of bitstreams: 1 cardona_sah_me_ift.pdf: 677122 bytes, checksum: ef4eda2c094c5339bde81ff781b3d4cd (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A supersimetria é um tópico importante na física teórica atual. Em particular, tem-se dedicado grande esforço no estudo das extensões supersimétricas do Modelo Padrão (SM) desde a década de 80. A incorporação da supersimetria no SM resulta em uma grande quantidade de modelos. O modelo com o conteúdo mínimo de partículas assim como de interações é chamado o Modelo Mínimo Supersimétrico (MSSM). DEvido à supersimetria, todos os modelos supersimétricos apresentam diferenças com relação ao SM. A principal delas, além do conteúdo de partículas, está no setor de Higgs. Em particular, o setor de Higgs do modelo MSSM contem cinco graus de liberdade (cinco bósons de Higgs), diferentemente do SM, que contem apenas um bóson de Higgs. Outra diferença importante no caso do MSSM deve-se à mistura dos estados associados pela supersimetria aos bósons de Gauge e aos bósons de Higgs, chamados gauginos e higgsinos respectivamente, cujos autoestados de massa são conhecidos como charginos e neutralinos. Estas partículas desempenham um papel fundamental na possível descoberta da supersimetria na escala de energia de TeV's. / Supersymmetry is a fundamental topic in the actual theoretical physics. In particular, since the 80's, huge efforts have been done studying the supersymmetric extensions of the Standard Model (SM). Including supersymmetry in the SM generates a great amount of models. Among all of these, there is one that involves the minimum number of particles and interactions. This model is known as the Minimal Supersymmetric Standard Model (MSSM). Due to the incorporation of supersymmetry, all the extensions have differences in relation with the SM. The most remarkable one, beyond the particles content, lies in the Higgs sector. Particularly, in the MSSM Higg's sector there are five degrees of freedom (five Higgs bosons), in contrast with the SM (just one). Another difference is related wit the higgsino and gaugino mixture. This result in the presence of mass eigenstates known as charginos and neutralinos. The later particles play a fundamental role in the possible test of supersymmetry at the TeV's scales.
4

Search for neutral higgs bosons in e+e- collisions

Raspereza, Alexei 28 May 2004 (has links)
Diese Arbeit beschreibt die Suche nach dem Higgs Boson, welches in vielen theoretischen Modellen der Teilchenphysik vorhergesagt wird. Das Higgs Boson ist die Konsequenz der spontanen Symmetriebrechung, welche den Teilchen Masse verleiht. Zur Suche werden e+e- Annihilationen bei Schwerpunktenergien bis 209 GeV analysiert, welche vom Experiment L3 am Speicherring LEP in den Jahren 1998 bis 2000 registriert wurden. Die Suche erfolgte in allen relevanten Endzustaenden, wobei der Endzustand mit vier hadronischen Jets im Detail behandelt wird. Die Daten werden mit den Erwartungen eines Signals in verschiedenen Modellen bei Beruecksichtigung der bekannten Untergrundprozesse verglichen oder es wird modellunabhaengig nach der Erzeugung skalarer Teilchen gesucht. Die Produktion von Higgs Bosonen konnte nicht nachgewiesen werde. Die Daten wurden daher benutzt, um neue Grenzen fuer Parameter der Modelle oder der Kopplungen zu setzen. Als erstes wird die Suche nach dem Higgs Boson im Standard Modell der elektroschwachen Wechselwirkung beschrieben. Die Produktion des Higgs Bosons wird bei LEP Energien ueber die Higgs-Strahlung und der Zerfall des Higgs Bosons in ein Paar von b-Quarks vorhergesagt. Die Analysen beruhen daher wesentlich auf der Erkennung von B-Hadronen. Der HZ->qqqq Endzustand wird im Detail untersucht, und die Ergebnisse werden mit den anderen Kanaelen : HZ->qqvv, HZ->qql+l- und HZ->tau+tau- qq kombiniert. Die untere Massengrenze fuer das Higgs Boson wird zu mH > 112.0 GeV auf 95% Vertrauensniveau, bestimmt. Ausserdem werden Grenzen auf die HZZ Kopplung abgeleitet. Im minimalen supersymmetrischen Modell (MSSM) werden fuenf Higgs Bosonen vorhergesagt. Zur Higgs-Strahlung kommt die Paarproduktion von Higgs Bosonen, e+e- -> hA , hinzu. Die Ergebnisse der Suche im Standard Modell werden durch die Suche in den Endzustaenden bb tau+tau- (tau+tau- bb), bbbb und hZ->AAqq ergaenzt. Im Rahmen von drei Standard-Szenarien, benannt als "mh-max", "no mixing" und "large-mu" werden untere Grenzen auf die Higgs Boson Massen von mh > 84.5 GeV und mA > 86.3 GeV fuer tan(beta) > 0.7 abgeleitet. Weiterhin werden im "mh-max" Szenario 0.55 < tan(beta) < 2.2, im "no mixing" Szenario 0.4 < tan(beta) < 4.9, und im "large-mu" Szenario 0.7 < tan(beta) < 6.2 ausgeschlossen. Eine modellunabhaengige Suche nach dem Prozess e+e- -> hZ wird fuer den vier-Jet Endzustand durchgefuehrt. In Kombination mit den Ergebnissen von den anderen Kanaelen werden Grenzen fuer die hZZ Kopplung bestimmt. Wird die hZZ Kopplung auf den Wert im Standard Modell gesetzt und der Zerfall des Higgs Bosons zu 100% in Hadronen angenommen, ergibt sich als Grenze der Higgs Boson Masse, mh > 97 GeV. Modellunabhaengige obere Grenzen fuer die hAZ Kopplung werden aus der Suche nach der Paarerzeugung von Higgs Bosonen in den Kanaelen hA->qqqq und hA->qq tau+tau- in Abhaengigkeit von den Higgs Boson Massen abgeleitet. Die Resultate aus der Kombination aller LEP Experimente werden fuer die oben genannten Analysen vorgestellt. Die Perspektiven der Higgs Boson Suche an den TEVATRON und LHC Speicherringen werden diskutiert und die Higgs Boson Physik an kuenftigen e+e- Linearbeschleunigern behandelt. Ein Linearbeschleuniger wie TESLA waere ideal fuer Untersuchungen eines leichten Higgs Bosons. Fuer ein Higgs Boson mit einer Masse zwischen 120 und 180 GeV kann mH mit einer Praezision von 40 bis 70 MeV bestimmt werden. Im gleichen Massenbereich ist die Messung des Wirkungsquerschnitts, weitgehend modellunabhaengig, mit einem relativen Fehler von 2.6 bis 3.8% moeglich. In vier-Fermion und sechs-Fermion Endzustaenden werden topologische Wirkungsquerschnitte, definiert als Produkt des totalen Wirkungsquerschnitts fuer e+e- -> HZ mit dem Verzweigungsverhaeltnis eines Zerfallskanals, untersucht. Fuer den Messfehler werden 1.1% fuer HZ->bbqq und 13% fuer HZ->W+W-l+l- bei mH = 120 GeV abgeschaetzt. Die Gesamtheit dieser und weiterer Messungen erlaubt eine genaue Bestimmung des Higgs Boson Profils und gibt Aufschluss ueber die Struktur des Higgs Sektors in der Natur. / This thesis is devoted to the search for neutral Higgs bosons predicted by various theoretical models. The Higgs boson arises as a result of spontaneous breaking of SU(2) symmetry leading to the generation of masses of fermions and weak bosons. The search is done in all experimentally related channels using the data collected at center-of-mass energies up to 209 GeV in the years 1998-2000 with the L3 detector at the Large Electron Positron collider, LEP. Here the study of the final states characterised by four jets is described in detail. For other final states the analyses are briefly reviewed and the results are reported. The data are compared with the expectation from the Standard Model background processes and with various signal hypotheses. A model independent search for neutral Higgs bosons is also performed. No evidence for the production of Higgs bosons is found. New mass limits are determined superseding previous mass limits established by L3 and other experiments. First I describe the analysis searching for the Standard Model Higgs Boson. Its production at LEP is expected mainly via the Higgs-strahlung process. In the mass range accessible at LEP the Standard Model Higgs Boson is predicted to decay dominantly into a pair of b and anti-b quarks, hence the dedicated analyses are optimised for the H->bb decay mode. The four-jet signal topology is investigated and then combined with the other search channels leading to a lower mass limit of mH > 112.0 GeV at 95% C.L.. The results of the search are also interpreted in terms of limits on the HZZ coupling. In the Minimal Supersymmetric Standard Model (MSSM) the Higgs sector is extended to five physical states. The Higgs-strahlung process is complemented by the mechanism of the Higgs boson pair production e+e- -> hA. Therefore, for the interpretation of the results in the framework of the MSSM the Standard Model analyses are combined with the hA -> bb tau+tau-, hA -> bbbb and hZ->AAqq channels. Three benchmark MSSM scenarios denoted "mh-max", "no mixing" and "large-mu" are considered. Using L3 data the lower bounds on the Higgs boson masses mh > 84.5 GeV mA > 86.3 GeV are derived at 95% C.L. for tan(beta) > 0.7. For the "mh-max", "no mixing" and "large-mu" scenarios, ranges 0.55 < tan(beta) < 2.2, 0.4 < tan(beta) < 4.9 and 0.7 < tan(beta) < 6.2, respectively, are ruled out. A model independent search for the Higgs-strahlung process with subsequent decay of h into hadrons is carried out in the four-jet channel. The results of the analysis are then combined with the other channels. A limit on the hZZ coupling as a function of the Higgs boson mass is derived. The results of L3 combined search establish a 95% C.L. lower mass limit, mh > 97 GeV, for a hadronically decaying Higgs boson assuming the cross section of the Higgs-strahlung process to be equal to the value predicted by the Standard Model and the branching fraction of the Higgs boson into hadrons equal to 100%. Analyses are developed to search exclusively for the hA -> bbbb, hA -> qqqq, hA -> bb tau+tau- and hA -> qq tau+tau- final states. Results of these analyses are translated into a 95% C.L. upper limit on the hAZ coupling as a function of Higgs boson masses. Searches for neutral Higgs bosons carried out by the L3 collaboration are combined with searches performed in other LEP experiments. The results of this combination are reported. The perspectives of Higgs boson searches at TEVATRON and LHC are briefly reviewed. The prospects of Higgs physics at a future linear e+e- collider are discussed. The potential of the TESLA detector foreseen at the TESLA linear collider for the determination of Higgs boson properties is studied. The Higgs boson masses 120, 150 and 180 GeV are considered. It is shown that a precision of 40 - 70 MeV in the measurement of the Higgs boson mass can be achieved. A model independent method to measure the e+e- -> HZ cross section is proposed. The method is based on the study of the inclusive HZ -> X e+e- and X mu+mu- channels. The relative error in the determination of the cross section varies between 2.6% and 3.8% for Higgs boson mass ranging from 120 GeV to 180 GeV. For the four-fermion and six-fermion final states arising from the Higgs-strahlung process the accuracy of the measurement of a topological cross section, defined as the product of the Higgs-strahlung cross section and the branching fraction of the specific final state, is investigated. The relative uncertainty of this measurement varies from 1.1% and 13%, depending on final state and Higgs boson mass. These and other measurements will allow to determine the profile of the Higgs boson and give insight into the structure of the Higgs sector in nature.
5

Récentes implications au-delà du modèle standard des désintégrations de mésons beaux / Recent B-decay implications beyond the standard model

Neshatpour, Siavash 23 May 2013 (has links)
Des progrès expérimentaux importants sont en cours dans l’étude des désintégrations rares de mésons contenant un quark beau et impliquant un quark étrange et une paire de leptons. Le travail présent mesure la portée indirecte de ces progrés sur des extensions supersymétriques du modèle standard. Même dans des modèles contraints, les limites indirectes ainsi obtenues peuvent dans certains cas être plus fortes que celles provenant de la recherche directe de particules supersymétriques. La précision gagnée par les facteurs de forme et les corrections d’ordre supérieur nouvellement implémentés dans le programme public ”SuperIso” montrent alors leur importance. / There are fast progresses in the experimental study of rare decay sof mesons containing a b-quark, and involving a pair of leptons and an s-quark. The present work measures the indirect implications of these progresses on the supersymmetric extensions of the Standard Model. Even within constrained models, the indirect limits obtained in this way can in some cases be stronger than those coming from direct searches of supersymmetric particles. The accuracy gained by the form factors and higher order corrections newly implemented in the public code ”SuperIso” are then fully relevant.
6

The Higgs Boson as a Probe of Physics Beyond the Standard Model at the Large Hadron Collider

Mohan, Kirtimaan A January 2014 (has links) (PDF)
The nature of interactions of fundamental particles is governed by symmetries. These interactions are well described by an elegant and simple SU(3)c x SU(2)L x U(1)Y symmetric gauge theory that we call the Standard Model (SM) of particle physics. Very recently the CMS and ATLAS experiments at the Large Hadron Collider (LHC) confirmed the discovery of a boson of mass of about 125 GeV. Already, the data collected from these experiments seem to indicate that this particle is in fact the last missing piece and essential ingredient of the Standard Model : the Higgs boson. The Higgs has the very distinct role of providing a mechanism through which masses for other particles can be generated without destroying gauge invariance and hence the renormalizability of the theory. While this discovery completes the picture we have of the SM, the SM itself does not account for several experimentally observed phenomena , notably, dark matter (DM) and the baryon asymmetry in the universe (BAU). From a theoretical perspective a possibility for gauge coupling unification, an explanation for the quark flavour structure and the stability of the Higgs mass to radiative corrections are features that are absent in the framework of SM. This provides a strong basis to the hypothesis that there must be some intermediate scale (between the Planck scale and electroweak scale) of new physics, i.e. physics beyond the SM (BSM). The renormalizability of SM guarantees that various parameters of SM can be determined from the electroweak scale all the way up to the Planck scale. It is interesting to note that the RG evolution of the Higgs quartic coupling is driven to smaller values and can also become negative as the energy scale increases. Naively, a negative quartic coupling indicates destabilization of the EWSB vacuum. The energy scale at which the quartic coupling becomes negative would signify a break down of the theory and would set a scale for new physics. In principle the potential can be made stable through Planck scale dynamics and other vacua (other than the EWSB vacuum) may crop up. In this scenario the EWSB vacuum may decay to the deeper vacua. It is safe to say that, within experimental uncertainties of the Higgs and top quark masses the EWSB vacuum appears to be metastable. We are now left clueless: neither do we have any hints as to the nature of BSM physics nor the scale at which SM breaks down and new physics is assured. One should also note that although the evidence for BSM is compelling, data analysed from 7 and 8 TeV runs of the LHC have not produced any signals of BSM physics so far. Thus any indications of TeV scale BSM physics have been eluding us. In such a scenario the Higgs boson has assumed the role of a portal to study the possibilities of new physics. This is also motivated by the key role that the Higgs plays in generation of mass in a gauge symmetric theory. It is therefore reasonable to assume that the Higgs boson does in fact couple to particles predicted in BSM physics. Such couplings would play a role in modifying the properties of this boson. It is now essential to determine the properties of the Higgs as precisely as possible to search for signs of BSM. This thesis explores the idea of using the Higgs as a portal to study BSM physics. The properties of the Higgs that have already been measured with data from the first two runs of the LHC are its mass, branching ratios, spin and CP. When placed in the framework of a particular new physics model, these properties impose restrictions on the couplings and masses of BSM particles. A strong candidate for a BSM scenario is a Supersymmetric extension of the SM. Supersymmetry is an extension of the Poincar´e group that describes space time symmetries. Fermionic and bosonic degrees of freedom are mixed through the generators of this extended symmetry. In the minimal supersymmetric extension of the SM (MSSM), each particle of SM has a corresponding superpartner with identical quantum numbers modulo its spin. Since we do not see, for example, a bosonic superpartner of the fermionic top quark of the same mass as that of the top quark, this must mean that the supersymmetry, even if it is realized in nature, is not exact and must be broken. Although the symmetry may be broken the MSSM has some very appealing features: stabilization of the Higgs mass to quantum corrections, gauge coupling unification and possible dark matter candidate if the lightest Supersymmetric particle happens to be both stable and neutral. It is interesting to note that in MSSM, the tree level Higgs mass is bounded from above by the Z boson mass ( ~90 GeV ). The measured value of the Higgs mass (~126 GeV ) is still achievable in the MSSM through quantum corrections, the largest contribution coming from the top quarks and stop squarks. One therefore sees that the mass of the Higgs can already provide information about top superpartners. The presence of additional charged and coloured scalars implies the possibility of existence of charge and colour breaking (CCB) minima which would affect the stability of the Electroweak Symmetry breaking (EWSB) minima generated by the Higgs potential. Stability of EWSB is then dependent on parameters in the scalar sector of MSSM. We explore the nexus between the Higgs mass and vacuum stability in this model and find restrictions on the MSSM parameter space. The lighter Higgs of the MSSM couples differently to SM particles than the SM Higgs boson. More specifically one expects the couplings of the MSSM Higgs to gauge bosons to be smaller than in SM and unlike the SM Higgs, up type quarks have couplings strengths that are different from that of down type quarks. In the decoupling regime these differences become negligible and the lighter MSSM Higgs behaves identically to the SM Higgs. The measured Higgs rates do not show any large deviations from the expectations of a SM Higgs. It is therefore reasonable to assume that MSSM, if realized, resides in the decoupling regime. While tree level processes are not altered significantly in this regime, the same cannot be said about loop induced processes such as (h→ γγ) or (gg → h). Such processes may be affected significantly by sparticles running in the loops. Higgs decays to two photons can be strongly affected by the stau sector of MSSM and we study this in connection with EWSB vacuum stability. In several models of dark matter, the dark matter candidate particle couples to the Higgs boson. It may well be that this candidate particle may be light enough so that the decay of the Higgs boson to these particles may be possible. For example, in the framework of the MSSM, the LSP (˜χ01) is the dark matter candidate and a decay of the form hχ˜→01χ˜01is possible depending on the mass and strength of coupling of such a particle. At the LHC this would show up as an branching ratio to particles that are invisible to the detectors. The dominant production mode of the Higgs at LHC proceeds through gluon fusion. In this channel a signal for an “invisibly” decaying Higgs would show up as missing energy plus jets at LHC. This has already been studied in quite some detail. We focus on other production modes, namely Vector Boson Fusion (VBF) and associated production (VH), in determining an invisible branching fraction at LHC. These two production channels are much less sensitive to any other BSM signals that may mimic an invisibly decaying Higgs and thus provide clean signals for the latter. A determination of the nature of interactions between the Higgs and gauge bosons is of paramount importance. An understanding of these interactions is closely tied to an understanding of the nature of EWSB. There are two aspects to probing these interactions. One is a determination of the Lorentz structure of the Higgs and gauge boson vertices and the second is to determine the strength of its couplings. The Higgs coupling to two gauge bosons (the hVV vertex) in SM is of the form ~ agµν . Under the assumption that BSM physics does not alter this Lorentz structure, information about possible new physics can be simply extracted through a determination of the strength of the coupling aV . However, the most general structure of this vertex is of the form (aV gµν + bV pµq ν + cV ɛ µνρσpρqσ) . Here p and q are the sum and difference of the two gauge boson momenta respectively and ɛµνρσ the completely antisymmetric Levi-Civita tensor. The term cV parametrizes CP-odd couplings while the rest are CP-even. The terms proportional to b V and cV may be generated by new physics. But which new physics model do we look at? There are a plethora of such models. Rather than shooting in the dark at random BSM directions one could adopt the following approach. In the absence of BSM signals at the LHC so far, one could assume that the scale of physics is relatively high and BSM particles are more massive than SM particles and can therefore be integrated out of the Lagrangian. It is also prudent to assume that new physics respects the SU(3)c x SU(2)L x U(1)Y gauge symmetry of SM. With these two assumptions in hand, one could supplement the SM Lagrangian with additional operators. These operators which generally have mass dimensions greater than four would destroy the renormalizability of the theory, though an interpretation as an effective theory up to a scale Λ is still valid. The idea is to now study the consequences that this effective theory would have on measurable properties of the Higgs. The effective theory could affect both the Lorentz structure as well as the strength of the couplings of the Higgs to the gauge bosons. This thesis deals with the determination of the Lorentz structure of the Higgs coupling to two gauge bosons , i.e the trilinear vertex. An analysis of this for the hZZ vertex has already been performed by ATLAS and CMS using h → ZZ *decays. A pure pseudoscalar Higgs (cZ ≠0, aZ = bZ = 0) coupling has been ruled out at about 2 ~ 3 σ level. Bounds have also been placed on a mixed scalar-pseudoscalar coupling (a Z =0,cZ =0,bZ = 0). This however, is not the end of the story. There are two important points to note here. Firstly it is important to be able to verify these findings in other production modes. To this end, we investigate the ability of VBF production to probe such anomalous couplings and find strong effects on the pseudo-rapidity distributions of the tagging jets in VBF. Secondly it is important to also look for such anomalous couplings in the hWW vertex. At this point, one might argue that the hZZ vertex and hWW vertex are connected by Custodial symmetry. However this symmetry is violated in SM by gauging of the hypercharge. It follows that violations of this symmetry should arise naturally in BSM physics. A study of the anomalous vertex is not easily achieved in h→ WW ∗ decays due to backgrounds and difficulties in reconstructing momenta. The VBF channel can be quite effective here although there is significant contamination from VBF production through the Z boson. We find that a cleaner production mode to use would be associated production. Until recently the low cross-section of Vh made it difficult to analyse this channel at LHC. An analysis of Vh has been made possible by the use of modern jet substructure techniques using (h→ bb) decays. We use these techniques and study how one can probe anomalous couplings in the Vh production mode at LHC. One of the most important couplings of the Higgs is that to the top, the heaviest SM particle. Not only is this coupling responsible for the main production channel of the SM Higgs at the LHC but the interaction with the top also has important consequences on spontaneous symmetry breaking within the SM – notably, vacuum stability arguments – as well as beyond the SM – supersymmetry, for instance, where the top drives electroweak symmetry breaking in some scenarios. The strength as well as the CP property of the Higgs top coupling is therefore an important aspect of to study. more specifically we investigate terms of the form ψ¯t(at + ibtγ5)ψth. here ψt and h corresponds to the top quark and Higgs fields respectively. at and bt parametrize scalar and pseudoscalar couplings respectively. Since the dominant production mode of the Higgs at the LHC (gluon fusion) proceeds through a top quark loop as do decays of the Higgs to two photons, some information about these couplings may be extracted just by looking at Higgs production and decay rates. However, an unambiguous determination of these couplings is possible only through Higgs production with a top and anti-top pair. Although the production rates are very small at the LHC, such a study is of prime importance. We investigate t¯th production at the LHC and list some useful observable that can probe the couplings described above. The outline of the thesis is as follows. We start with brief introduction to SM and Electroweak Symmetry breaking (EWSB) also briefly reviewing SM Higgs production and decay at the LHC. We then investigate the information that the Higgs mass in conjunction with stability of the EWSB vacuum provides about the stop sector of the MSSM. We further investigate the information that Higgs decay rates in conjunction with the stability of the EWSB vacuum could provide about the stau sector in the MSSM. We move on to examining the extent to which an invisible branching ratio of the Higgs could be measured or excluded directly at the LHC. Coming to the second part of the thesis we examine in a model independent way the nature of the Higgs-gauge boson couplings. We first give a brief description of the Higgs gauge boson vertex and the effective theory approach following it up with a description of how this could be probed using Higgs decays. We then follow it up with a study on how the Lorentz structure could affect Higgs production in Vector Boson fusion and Higgs production in association with W or Z boson. Finally, we show how the CP properties of the Higgs coupling to the top quark can be investigated using tth production along with Higgs rates.
7

Flavor and Dark Matter Issues in Supersymmetric Models

Chowdhury, Debtosh January 2013 (has links) (PDF)
The Standard Model of particle physics attempts to unify the fundamental forces in the Universe (except gravity). Over the years it has been tested in numerous experiments. While these experimental results strengthen our understanding of the SM, they also point out directions for physics beyond the SM. In this thesis we assume supersymmetry (SUSY) to be the new physics beyond the SM. We have tried to analyze the present status of low energy SUSY after the recent results from direct (collider) and indirect (flavor, dark matter) searches .We have tried to see the complementarity between these apparently different experimental results and search strategies from the context of low energy SUSY. We show that such complementarity does exist in well-defined models of SUSY breaking like mSUGRA, NUHM etc. The first chapter outlines the present status of the SM and discusses about the unanswered questions in SM. Keeping SUSY as the new physics beyond the SM, we also detail about its present experimental status. Chapter1 ends with the motivation and comprehensive description about each chapter of the thesis. In chapter2, we present an introduction to formal structure of SUSY algebra and the structure of MSSM. One of the such complementarities we have studied is between flavor and dark matter. In general flavor violation effects are not considered when studying DM regions in minimal SUSY models like mSUGRA. If however flavor violation does get generated through non-minimal SUSY breaking sector, one of the most susceptible regions would be the co-annihilation region for neutralino DM. In chapter 3 we consider flavor violation in the sleptonic sector and study its implications on the stau co-annihilation region. In this work we have taken flavor violation between the right-handed smuon (˜µR) and stau (˜τR). Due to this flavor mixing the lightest slepton (ĺ1) is a flavor mixed state. We have studied the effect of such ĺ11’s in the ‘stau co-annihilation’ region of the parameter space, where the relic density of the neutralinos gets depleted due to efficient co-annihilation with the staus. Limits on the flavor violating insertion in the right-handed sleptonic sector mainly comes from BR(τ → µγ). These limits are weak in some regions of the Parameter space where cancellations happen with in the amplitudes. We look for overlaps in parameter space where both the co-annihilation condition as well as the cancellations with in the amplitudes occur. We have shown that in models with non-universal Higgs boundary conditions (NUHM) overlap between these two regions is possible. The effect of flavor violation is two fold: (a) It shifts the co-annihilation regions towards lighter neutralino masses and (b) the co-annihilation cross sections would be modified with the inclusion of flavor violating diagrams which can contribute significantly. In the overlap regions, the flavor violating cross sections become comparable and in some cases even dominant to the flavor conserving ones. A comparison among the different flavor conserving and flavor violating channels, which contribute to the neutralino annihilation cross-section, is presented. One of the challenges of addressing quantitatively the complementarity problems is the lack of proper spectrum generator (numerical tools which computes SUSY sparticle spectrum in the presence of flavor violation in the sfermionic sector). For the lack of a publicly available code which considers general flavor violating terms in the renormalization group equations (RGE) we have developed a SUSY spectrum calculator, named as SuSeFLAV .It is a code written in FORTRAN language and calculates SUSY particle spectrum (with in the context of gravity mediation) in type I seesaw, in the presence of heavy right handed neutrinos (RHN). SuSeFLAV also calculates the SUSY spectrum in other type of SUSY breaking mechanisms (e.g. gauge mediation). The renormalization group (RG) flow of soft-SUSY breaking terms will generate large off-diagonal terms in the slepton sector in the presence of this RHNs, which will give rise to sizable amount of flavor violating (LFV) decays at the weak scale. Hence, in this code we also calculate the different rare LFV decays like, µ → eγ, τ → µγ etc. In SuSeFLAV the user has the freedom to choose the scale of the RHNs as well as the mixing matrix in neutrino sector. It is also possible to choose the values of the SUSY breaking input parameters at the user defined scale. The details of this package is discussed in chapter 4. Many of the present studies of complementarity between the direct and indirect searches are inadequate to address realistic scenarios, where SUSY breaking could be much more general compared to the minimal models. The work in this thesis is a step to wards this direction. Having said that, in the present thesis we have considered modifications of popular models with either explicit flavor violating terms (in some sectors) or sources of flavor violation through new particles and new couplings motivated by strong phenomenological reasons like neutrino masses. It should be noted however, the numerical tool which has been developed during the thesis can be used to address more complicated problems like with complete flavor violation in models of SUSY breaking. One of the popular mechanisms of neutrino mass generation is the so called Seesaw Mechanism. Depending on the extra matter sector present in the theory there are three basic types of them. The type I seesaw, which has singlet bright-handed neutrinos, the type II seesaw contains scalar triplets and type III seesaw has additional fermionic triplets. One of the implications of the seesaw mechanism is flavor violation in the sfermionic sector even in the presence of flavor universal SUSY breaking. This leads to a complementarity between flavor experiments and direct SUSY searches at LHC. With the announcement of the results from the reactor neutrino oscillation experiments, the reactor mixing angle (θ13) in the neutrino mixing matrix (PMNS matrix) gets fixed to a rather large non-zero value. In SO (10) GUT theories neutrino Yukawa couplings of type I seesaw gets related to the up-type fermion sector of the SM. In chapter 5 we update the status of SUSY type I seesaw assuming SO (10)- like relations for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan β is still allowed. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations with in the flavor violating terms. We have shown that in NUHM scenario there could be possible cancellations which relaxes the severe constraints imposed by lepton flavor violation compared to mSUGRA. We further updated the flavor consequences for the type II seesaw in SUSY theories. As mentioned previously in type II seesaw neutrino mass gets generated due to exchange of heavy SU (2) L triplet Higgs field. The ratio of lepton flavor violating branching ratios (e.g. BR(τ → µγ) /BR (µ → eγ) etc.) are functions of low energy neutrino masses ans mixing angles. In chapter 6 we have analyzed how much these ratios become, after the experimental measurement of θ13, in the whole SUSY parameter space or in other words how much these ratios help to constrain the SUSY parameter space. We compute different factors which can affect this ratios. We have shown that the cMSSM-like scenarios, in which slepton masses are taken to be universal at the high scale, predict 3.5 BR(τ → µγ) / BR(µ → eγ) 30 for normal hierarchical neutrino masses. We Show that the current MEG limit puts severe constraints on the light sparticle spectrum in cMSSM-like model for seesaw scale with in1013 - 1015 GeV. These constraints can be relaxed and relatively light sparticle spectrum can be still allowed by MEG result in a class of models in which the soft mass of triplet scalar is taken to be non-universal at the GUT scale. In chapter 7 we have analyzed the effect of largen eutrino Yukawa couplings on the supersymmetric lightest Higgs mass. In July 2012, ATLAS and CMS collaboration have updated the Higgs search in LHC and found an evidence of a scalar particle having mass around 125 GeV. The one-loop contribution to Higgs mass mainly depends on the top trilinear couplings (At), the SUSY scale and the top Yukawa (Yt). Thus in models with extra large Yukawa couplings at the high scale like the seesaw mechanism ,the renormalization scaling of the At parameter can get significantly affected. This in turn can modify the light Higgs mass at the weak scale for the same set of SUSY parameters. We have shown in type I seesaw with (Yν ~ 3Yu) the light Higgs mass gets reduced by 2 - 3 GeV in most of the parameter rspace. In other words the SUSY scale must be pushed high enough to achieve similar Higgs mass compared to the cMSSM scenario. We have got similar effect in SUSY type III seesaw scenario with (Yν ~Yu) at the GUT scale. In chapter 8 we summarize the results of the thesis and discuss the possible future directions.

Page generated in 0.1514 seconds