Spelling suggestions: "subject:"minining engineering."" "subject:"minining ingineering.""
651 |
ANALYSIS OF UNDERGROUND COAL MINE STRUCTURES SUBJECTED TO DYNAMIC EVENTSYonts, Brooklynn 01 January 2018 (has links)
Underground coal mine explosions pose a significant threat to infrastructure such as mine seals and refuge alternative chambers. After a mine seal failed in the Sago mine disaster, which took the life of 12 miners, design requirements were reexamined and improved. However, most research being completed on the analysis of mine structures during an explosive event focuses solely on peak pressure values, while ignoring the impact of pressure duration. This study investigates the impact pressure duration, waveform shape, and impulse have on structural displacement, while also exploring what pressures and duration can be expected during a mine explosion. Additionally, the use of high explosives to simulation conditions experienced during a mine explosion is examined. Results from this study are produced through experimental testing using a scaled shock tube and theoretical studies using finite element analysis.
|
652 |
PREDICTIVE MODELING OF DC ARC FLASH IN 125 VOLT SYSTEMGaunce, Austin Cody 01 January 2019 (has links)
Arc flash is one of the two primary hazards encountered by workers near electrical equipment. Most applications where arc flash may be encountered are alternating current (AC) electrical systems. However, direct current (DC) electrical systems are becoming increasingly prevalent with industries implementing more renewable energy sources and energy storage devices. Little research has been performed with respect to arc flash hazards posed by DC electrical systems, particularly energy storage devices. Furthermore, current standards for performing arc flash calculations do not provide sufficient guidance when working in DC applications. IEEE 1584-2002 does not provide recommendations for DC electrical systems. NFPA 70E provides recommendations based on conservative theoretical models, which may result in excessive personal protective equipment (PPE). Arc flash calculations seek to quantify incident energy, which quantifies the amount of thermal energy that a worker may be exposed to at some working distance. This thesis assesses arc flash hazards within a substation backup battery system. In addition, empirical data collected via a series of tests utilizing retired station batteries is presented. Lastly, a predictive model for determining incident energy is proposed, based on collected data.
|
653 |
THE REDESIGNED VORTECONE: A MAINTENANCE-FREE WET SCRUBBER DEVICETaylor, Allison 01 January 2019 (has links)
Dust creates health and safety issues in mining and there are several different ways to reduce the amount of respirable dust created. Dust particles also affect the operation and efficiency of mining equipment. One device currently used to reduce dust in a coal mine is a flooded-bed dust scrubber. These type of scrubbers are found on continuous miners and are designed to capture dust particles close to the cutting head. However, the fibrous screens on the flooded-bed dust scrubber clog easily reducing both production and the quality and quantity of air miners are exposed too. The flooded-bed dust scrubber was designed in the 1980s and has not seen any significant changes since. A Vortecone is a wet scrubber system designed to capture small particles in the air and can easily replace the flooded-bed dust scrubber system on a continuous miner. The Vortecone was initially developed to capture over-sprayed paint particles and due to the capture ability was converted over into the mining industry. The first design of the Vortecone had two outlets and a large pressure drop across the system. The Vortecone was redesigned to have one outlet in order to increase confinement time of particles and thus increase the capture abilities. Using CFD analysis and laboratory testing, the redesigned Vortecone has been proven to have a lower resistance than the original design as well as the currently used convention screens. The Vortecone also proved to have a high capture efficiency at high airflows. This maintenance-free wet scrubber device requires much less maintenance than a conventional screen and thus can be used continually without interrupting production. The Vortecone has been designed so it can easily be mounted onto a continuous miner in place of the currently used scrubbers.
|
654 |
Dust Transportation and Settling within the Mine Ventilation NetworkKumar, Anand 01 January 2019 (has links)
Dust is ubiquitous in underground mine activities. Continuous inhalation of dust could lead to irreversible occupational diseases. Dust particles of size lower than 75.0 µm, also known as float coal dust, can trigger a coal dust explosion following a methane ignition. Ventilation air carries the float coal dust from the point of production to some distance before it’s deposited on the surfaces of underground coal mine. Sources of dust are widely studied, but study of dust transportation has been mainly based on experimental data and simplified models. An understanding of dust transportation in the mine airways is instrumental in the implementation of local dust control strategies.
This thesis presents techniques for sampling float coal dust, computational fluid dynamics (CFD) analysis, and mathematical modeling to estimate average dust deposition in an underground coal mine. Dust samples were taken from roof, ribs, and floor at multiple areas along single air splits from longwall and room and pillar mines. Thermogravimetric analysis of these samples showed no conclusive trends in float coal dust deposition rate with location and origin of dust source within the mine network. CFD models were developed using the Lagrangian particle tracking approach to model dust transportation in reduced scale model of mine. Three dimensional CFD analysis showed random deposition pattern of particle on the mine model floor. A pseudo 2D model was generated to approximate the distance dust particles travel when released from a 7 ft. high coal seam. The models showed that lighter particles released in a high airflow field travel farthest. NIOSH developed MFIRE software was adopted to simulate dust transportation in a mine airway analogous to fume migration. The simulations from MFIRE can be calibrated using the dust sampling results to estimate dust transportation in the ventilation network.
|
655 |
Development of a laboratory facility for testing shear performance of installed rock reinforcement elementsMahony, Luke T, School of Mining, UNSW January 2006 (has links)
Rock reinforcing elements provide a significant proportion of their ground control capability through offering resistance to shear movement of adjacent rock masses or blocks. This potential shear movement may take the form of sliding on horizontal bedding planes leading to strata bending; or block displacement along other geological structures such as joints or similar discontinuities. Much has been reported about this type of behaviour of rock bolts and other tendons, in theoretical concepts. However, there is a shortage of quality data available on the exact nature of this mechanism for shear resistance, and the role played by parameters such as pre-tensioning. A clearer understanding of the nature and significance of this type of behaviour has major implications for rock reinforcing materials and installation design. This thesis, which was supported by the Australian Coal Research Program (ACARP) describes the design, construction and commissioning of a laboratory testing facility at the School of Mining Engineering, University of New South Wales (UNSW), Australia and a subsequent testing program. The single failure plane design adopted in the test rig has been successful in allowing shear loading to be directly applied to fully installed rockbolts. Rockbolts were installed into an offset concrete rockmass, which consisted of two separate concrete samples that created a smooth shear plane surface. The reinforced samples were subjected to an applied shear load and critical parameters such as load and shear displacement were recorded. Influencing parameters such as concrete strength and applied pre-tension were altered and recorded to determine their effects on the overall shear performance of the sample. The failure mode of the rockbolts was also examined. The results indicate that a relative stronger rockmass material caused the rockbolt to fail within a lower shear displacement compared to a relatively weaker material. Also, a pre-tensioned rockbolt tended to resist shear displacement at least initially, until high shear loads developed. This phenomena is beneficial to ground support as less movement would tend to maintain integral strength of the rockmass. The use of strain-gauged rockbolts indicated as would be expected that the shear loading arrangement induced a compressive axial loading that tended to dissipate with distance from the shear surface.
|
656 |
Automated Extraction and Retrieval of Metadata by Data Mining : a Case Study of Mining Engine for National Land Survey SwedenDong, Zheng January 2010 (has links)
<p>Metadata is the important information describing geographical data resources and their key elements. It is used to guarantee the availability and accessibility of the data. ISO 19115 is a metadata standard for geographical information, making the geographical metadata shareable, retrievable, and understandable at the global level. In order to cope with the massive, high-dimensional and high-diversity nature of geographical data, data mining is an applicable method to discover the metadata.</p><p>This thesis develops and evaluates an automated mining method for extracting metadata from the data environment on the Local Area Network at the National Land Survey of Sweden (NLS). These metadata are prepared and provided across Europe according to the metadata implementing rules for the Infrastructure for Spatial Information in Europe (INSPIRE). The metadata elements are defined according to the numerical formats of four different data entities: document data, time-series data, webpage data, and spatial data. For evaluating the method for further improvement, a few attributes and corresponding metadata of geographical data files are extracted automatically as metadata record in testing, and arranged in database. Based on the extracted metadata schema, a retrieving functionality is used to find the file containing the keyword of metadata user input. In general, the average success rate of metadata extraction and retrieval is 90.0%.</p><p>The mining engine is developed in C# programming language on top of the database using SQL Server 2005. Lucene.net is also integrated with Visual Studio 2005 to build an indexing framework for extracting and accessing metadata in database.</p>
|
657 |
Kemisk stabilisering av gruvavfall från Ljusnarsbergsfältet med mesakalk och avloppsslam : Chemical stabilization of mine waste with sewage sludge and calcium carbonate residuesHöckert, Linda January 2007 (has links)
<p>Chemical stabilization of mine waste from Ljusnarsbergsfältet with sewage sludge and calcium carbonate residues</p><p>Mine waste from Ljusnarsbergsfältet in Kopparberg, Sweden, is considered to constitute a great risk for human health and the surrounding environment. Some of the waste rock consists of sulphide minerals. When sulphide minerals come into contact with dissolved</p><p>oxygen and precipitation, oxidation may occur resulting in acid mine drainage (AMD) and the release of heavy metals. The purpose of this study has been to characterise the waste material and try to chemically stabilize the waste rock with a mixture of sewage sludge and calcium carbonate. The drawback of using organic matter is the risk that dissolved organic matter can act as complexing agents for heavy metals and in this way increase their mobility. An additional study to examine this risk has therefore also been performed.</p><p>The project started with a pilot study in order to identify the material fraction that was suitable for the experiment. When suitable material had been chosen, a column test was carried out for the purpose of studying the slurry’s influence on the mobility of metals along with the production of acidity. To clarify the organic material’s potential for</p><p>complexation a pH-stat batch test was used. Drainage water samples, from the columns,</p><p>were regularly taken during the experiment. These samples were analyzed for pH, electrical conductivity, alkalinity, redox potential, dissolved organic carbon (DOC), sulphate and leaching metals. The effluent from the pH-stat-test was only analyzed on a few occasions and only for metal content and change in DOC concentration.</p><p>The results from the laboratory experiments showed that the waste rock from Ljusnarsberg easily leached large amounts of metals. The stabilization of the waste rock succeeded in maintaining a near neutral pH in the rock waste leachate, compared to a pH 3 leachate from untreated rock waste The average concentration of copper and zinc in the leachate from untreated waste rock exceeded 100 and 1000 mg/l respectively, while these metals were detected at concentrations around 0.1 and 1 mg/l, respectively, in the leachate from the treated wastes. Examined metals had concentrations between 40 to 4000 times lower in the leachate from treated waste rock, which implies that the stabilization with reactive amendments succeeded. The long term effects are, however, not determined. The added sludge contributed to immobilize metals at neutral pH despite a small increase in DOC concentration. The problem with adding sludge is that if pH decreases with time there is a risk of increased metal leaching.</p>
|
658 |
Stability Analyses Of The Dump Site Culvert In Tinaz Surface MineOzcan, Omer Can 01 September 2003 (has links) (PDF)
In this thesis, studies associated with the stability analyses of the box-shaped dump-site culvert constructed in Tinaz Surface Mine of Turkish Coal Enterprises (TKi) are presented. In addition, stability conditions of other culvert alternatives are evaluated.
Existence of creeks in a surface mining area is a significant factor to be considered in selection of dump-site location. Since, the dumped overburden material on the valley acts as a barrier and behaves like a dam causing flood problem behind the dump-site. TKi engineers prevented the flood potential that might have occurred behind the dump-site by constructing a 480-meter long reinforced-concrete culvert on the downstream of Gevenez Creek Valley. However, considerable amount of deformations occurred in the first 100 meters of the culvert, as a result of overburden material being replaced on this structure.
In order to determine the failure mechanism associated with the culvert, a series of numerical modeling analyses were carried out utilizing back analysis technique. The validity of the numerical model was justified by convergence measurements and observations carried out inside the culvert as overburden material being replaced on the stable part of this structure. Finally, based on the numerical model developed, the stability of other culvert alternatives that could be used in future projects were evaluated considering different embankment conditions (positive projecting and negative projecting), bedding conditions (impermissible, ordinary, first-class and concrete cradle), culvert shapes (box and circular) and dumping conditions.
|
659 |
Breakage Characteristics Of Cement ComponentsAvsar, Casatay 01 October 2003 (has links) (PDF)
The production of multi-component cement from clinker and two additives such as trass and blast furnace slag has now spread throughout the world. These additives are generally interground with clinker to produce a composite cement of specified surface area. The grinding stage is of great importance as it accounts for a major portion of the total energy consumed in cement production and also as it affects the quality of composite cements by the particle size distribution of the individual additives produced during grinding.
This thesis study was undertaken to characterize the breakage properties of clinker and the additives trass and slag with the intention of delineating their grinding properties in separate and intergrinding modes. Single particle breakage tests were conducted by means of a drop weight tester in order to define an inherent grindability for the clinker and trass samples in terms of the median product size ( ). In addition, a back-calculation procedure was applied to obtain the breakage rate parameters ( ) of perfect mixing ball mill model using industrial data from a cement plant. Kinetic and locked-cycle grinding tests were performed in a standard Bond mill to determine breakage rates and distribution functions for clinker, trass and slag. Bond work indices of these cement components and of their binary and ternary mixtures were determined and compared. Attempts were made to use back-calculated grinding rate parameters to simulate the Bond grindability test.
The self-similarity law was proved to be true for clinker and trass that their shapes of the self-similarity curves are unique to the feed material and independent of the grinding energy expended and overall fineness attained. The self-similar behaviour of tested materials will enable process engineers to get useful information about inherent grindability and energy consumption in any stage of the comminution process. The parameters, and indicating the degree of size reduction were defined with different theoretical approaches as a function of energy consumption by using single particle breakage test data of clinker and trass. The breakage distribution functions were found to be non-normalizable. On the other hand, the breakage rate functions were found to be constant with respect to time but variable with respect to changing composition in the Bond ball mill. These variations are critical in computer simulation of any test aiming to minimize the experimental efforts of the standard procedure. As a result of the back calculation of breakage rate parameters for clinker and trass samples in the Bond mill, no common pattern was seen for the variation of the rate parameters. Therefore, computer simulation of the Bond grindability test did not result in an accurate estimation of the Bond work index.
|
660 |
Investigation Of Particle Breakage Parameters In Locked-cycle Ball MillingAcar, Cemil 01 January 2013 (has links) (PDF)
Size reduction processes, particularly fine grinding systems, in mineral processing and cement
production plants constitute a great portion of energy consumption and operating costs. Therefore, the
grinding systems should be designed properly and operated under optimum conditions to achieve
productive and cost effective operations. The use of simulation based on kinetic mathematical models
of grinding has proven useful in this respect. The kinetic models contain two essential parameters,
namely, breakage rate and breakage distribution functions, that are to be determined experimentally,
and preferably in laboratory, or by back-calculation from the mill product size distribution for a given
feed size distribution.
Experimental determination of the breakage parameters has been mostly carried out in laboratory
batch mills using one-size-fraction material. The breakage rate parameter is obtained from the
disappearance rate of this one-size-fraction material, while the breakage distribution parameters are
estimated from the short-time grinding of the same material. Such laboratory methods using one-size
fraction material, however, are not truly representative of industrial continuous mill operations where
the mill contents have a distribution of particle sizes. There is evidence in the literature that the size
distribution of the mill contents affects the breakage parameters.
This thesis study was undertaken with the main purpose of investigating the effect of the size
distribution of the mill hold-up on the brekage parameters of quartz and calcite minerals in lockedcycle
dry grinding experiments. The locked-cycle and one-size-fraction experiments were performed
in the Bond ball mill instrumented with a torque-measuring device. Different closing screen sizes
were used in the locked-cycle work to produce different size distributions of the mill hold-up, and the
operating conditions were changed in the one-size-fraction experiments to obtain different power
draws. Particle breakage parameters were assessed for these changing conditions.
Prior to the experiments related to the main purpose of the study, preliminary experiments were
conducted for two reasons: (i) to find the power draw of the Bond mill in relation to the operating
conditions with the intention of eliminating the use of costly torque-measuring devices by others / and
(ii) to find the most accurate estimation method of breakage distribution functions among the three
existing methods, namely, the &ldquo / zero-order production of fines&rdquo / method, the BII method, and the G-H
method. The G-H method was found to be more appropriate for the current study.
The locked-cycle grinding experiments revealed that the breakage rate function of coarse fractions
increased with increasing proportion of fines in the mill hold-up. Breakage distribution functions were
found to be environment-dependent and non-normalizable by size in one-size-fraction and locked
cycle grinding experiments. It was concluded that the cumulative basis breakage rate function could
sufficiently represent the breakage characteristics of the two studied materials in a wide range of
operating conditions. Therefore, it would be more appropriate to evaluate the breakage characteristics
of materials ground in ball mills by linearized form of the size-discretized batch grinding equation
using single parameter instead of dealing with two parameters which may not be independent of each
other.
|
Page generated in 0.1127 seconds