Spelling suggestions: "subject:"mitochondrial DNA"" "subject:"itochondrial DNA""
141 |
Intraspecific Phylogeography of <i>Graptemys ouachitensis</i>Smith, Ashley D. 08 August 2008 (has links)
No description available.
|
142 |
Population Genetic Structure of Beluga Whales Delphinapterus leucus Mitochondrial DNA Sequence Variation Within and Among North American Populations / Population Genetic Structure of Beluga WhalesBrennin, Ree January 1992 (has links)
Beluga whales are migratory over much of their range, congregating in small groups around shallow river estuaries in summer, and overwintering in large groups in areas with reliable open water. This complicates management issues because it is unclear if belugas from the common wintering ground represent one large group with exchange of individuals, or if each summer estuarine concentration should be managed as a separate stock. To examine the genetic structuring, we analyzed variation in mitochondrial DNA (mtDNA) restriction sites among 101 beluga whales from 10 regions across North America, including Greenland. Using 11 restriction enzymes, 9 haplotypes were identified among 71 whales. The remaining 30 whales were tested with only the six restriction enzymes found to identify polymorphisms. We found a marked segregation of divergent haplotypes for both sexes between eastern and western Hudson Bay. Haplotype 1 was found in 19 out of 21 animals on the east coast, while haplotype 5 was found in 18 out of 20 animals on the west coast. Sequence divergence among the 71 belugas was estimated to be 2.03%. Haplotypes fell into two major phylogenetic groups, labelled lineage I and II. Lineage I haplotypes occurred primarily in the St. Lawrence Estuary and the eastern Hudson Bay. Lineage II haplotypes occurred primarily along the western Hudson Bay, Southern Baffin Island, western Greenland, the Canadian high arctic, and the Beaufort Sea. These findings support the hypothesis that belugas exhibit maternally directed philopatry to summering grounds, and are consistent with the hypothesis that after deglaciation, the arctic was recolonized by at least two stocks of belugas divergent in their mtDNA, possibly representing Atlantic and Pacific stocks. / Thesis / Master of Science (MS)
|
143 |
Imbalance of Mitochondrial Respiratory Chain Complexes in the Epidermis Induces Severe Skin InflammationWeiland, D., Brachvogel, B., Hornig-Do, H.-T., Neuhaus, J.F.G., Holzer, T., Tobin, Desmond J., Niessen, C.N., Wiesner, R.J., Baris, O.R. 01 September 2017 (has links)
No / Accumulation of large-scale mitochondrial DNA (mtDNA) deletions and chronic, subclinical inflammation are concomitant during skin aging, thus raising the question of a causal link. To approach this, we generated mice expressing a mutant mitochondrial helicase (K320E-TWINKLE) in the epidermis to accelerate the accumulation of mtDNA deletions in this skin compartment. Mice displayed low amounts of large-scale deletions and a dramatic depletion of mtDNA in the epidermis and showed macroscopic signs of severe skin inflammation. The mtDNA alterations led to an imbalanced stoichiometry of mitochondrial respiratory chain complexes, inducing a unique combination of cytokine expression, causing a severe inflammatory phenotype, with massive immune cell infiltrates already before birth. Altogether, these data unraveled a previously unknown link between an imbalanced stoichiometry of the mitochondrial respiratory chain complexes and skin inflammation and suggest that severe respiratory chain dysfunction, as observed in few cells leading to a mosaic in aged tissues, might be involved in the development of chronic subclinical inflammation. / Deutsche Forschungsgemeinschaft (Wi 889/6-3 to RJW, SFB 829 A14 to RJW, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases–CECAD to RJW, BR2304/9-1 to BB, and SFB 829 A1, A5, and Z2 to CMN) and the Center of Molecular Medicine Cologne of the Medical Faculty (CMMC, to RJW)
|
144 |
Characterization of cytoplasmic diversity in soybean (Glycine max L. Merr) using mitochondrial markersHanlon, Regina 24 January 2009 (has links)
Soybean, <i>Glycine max</i> L. Merr, is used worldwide as an important source of protein and oil for a wide spectrum of edible feed and industrial purposes. Modem cultivars are derived from relatively few plant introductions (PIs) which severely limits diversity in soybean germplasm. The United States Department of Agriculture (USDA) maintains the soybean germplasm collection. Mitochondrial DNA sequences have been used as markers of diversity at the cytoplasmic level.
This project included three objectives. The first was a classification of the 208 varieties of the USDA's 'old domestic collection' of soybean varieties with two mitochondrial restriction fragment length polymorphisms (RFLP) markers. Molecular techniques were used to search for additional sources of cytoplasmic diversity available to soybean breeders. The two polymorphic markers were, a 2.3 kb <i>Hind</i>III fragment isolated from 'Williams 82' mitochondrial DNA, and a portion of the mitochondrial <i>atp</i>6 gene. These markers were used to distinguish cytoplasmic groups based on hybridization analysis of <i>Hind</i>III-digested soybean DNA Four major groups were observed with the 2.3 kb marker in the old domestic collection, and several minor subgroups were also detected.
The second objective included subcloning and sequencing the 0.9 kb and 1.7 kb <i>Hind</i>III-<i>Pst</i>I clones flanking the 2.3 kb <i>Hind</i>III fragment from 'Williams 82' DNA The total 4.9 kb <i>Pst</i>I sequence from 'Williams 82' mitochondrial DNA was used to search a sequence database for any homology to known mitochondrial sequences.
The third objective compared restriction maps of the four cytoplasmic types in the regions containing homology to the 4.9 kb <i>Pst</i>I fragment. DNAs from the four cytoplasmic types were digested with five enzymes and four specific clones (0.9 kb <i>Pst</i>I-<i>Hind</i>III, 0.8 kb HindIII-<i>Xba</i>I, 1.5 kb Xbal-<i>Hind</i>III, 1.7 kb <i>Hind</i>III-<i>Pst</i>I) were used as hybridization probes in Southern analysis to examine RFLP patterns and construct comparative restriction maps of the four cytoplasmic types of DNA. / Master of Science
|
145 |
Sperm Mitochondrial DNA Biomarkers as a Measure of Male Fecundity and Overall Sperm QualityRosati, Allyson 15 July 2020 (has links)
Introduction. Sperm parameter analysis is the standard method of male fecundity testing; however, minimal evidence supports associations between individual sperm parameters and reproductive outcomes. Our previous work shows strong associations between sperm mitochondrial DNA copy number (mtDNAcn) and time-to-pregnancy (TTP) in general populations, and between mtDNAcn and fertilization outcomes in clinical populations. Thus it is possible for sperm mtDNA biomarkers to act as summary measures of semen quality. In this study, we developed a sperm quality index (SQI) from semen parameters and compared its ability to measure fecundity to sperm mtDNAcn.
Methods. We received 384 semen samples from the Longitudinal Investigation of Fertility in the Environment Study. Sperm mtDNAcn and mtDNA deletions (mtDNAdel) were quantified using a triplex probe-based qPCR method. The SQI was developed by ranking and summing select sperm parameters within the study population, including sperm concentration, sperm count, normal morphology, high DNA stainability, and DNA fragmentation to create a cumulative index. Discrete-time proportional hazards models were used to determine fecundability odds ratios (FOR), indicating associations between mtDNAcn, SQI, and TTP. Receiver operating characteristic (ROC) analyses determined the validity of the SQI and mtDNAcn as predictors of pregnancy within 12 months.
Results. The SQI was highly associated with mtDNAcn, both continuously (Spearman Rho: -0.487; p-value: <0.001) and in deciles (ANOVA p-value: <0.001). The SQI (FOR: 1.25; 95% confidence interval (CI): 1.09, 1.43) and mtDNAcn (FOR: 0.754; 95% CI: 0.657, 0.866) performed similarly in discrete-time survival models and indicated a significant decrease and increase in TTP, respectively. MtDNAcn more effectively predicted pregnancy within 12 months (AUC: 0.703; 95% CI: 0.617, 0.789) than the SQI (AUC: 0.642; 95% CI: 0.531, 0.753). With multiple predictors, mtDNAcn outperformed summary models, with addition of the SQI and percent normal morphology minimally increasing model efficacy (AUC: 0.718, 95% CI: 0.617, 0.819).
Conclusion. The association between the SQI and mtDNAcn suggest that mtDNAcn may serve as a summary biomarker for overall sperm quality. Neither individual nor summed sperm parameters are useful indicators of couple fecundity and reproductive outcomes compared to mtDNAcn. These results suggest that mtDNAcn has potential for use as a biomarker of fecundity.
|
146 |
Disturbances in mitochondrial DNA maintenance in neuromuscular disorders and valproate-induced liver toxicityKomulainen, T. (Tuomas) 20 January 2015 (has links)
Abstract
Mitochondrial DNA depletion and deletions are related to mutations in the nuclear genes responsible for replication and maintenance of mitochondrial DNA (mtDNA). The POLG1 gene encodes the enzyme responsible for replication of mtDNA. A particular feature of the POLG1 mutations is an increased risk of acute liver failure (ALF) upon exposure to sodium valproate (VPA), but the pathomechanism is not resolved.
The present work studies the molecular genetic aetiology and clinical phenotypes associated with mtDNA depletion and deletion. Another objective was an investigation of clinical phenotypes in POLG1 mutations and disentangling the pathomechanism of VPA-induced ALF in POLG1 mutations. Mitochondrial toxicity of VPA was examined using HepG2 cells as an experimental in vitro model.
In this work, mtDNA depletion was associated with severe neonatal-onset encephalopathy. Furthermore, mtDNA depletion was found in muscle dystrophy as a secondary finding to muscle degradation. Multiple mitochondrial DNA deletions were found in two patients with Kearns-Sayre syndrome suggesting a genetic origin of the disease. POLG1 p.R722H mutation has been previously reported as a neutral polymorphism, but we found evidence suggesting that POLG1 p.R722H could be a pathogenic mutation in a homozygous or compound heterozygous state.
We identified retrospectively five patients, who required liver transplant after VPA-induced ALF. All five patients harboured POLG1 mutations supporting the evidence of POLG1 mutations as a risk factor for VPA-induced ALF. Previously, patients with POLG1 mutations have been considered unsuitable for liver transplantation, but we found that homozygous POLG1 mutations and adolescent or adult-onset disease predicted a good outcome following liver transplantation. In vitro studies on HepG2 cells showed that VPA disturbs mitochondrial respiration.
Our results expand the phenotypes and molecular genetic features in mitochondrial DNA depletion and deletion syndromes. We found evidence that POLG1 mutations are not a contraindication for liver transplantation; rather, mutation status and age at onset affect survival. This finding should be taken in consideration in the treatment of VPA-induced ALF. Furthermore, our findings indicate that sodium valproate is toxic to mitochondria and should be avoided in patients with mitochondrial disease. / Tiivistelmä
Mitokondrion DNA:n (mtDNA) kahdentumisesta ja ylläpidosta vastaavien tuman geenien mutaatiot voivat johtaa mtDNA:n määrän vähenemiseen (depleetioon) ja katkoksiin (deleetioihin). MtDNA:n kahdentumisesta vastaavaa entsyymiä koodaa tuman POLG1-geeni. POLG1-mutaatioihin liittyy kohonnut riski sairastua natriumvalproaatin (VPA) aiheuttamaan akuuttiin maksavaurioon.
Tutkimuksen tavoitteena oli tutkia mtDNA:n depleetion ja deleetioiden molekyyligeneettistä etiologiaa ja kliinisiä taudinkuvia. Tutkimuksessa selvitettiin myös POLG1-mutaatioihin liittyviä taudinkuvia ja POLG1-mutaatioihin liittyvän akuutin maksavaurion patomekanismia. VPA:n vaikutusta mitokondrioiden toimintaan tutkittiin in vitro HepG2-solumallissa.
Tutkimuksessa todettiin mtDNA:n depleetion liittyvän vaikeaan varhain alkavaan aivosairauteen. Depleetio todettiin myös sekundaarisena merosiini-negatiivisessa lihasdystrofiassa. Kahdella Kearns-Sayren syndroomaa sairastavalla potilaalla todettiin multippelit mtDNA:n deleetiot, mikä viittaa syndrooman geneettisen alkuperään. POLG1 p.R722H-mutaatiota on aiemmin pidetty neutraalina polymorfiana, mutta tutkimuksen tulokset viittasivat siihen, että homotsygoottisena tai yhdistelmäheterotsygoottisena mutaatio on tautia aiheuttava.
Helsingin yliopistollisen sairaalan elinsiirtorekisteristä tunnistettiin retrospektiivisesti viisi potilasta, jotka olivat saaneet maksansiirteen VPA:n aiheuttaman maksavaurion vuoksi. Kaikilla viidellä potilaalla todettiin POLG1-geenin mutaatio, mikä vahvistaa käsitystä geenin yhteydestä VPA:n aiheuttamaan maksavaurioon. POLG1-mutaatioita on pidetty vasta-aiheena maksansiirrolle, mutta tutkimuksessa todettiin homotsygoottisena esiintyvän POLG1-mutaation ja nuoruusiällä tai varhaisella aikuisiällä alkaneen taudin liittyvän parempaan maksansiirron jälkeiseen ennusteeseen. HepG2-solumallilla tehdyt tutkimukset osoittivat VPA:n haittaavan mitokondrioiden solyhengitystä.
Tutkimuksen tulokset tuovat lisätietoa mtDNA:n depleetioon ja deleetioihin liittyvistä taudinkuvista ja molekyyligeneettisestä taustasta. POLG1-mutaatiot eivät ole ehdoton vasta-aihe maksansiirrolle; potilaan geneettinen status ja ikä taudin alkamishetkellä vaikuttavat ennusteeseen, mikä tulisi huomioida potilaiden hoidossa. Tulokset myös osoittivat VPA:n olevan mitokondriotoksinen lääke, jonka käyttöä tulisi välttää mitokondriotautipotilaiden hoidossa.
|
147 |
From cheek swabs to consensus sequences: an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomesClarke, Andrew, Prost, Stefan, Stanton, Jo-Ann, White, W. T., Kaplan, Matthew, Matisoo-Smith, Elizabeth, The, Genographic Consortium January 2014 (has links)
BACKGROUND:Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users.RESULTS:Here we present an 'A to Z' protocol for obtaining complete human mitochondrial (mtDNA) genomes - from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling).CONCLUSIONS:All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual 'modules' can be swapped out to suit available resources.
|
148 |
Establishment of a genetic database and molecular methods for the identification of fish species available on the South African marketCawthorn, Donna-Maree 12 1900 (has links)
Thesis (PhD (Food Sc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Consumers have the right to accurate information on the fish products they purchase to enable them to make educated seafood selections that will not endanger their own wellbeing or the wellbeing of the environment. Unfortunately, marine resource scarcity, financial incentives and inadequate or poorly enforced regulations have all promoted the mislabelling of fish species on global markets, the results of which may hold economic, conservation and health consequences. The primary aims of this study were to determine the most commonly available fish species on the South African market, to establish and compare DNA-based methods for the unambiguous identification of these species and to utilise the most applicable methods to evaluate the extent of mislabelling on the local fisheries market. The results from surveys of n = 215 restaurants and n = 200 retail outlets in four South African provinces (Western Cape, Kwa-Zulu Natal, Eastern Cape and Gauteng) indicated that 34 and 70 nominal fish types were available in restaurants and retail outlets, respectively, the most common of which were kingklip, salmon and hake. Over 30% of the fish species being sold were of conservation concern, while several outlets marketed specially-protected, illegal-to-sell species in South Africa. Fish purveyors were poorly equipped to provide information on the identity, origin, production method (farmed/wild) and sustainability of the fish they were selling and the labelling of many packaged fish products was in contravention with South African regulations. Data were published for the first time comparing the efficiency of five methods (urea-SDS-proteinase K, phenol-chloroform, salt extraction, SureFood PREP kit and Wizard Genomic DNA Purification kit) for the extraction of DNA from the muscle tissue of fish species available in South Africa. The SureFood kit was identified as the most suitable method for DNA extraction from fish muscle, extracting significantly (P < 0.05) higher DNA yields than all other methods evaluated and being simple and safe to use. A comprehensive reference library of genetic information was compiled for the first time that contains sufficient DNA sequence data from different mitochondrial DNA loci (16S ribosomal RNA (rRNA), 12S rRNA and cytochrome c oxidase I (COI) genes, as well as the control region) to allow the explicit identification of 53 fish species in South Africa. Although 16S and 12S rRNA gene sequencing allowed the identification of most fish to the genus level, the discrimination of closely-related, congeneric species was problematic when based on these gene regions. Conversely, the vast majority (98%) of fish examined could be readily differentiated by their COI sequences, with only members of the genus Thunnus requiring supplementary control region sequencing for species confirmation. Lastly, sequencing of the COI region was used to show that 9% of fish samples collected from local seafood wholesalers and 31% of samples from retail outlets were mislabelled. This study has established that fish mislabelling is a reality on the South African market and that DNA-based methods should be applied by both industry and regulatory bodies to deter illegal activities and to promote transparency on the domestic fisheries market. / AFRIKAANSE OPSOMMING: Verbruikers het die reg tot akkurate informasie rakende die visprodukte wat hulle aankoop. Hierdie inligting sal hulle bemagtig om ingeligte seekos keuses te maak wat voordelig sal wees vir beide die verbruiker se eie, sowel as die omgewing, se voortbestaan. Ongelukkig het 'n gebrek aan seelewebronne, geldelike aansporings en onvanpaste of swak geïmplimenteerde regulasies gelei tot die verkeerde etikettering van visspesies op die wêreldmarkte. Dit mag ekonomiese-, bewarings- en gesondheidsgevolge inhou. Die primêre doelwitte van hierdie studie was om te bepaal watter visspesies die algemeenste beskikbaar is in die Suid-Afrikaanse mark, om DNS-gebaseerde metodes vir die duidelike identifisering van hierdie spesies te vind en te vergelyk, en om die mees gepaste metodes te gebruik om die omvang van verkeerde etikettering in die plaaslike vismarkte te evalueer. Die resultate van opnames van n = 215 restaurante en n = 200 winkels in vier Suid-Afrikaanse provinsies (Wes-Kaap, Kwa-Zulu Natal, Oos-Kaap en Gauteng) het gewys dat 34 en 70 nominale visspesies in onderskeidelik restaurante en kleinhandelaars beskikbaar was. Koningklip, salm en stokvis was die mees algemene spesies. Meer as 30% van die visspesies wat te koop was is van bewaringsbelang, terwyl verskeie winkels spesiaal-beskermde, onwettig-om-te-verkoop spesies in Suid-Afrika bemark het. Visverkopers was swak bemagtig om informasie oor die identiteit, oorsprong, produksiemetode (teel/wild) en volhoubaarheid van die vis wat hulle verkoop het te kon gee. Verder was die etikettering van baie verpakte visprodukte in stryd met Suid-Afrikaanse regulasies. Vir die eerste keer is data gepubliseer wat vyf metodes (ureum-SDS-proteïenase K, fenolchloroform, sout-ekstraksie, SureFood PREP stel en Wizard Genomic DNS suiwering stel) vergelyk in hul doeltreffendheid om DNS vanuit die spierweefsel van visspesies wat in Suid-Afrika beskikbaar is te ekstraheer. Die SureFood stel is as die mees geskikte metode vir DNS ekstraksie vanuit visweefsel geïdentifiseer aangesien die DNS opbrengs betekenisvol (P < 0.05) hoër was met hierdie metode, en dit ook 'n eenvoudige en veilige metode is om te gebruik. 'n Omvattende verwysingsbiblioteek van genetiese informasie wat voldoende DNS volgordebepalingsdata van verskillende mitokondriale DNS lokusse (16S ribosomale RNS (rRNS), 12S rRNS en sitochroom c oksidase I (COI) gene, sowel as die kontrolegebiede) bevat, is vir die eerste keer opgestel om die besliste identifisering van 53 visspesies in Suid-Afrika toe te laat. Alhoewel 16S en 12S rRNS geenvolgordebepaling die identifisering van meeste visse op genusvlak toegelaat het, was die diskriminasie van naby-verwante, gelyksoorting spesies problematies wanneer hierdie geengebiede gebruik is. Die oorgrote meerderheid (98%) vis wat ondersoek is geredelik onderskei op grond van hul COI volgordebepalings, met slegs lede van die genus Thunnus wat addisionele kontrolegebied volgordebepaling vir spesies bevestiging vereis het. Laastens, is volgordebepaling van die COI-gebied gebruik om te wys dat 9% van die vismonsters van plaaslike seekosgroothandelaars en 31% van die monsters van kleinhandelaars verkeerd geëtiketteer is. Hierdie studie het bevestig dat die verkeerde etikettering van vis in Suid-Afrika 'n realiteit is, en dat DNS-gebaseerde metodes gebruik moet word deur die industrie sowel as die regulerende liggame om onwettige aktiwiteite teen te werk en om deursigtigheid in plaaslike vismarkte te bevorder.
|
149 |
The biology of South African Bryde's whalesPenry, Gwenith S. January 2010 (has links)
The biology of South African Bryde’s whales (Balaenoptera brydei/edeni), with a focus on the inshore form, was investigated through estimates of abundance and survival rate, seasonality of occurrence and variation in mitochondrial and nuclear DNA. Photographs, sightings data and biopsy samples were collected in Plettenberg Bay, on the south-east coast of South Africa. Additional genetic material was obtained from the Iziko South African Museum, Marine and Coastal Management, and the Port Elizabeth Museum. Mark-recapture methods applied to photo-identification data were used to estimate abundance and survival rate. Estimates of abundance ranged from 130 to 250 (CV = 0.07 - 0.38) and the estimated annual survival rate was 0.93 (CV = 0.047, 95% CI = 0.852 - 1.0). Seasonal increases in the encounter rate and number of individual whales were observed during summer and autumn, with a peak in April, which corresponded to increased feeding activity and larger average aggregation sizes. Chlorophyll-a, sea surface temperature and wind speed were all significant factors in explaining the variability in the occurrence of whales. No seasonality in the occurrence of calves was detected. Mitochondrial DNA control region sequences (685bp) were compared to published sequences. This confirmed the offshore form as Balaenoptera brydei and the inshore form as closely related to B.brydei, possibly at the sub-specific level, but excluded it as B.edeni. Phylogenetic analyses support complete separation between the two forms. The use of 10 polymorphic microsatellite loci revealed no population structure among the inshore samples (FST = 0.006). Pairwise estimates of relatedness found most individuals to be unrelated, with only a few distant relatives detected.
|
150 |
INCREASED OXIDATIVE DAMAGE TO DNA AND THE EFFECTS ON MITOCHONDRIAL PROTEIN IN ALZHEIMER'S DISEASEWang, Jianquan 01 January 2006 (has links)
Alzheimer's disease (AD) is a progressive, irreversible, neurodegenerative disease. The key to understanding AD is to elucidate the pathogenesis of neuron degeneration in specific brain regions.We hypothesize that there is increased DNA oxidation in AD brain compared to age-matched control subjects, especially in mitochondrial DNA (mtDNA), and that the changes in DNA bases will affect protein expression in mitochondria and contribute to neurodegeneration in AD. To test this hypothesis:1) We quantified multiple oxidized bases in nuclear DNA (nDNA) and mtDNA of frontal, parietal, and temporal lobes and cerebellum from late-stage AD (LAD), mild cognitive impairment (MCI), and age-matched control subjects using gas chromatography/mass spectrometry with selective ion monitoring (GC/MS-SIM). Also, we quantified oxidized DNA bases in cortex of APP/PS1 transgenic mice. (a) nDNA and mtDNA were extracted from eight LAD and eight control subjects. We found levels of multiple oxidized bases were significantly higher in frontal, parietal, and temporal lobes and that mtDNA had approximately 10-fold higher levels of oxidized bases than nDNA. Eight-hydroxyguanine was approximately 10-fold higher than other oxidized base adducts in both LAD and control subjects. These results suggest that oxidative damage to mtDNA may contribute to the neurodegeneration of AD. (b) Mild Cognitive Impairment (MCI), the phase between normal aging and early dementia, is a common problem in the elderly with many subjects going on to develop AD. Results from eight amnestic MCI and six control subjects suggest oxidative damage to DNA occurs in the earliest detectable phase of AD. (c) Analysis of nDNA from the cortex of four groups (3m, 6m, 9m, 12m) of APP/PS1 and wild type mice showed elevations of 8-hydroxyguanine in 12 month old APP/PS1 mice.2) To analyze mitochondrial protein changes in LAD, 2D gels were run to separate proteins and MALDI-TOF mass spectrometry was used to identify proteins.Five mitochondrial proteins were significantly decreased in LAD. This proteomic study provides a proteome map of mitochondria in LAD brain and an insight into the pathogenesis of neuron degeneration in Alzheimer's disease.
|
Page generated in 0.0412 seconds