• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The effect of varying times of ischemia on the levels of glutathione in the cytosol and mitochondria of the rat kidney

Taylor, Matthew A. January 2002 (has links)
Ischemia caused by the disruption of blood flow results in kidney damage and dysfunction. This study investigated the effects of 30, 60 or 120 minutes of renal ischemia on the levels of glutathione (GSH), the major antioxidant inside cells. Kidneys from anesthetized female Lewis rats (9 months old) were clamped to induce ischemia and then homogenized and separated into cytosolic and mitochondria fractions by differential centrifugation. The levels of GSH and oxidized glutathione (GSSG) in the fractions were measured spectrophotometrically or by capillary electrophoresis. A significant reduction in GSH levels in the cytosol and mitochondria was seen only after the kidney underwent 60 minutes of ischemia. The significant decrease in GSH was accompanied by an increase in the GSSG/GSH ratio and an alteration in the glutathione redox ratio (i.e., GSH/total glutathione). This study demonstrates that an ischemic time of 60 minutes or longer is necessary to cause depletion of GSH levels in the rat kidney. / Department of Physiology and Health Science
42

Mechanisms of nitric oxide control in endothelial and cardiac dysfunction

Joshi, Mandar S. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2006 Aug 16.
43

Understanding the molecular, cellular, and circuit defects characterizing the early stages of Alzheimer’s disease

Virga, Daniel Michael January 2023 (has links)
One of the most foundational and personal philosophical questions one can ask is what makes you, you? In large part, you are made up of your relationships, experiences, and memories. The hippocampus, a brain region which is critical for the formation of memories, has been the focus of neuroscience research for decades due partially to this function, which is foundational to our individuality. In Alzheimer’s disease (AD), one of the most common and well-researched neurodegenerative diseases in the world, the hippocampus is one of the earliest targets. Despite extensive work on AD, we still lack a coherent understanding of what is causing the disease, the mechanisms by which it is causing neuronal dysfunction and death within the hippocampus and other brain regions, and how it ultimately causes deficits in cognition and behavior, leading to an erosion of our selves. In this thesis, I explore three independent but related questions: 1) what molecular mechanisms are causing early synaptic loss in AD, specifically within the hippocampus, 2) what molecular effectors are responsible for establishing and maintaining intracellular architecture in hippocampal neurons, which are exploited in early AD, and 3) how and when does the hippocampal circuit dysfunction in AD progression? Using a variety of experimental techniques, ranging from in utero and ex utero electroporation, primary murine and human neuronal cell culture, longitudinal confocal microscopy, immunohistochemistry, biochemistry, cell and molecular biology, in vivo two-photon calcium imaging, and behavioral assays, I have found that, within CA1 of the hippocampus, synapse loss requires degradation of the dendritic mitochondrial network, activity and input specificity are driving mitochondrial compartmentalization within CA1 neurons through the same pathway that is aberrantly overactivated in AD, and the hippocampal circuit is overly rigid in encoding the environment as the disease progresses.
44

An investigation into the role of mitochondrial dysfunction in South African Parkinson’s disease patients

Van der Merwe, Celia 12 1900 (has links)
Thesis (MScMedSC)--Stellenbosch University, 2012. / Bibliography / ENGLISH ABSTRACT: Parkinson’s disease (PD) is a neurodegenerative movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain. Although the aetiology of PD is still not fully understood, it is thought to involve a combination of environmental (such as exposure to pesticides and neurotoxins) and genetic factors. A number of PD-causing genes have been found including SNCA, LRRK2, EIF4G1 and VPS35 (for autosomal dominant forms of PD) and parkin, PINK1, DJ-1 and ATP13A2 (for autosomal recessive forms of PD – arPD). Mutations in the parkin gene are the predominant cause of arPD. Parkin plays a role in the ubiquitin-proteasomal system which degrades damaged and unwanted proteins in the cell and it is also thought to be involved in maintaining healthy mitochondria. Numerous studies have implicated mitochondrial function in the pathogenesis of PD. Therefore the aim of the present study was to investigate the role of mitochondrial dysfunction in PD patients with parkin-null mutations. Four South African PD patients, each harbouring two parkin-null mutations, were recruited for this study. A muscle biopsy was performed for analysis of mitochondrial morphology using histology and transmission electron microscopy (TEM). Skin biopsies were taken, from which fibroblasts were cultured. These fibroblasts were used in i) mitochondrial morphological assessments using TEM, ii) mitochondrial network analysis, iii) functional studies via ROS measurement and iv) analysis of the proteome using a LTQ Orbitrap Velos mass spectrometer. In addition, RNA was isolated from peripheral blood samples for gene expression studies using the RT² Profiler PCR Array (SABiosciences, USA) and the RT² PCR Primer Assay (SABiosciences, USA). Heterozygous family members (carriers) and wild-type controls were also recruited for this study. Results from the histological and TEM analysis from the muscle biopsy observed subtle mitochondrial changes including the presence of type II fibres, atrophic fibres, the presence of lipids, and wrinkling of the sarcolemmal membrane. Enlarged mitochondria were also observed in one patient. TEM analysis on the patient’s fibroblasts observed an increase in the number of electron dense vacuoles, speculated to be autolysosomes. The mitochondrial network in two of the patients’ fibroblasts showed fragmented and dot-like networks which are indicative of damaged mitochondria. An increase in mitochondrial ROS levels was observed in three of the four patients. Expression studies found down-regulation of 14 genes from four of the five mitochondrial complexes and a total of 688 proteins were found only in the control and not in the patient fibroblasts. Some of these proteins are known to be part of the ‘mitochondrial dysfunction’ pathway. Taken together, these results indicate that the absence of parkin results in a number of mitochondrial alterations. Based on these findings, a model of PD was proposed: It is speculated that when parkin is absent, electron transport chain complex genes are down-regulated. This results in impaired oxidative phosphorylation, causing an increase in the production of mitochondrial ROS and subsequent oxidative stress. Mitochondria are then damaged; resulting in the fragmentation of the mitochondrial network. The impaired mitochondria are thus tagged for degradation, causing the recruitment of autolysosomes which engulf the mitochondria via mitophagy. Ultimately, as the compensatory mechanisms fail, this triggers the consequential cascade of cellular apoptotic events. This study has elucidated the effect of parkin on the mitochondria, and can act as a ‘stepping stone’ towards future development of therapeutic strategies and/or biochemical markers that will benefit not only patients with PD but also other neurodegenerative disorders. / AFRIKAANSE OPSOMMING: Parkinson se siekte (PS) is ‘n neurodegeneratiewe bewegings-afwyking gedefineer deur die verlies van dopaminergiese neurone in die substantia nigra van die midde brein. Alhoewel die spesifieke oorsprong van die afwyking nog nie ten volle begryp is nie, word bydraes van beide omgewings faktore (bv. blootstelling aan plaagdoders en neurotoksienes) asook genetiese faktore gespekuleer. Vanuit ‘n genetiese aspek is ‘n aantal gene al geassosieer met PS. Hierdie gene sluit in SNCA, LRRK2, EIF4G1 en VPS35 (vir outosomale dominante vorms van PS) en parkin, PINK1, DJ-1, en ATP13A2 (vir outosomale resessiewe vorms van PS - orPS). Mutasies in die parkin geen is aangedui as die hoof oorsaak van orPS. Parkin speel ‘n rol in die ubiquitine-proteasomale sisteem wat beskadige en ongewensde proteïne binne in die sel verwyder en is verdink om by te dra tot die instandhouding van gesonde mitokondria. Mitokondriese wanfunksionering is ook deur talle studies gewys as ‘n bydraende faktor in die patologie van PS. Die doel van die studie is om ondersoek in te stel tot die spesifieke rol wat mitokondriese wanfunsionering speel in PS pasiënte met parkin-nul mutasies. Vier Suid-Afrikaanse PS-pasiënte, elk met twee parkin-nul mutasies, is gebruik vir die studie. Deur middel van spierbiopsies is monsters verkry vir mitokondriese morfologiese analises met behulp van histologiese en elektron-oordrag mikroskopie tegnieke (TEM). Vel biopsies is ook geneem en fibroblaste is gekweek vir die gebruik in: i) mitokondriese morfologiese assesering; ii) mitokondriese netwerk analiese; iii) funksionele studies waar vlakke van reaktiewe suurstof spesies (ROS) gemeet is; iv) proteoom analiese met behup van ‘n LTQ Orbitrap Velos massa spektrometer. RNA is ook geisoleer vanaf perifere bloedmonsters vir die gebruik in geen-uitdrukkings studies met behulp van ‘n RT² Profiler PCR Array en ‘n RT² Primer Assay. Selle vanaf famielie lede wat heterosigotiese draers is van die mutasie, asook normale (geen parkin mutasie) selle is gebruik as kontroles in die studie. TEM resultate vanaf die spier monsters het subtiele mitokondriese veranderinge getoon. Hierdie sluit in die teenwoordigheid van tipe II vesels, atrofiese vesels, teenwoordigheid van lipiedes, assook waarnemings van rimpeling van die sarcolemmal membraan. Vergrote mitokondrias is ook in een van die pasiënte opgelet. TEM resultate vanaf die fibroblaste het toename in die aantal elektron-digte vakuole vertoon, moontlik geidentifiseer as autolisosome. Gefragmenteerde en onderbreekte mitokondria netwerke is gelet tydens netwerk analiese van die fibroblaste, ‘n indikasie van beskadigde mitokondria. ‘n Toename in mitokondriese ROS vlakke is gevind in drie van die vier pasiënte. Af-regulering van 14 gene, geassosieerd met vier uit die vyf mitokondria komplekse, is verneem tydens die geen-uitdrukkings studie. Saam met dit is ‘n totaal van 688 proteïene geidentifiseer wat slegs teenwoordig is in die kontrole monsters en nie in die pasiënt monsters nie. Hierdie proteïene is almal uitgedruk en betrokke in die mitokondriese wanfunsionerings-weë. Hierdie resultate dui dat die afwesigheid van parkin mitokondriese afwykings tot gevolg het wat kan lei tot die afsterwing van selle. Dit dra ook by tot die vorming van ‘n beter-verstaande siekte-model vir PS: Mutasies in parkin (wat lei tot die afwesigheid van parkin) kan dus moontlik lei tot die af-regulasie van gene geassosieerd met die elektron-vervoer ketting komplekse in die mitokondria. Dit lei tot gebrekkige oksidatiewe fosforilering en veroorsaak ‘n toename in die vorming van ROS, wat dan ‘n toename in oksidatiewe stres binne in die sel tot gevolg het. Uiteindelik lei dit dus tot die beskadiging van die mitokondria wat gepaard gaan met fragmentering van die mitokondriese netwerk. Beskadigde mitokondrias word geetiketeer vir afbraking. Hierdie etiketering aktiveer omringende autophagosome wat die beskadigde mitokondrias dan verwyder deur middel van ‘n verswelgende proses genaamd mitophagy. Dit veroorsaak die aktivering van ‘n aantal gekorreleerde sellulêre prosesse wat lei tot apoptose (afsterwing van die sel). Hierdie studie dra by tot die verklaring van die spesifieke effek wat parkin mutasies het op die funksionering van die mitokondria. Resultate hier lê ook die grondslag vir toekomstige studies met die doel tot die ontwikkeling van terapeutiese strategeë en biochemiese merkers wat kan bydrae tot die genesing van beide pasiënte met PS, asook pasiënte met ander neurodegeneratiewe afwykings.
45

Reduced Reproductivity and Larval Locomotion in the Absence of Methionine Sulfoxide Reductase in Drosophila

Unknown Date (has links)
The inevitable aging process can be partially attributed to the accumulation of oxidative damage that results from the action of free radicals. Methionine sulfoxide reductases (Msr) are a class of enzymes that repair oxidized methionine residues. The two known forms of Msr are MsrA and MsrB which reduce the R- and S- enantiomers of methionine sulfoxide, respectively. Our lab has created the first genetic animal model that is fully deficient for any Msr activity. Previously our lab showed that these animals exhibit a 20 hour delay in development of the third instar larvae (unpublished data). My studies have further shown that the prolonged third-instar stage is due to a reduced growth rate associated with slower food intake and a markedly slower motility. These Msr-deficient animals also exhibit decreased egg-laying that can be attributed to a lack of female receptivity to mating. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
46

A Metabolic Basis for Vascular Remodeling in Pulmonary Arterial Hypertension

Sutendra, Gopinath Unknown Date
No description available.
47

The role of mitochondria in regulating MAPK signalling pathways during oxidative stress

Pang, Wei Wei January 2006 (has links)
[Truncated abstract] Reactive oxygen species (ROS) have been implicated to play a major role in many pathological conditions including heart attack and stroke. Their ability to modulate the extracellular signal-regulated protein kinase (ERK) and c-Jun Nterminal kinase (JNK) signalling pathways, thereby influencing cellular response has been well-documented. Recent studies implicate a central role for mitochondria in ERK and JNK activation by ROS although the mechanisms remained unresolved. Using Jurkat T-lymphocyte as a cell model, this study demonstrated increased mitochondrial ROS production as a result of decreased mitochondrial complex activities mediated by hydrogen peroxide treatment. This is the first study to show that mitochondria are not essential for activating ERKs, however damaged mitochondria producing ROS can be expected to cause sustained ERK activation . . . This study revealed that JNK and its upstream kinases MKK4, MKK7 and ASK1 are associated with the mitochondria. Furthermore, findings from this study imply that JNK resides in the mitochondrial matrix. This study is the first to demonstrate that mitochondrial JNK can be activated in a cell-free environment by signals originating from the mitochondria. Experimental work using isolated mitochondria demonstrated that mitochondrial JNK can be activated by ROS generated from the mitochondria themselves. Flavin-containing proteins appear to be the main sources of mitochondrial-ROS which signal through redoxsensitive proteins to activate mitochondrial JNK.
48

Funkční charakterizace nových komponent savčího mitochondriálního proteomu. / Functional characterisation of new components of mitochondrial proteome.

Kovalčíková, Jana January 2018 (has links)
1 Abstract It has been estimated that the mammalian mitochondrial proteome consists of ~1500 distinct proteins and approximately one quarter of them is still not fully characterized. One of these proteins is TMEM70, protein involved in the biogenesis of the eukaryotic F1Fo-ATP synthase. TMEM70 mutations cause isolated deficiency of ATP synthase often resulting in a fatal neonatal mitochondrial encephalocardiomyopathies in patients. To understand the molecular mechanism of TMEM70 action, we generated constitutive Tmem70 knockout mice, which led to embryonic lethal phenotype with disturbed ATP synthase biogenesis. Subsequently generated inducible Tmem70 mouse knockout was lethal by the week 8 post induction. It exhibited primarily impaired liver function, which contrasts with the predominantly cardiologic phenotype at disease onset in humans. Liver mitochondria revealed formation of labile ATP synthase subcomplexes lacking subunit c. Thus, in case of TMEM70 deficiency c-oligomer was not incorporated into ATP synthase, which led to critical impairment of mitochondrial energy provision, analogous to TMEM70 dysfunction in humans. In TMEM70 deficient models, the ATP synthase deficiency reached the 'threshold' for its pathologic presentation, which we quantified at 30 %. We observed compensatory increases in the...
49

Identification and characterization of altered mitochondrial protein acetylation in Friedreich's ataxia cardiomyopathy

Wagner, Gregory Randall January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Friedreich’s Ataxia (FRDA) is a rare and poorly understood autosomal recessive disease caused by a pathological deficiency of the mitochondrial protein frataxin. Patients suffer neurodegeneration, ataxia, diabetes, and heart failure. In an effort to understand the mechanisms of heart failure in FRDA, we investigated the role of the protein modification acetylation, which is highly abundant on mitochondrial proteins and has been implicated in regulating intermediary metabolism. Using mouse models of FRDA, we found that cardiac frataxin deficiency causes progressive hyperacetylation of mitochondrial proteins which is correlated with loss of respiratory chain subunits and an altered mitochondrial redox state. Mitochondrial protein hyperacetylation could be reversed by the mitochondria-localized deacetylase SIRT3 in vitro, suggesting a defect in endogenous SIRT3 activity. Consistently, frataxin-deficient cardiac mitochondria showed significantly decreased rates of fatty acid oxidation and complete oxidation to carbon dioxide. However, the degree of protein hyperacetylation in FRDA could not be fully explained by SIRT3 loss. Our data suggested that intermediary metabolites and perhaps acetyl-CoA, which is required for protein acetylation, are accumulating in frataxin-deficient mitochondria. Upon testing the hypothesis that mitochondrial protein acetylation is non-enzymatic, we found that the minimal chemical conditions of the mitochondrial matrix are sufficient to cause widespread non-enzymatic protein acetylation in vitro. These data suggest that mitochondrial protein hyperacetylation in FRDA cardiomyopathy mediates progressive post-translational suppression of mitochondrial oxidative pathways which is caused by a combination of SIRT3 deficiency and, likely, an accumulation of unoxidized acetyl-CoA capable of initiating non-enzymatic protein acetylation. These findings provide novel insight into the mechanisms underlying a poorly understood and fatal cardiomyopathy and highlight a fundamental biochemical mechanism that had been previously overlooked in biological systems.
50

Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and mitochondrial dysfunction. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Additionally, cyclosporin A, an inhibitor of the mitochondrial permeability transition (MPT) pore, failed to prevent hIAPP-induced DeltaPsim collapse, cytochrome c and AIF release and caspase-3 activation, indicating that the MPT pore was not involved in hIAPP-induced apoptosis. On the other hand, potential crosstalk between the extrinsic and intrinsic apoptotic pathways was demonstrated by cleavage of Bid by caspase-8 in the apoptotic process triggered by hIAPP. / It is widely accepted that human islet amyloid polypeptide (hIAPP) aggregation plays an important role in the loss of insulin-producing pancreatic beta cells. Insulin secretion impairment and cell apoptosis can be due to mitochondrial dysfunction in pancreatic beta cells. hIAPP-induced cytotoxicity is mediated by the generation of reactive oxygen species (ROS). Phycocyanin (PC) is a natural compound from blue-green algae that is widely used as food supplement. Currently, little information is available about the effect of hIAPP on mitochondrial function of beta cells and protection of PC against hIAPP-induced cytotoxicity. In this thesis, I hypothesize that hIAPP may impair beta cell function with the involvement of mitochrondrial dysfunction, and this effects could be attenuated by PC. Therefore, the aim of this study was to investigate the role of mitochondria in hIAPP-induced apoptosis, the in vitro protective effects of PC and explore the underlying mechanisms. / It was found that hIAPP induced apoptosis in INS-1E cells with the disruption of mitochondrial function, as evidenced by ATP depletion, mitochondrial mass reduction, mitochondrial fragmentation and loss of mitochondrial membrane potential (DeltaPsim). Further molecular analysis showed that hIAPP induced changes in the expression of Bcl-2 family members, release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria into cytosol, activation of caspases and cleavage of poly (ADP-ribose) polymerase. Interestingly, the hIAPP-induced mitochondrial dysfunction in INS1-E cells was effectively restored by co-treatment with PC. / Our results showed that hIAPP inhibited the INS-1E cell growth in a dose-dependent manner. However, cytotoxicity of hIAPP was significantly attenuated by co-incubation of the cells with PC. hIAPP induced DNA fragmentation and chromatin condensation, which were key characteristics of cell apoptosis. These changes were inhibited by PC as examined by TUNEL assay and DAPI staining. Moreover, PC significantly prevented the hIAPP-induced overproduction of intracellular ROS and malonaldehyde (MDA), as well as changes of activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes. Furthermore, hIAPP triggered the activation of mitogen-activated protein kinases (MAPKs) such as c-Jun N-terminal kinase (JNK) and p38 kinase, and these effects were effectively suppressed by PC. / Taken together, I have demonstrated for the first time the involvement of mitochondrial dysfunction in hIAPP-induced INS-1E cell apoptosis, which was attenuated by PC through attenuating oxidative stress, modulating JNK and p38 pathways and reducing mitochondrial dysfunction. / Li, Xiaoling. / Adviser: Juliana Chung Ngor Chan. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 150-159). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.

Page generated in 0.0837 seconds