Spelling suggestions: "subject:"mitogenactivated protein"" "subject:"mitogenactivate protein""
121 |
MAPKs regulate nuclear import of human papillomavirus type 11 replicative helicase E1Yu, Jei-Hwa. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed June 5, 2008). Includes bibliographical references.
|
122 |
Activation of a novel ERK5-NF-kappaB pathway is required for G2/M progression in the cell cycle /Cude, Kelly J. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 106-122).
|
123 |
Identification of intracellular signaling pathways regulated by the TAO family of mammalian STE20p kinasesRaman, Malavika. January 2006 (has links)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2006. / Embargoed. Vita. Bibliography: 180-194.
|
124 |
The transition from progenitor cell to neuron : fibroblast growth factors and their role in retinal ganglion cell neurogenesis /McCabe, Kathryn Leigh. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 100-117).
|
125 |
The role of the secretory pathway and cell surface proteolysis in the regulation of the aggressiveness of breast cancer cellsWise, Randi January 1900 (has links)
Doctor of Philosophy / Biochemistry and Molecular Biophysics Interdepartmental Program / Anna Zolkiewska / Cancer cells exploit key signaling pathways in order to survive, proliferate, and metastasize. Understanding the intricacies of the aberrant signaling in cancer may provide new insight into how to therapeutically target tumor cells. The goal of my research was to explore the role of two modulators of transmembrane signaling, the secretory pathway and cell surface proteolysis, in the aggressiveness of breast cancer cells. To study the role of the secretory pathway, I focused on the family of endoplasmic reticulum (ER) chaperones. I found that several ER chaperones were upregulated in breast cancer cells grown under anchorage-independent conditions as mammospheres versus those grown under adherent conditions. Furthermore, certain members of the protein disulfide isomerase (PDI) family were consistently upregulated in two different cell lines at both the mRNA and protein levels. Knocking down these PDIs decreased the ability of the cells to form mammospheres. I demonstrated that the requirement for PDI chaperones in mammosphere growth is likely due to an increased flux of extracellular matrix (ECM) components through the ER. Next, I examined the role of cell surface proteolysis in modulating the aggressiveness of breast cancer cells. Cell-surface metalloproteases release soluble growth factors from cells and activate the corresponding growth factor receptors. I determined that specific metalloproteases (ADAM9 or ADAM12), modulate the activation of Epidermal Growth Factor Receptor (EGFR). I demonstrated that EGFR activation enhances the CD44⁺/CD24⁻ cell surface marker profile, which is a measure of cancer cell aggressiveness. I found that the MEK/ERK pathway, which is a downstream effector of EGFR activation, modulates the CD44⁺/CD24⁻ phenotype. When DUSP4, a negative regulator of the MEK/ERK pathway, is lost, activation of EGFR by metalloproteases no longer plays a significant role in cancer cell aggressiveness. This indicates that the ligand dependent activation of the EGFR/MEK/ERK pathway is a critical step in DUSP4-positive aggressive breast cancer. Finally, I examined the importance of metalloproteases in the regulation of Programmed-death ligand 1 (PD-L1), a transmembrane protein expressed by some cancer cells that plays a major role in suppressing the immune system. I demonstrated that cell-surface metalloproteases have the ability to cleave PD-L1 and release its receptor-binding domain to the extracellular environment. Collectively, these data indicate that (a) ER chaperones support anchorage-independent cell growth, (b) metalloproteases are important in regulation of an aggressive phenotype through the EGFR/MEK/ERK pathway, and (c) metalloproteases cleave PD-L1, a key component of immunosuppression in cancer.
|
126 |
MAPK pathway as a target for therapy in melanomaKrayem, Mohammad 29 May 2015 (has links)
\ / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
127 |
TLR2 Involved in Naive CD4+ T Cells Rescues Stress-Induced Immune Suppression by Regulating Th1/Th2 and Th17Zhao, Jing, Liu, Jing, Denney, James, Li, Chen, Li, Fang, Chang, Fen, Chen, Mingyou, Yin, Deling 01 January 2015 (has links)
Stress, either physical or psychological, can have a dramatic impact on our immune system. There has been little progress, however, in understanding chronic stress-induced immunosuppression. Naive CD4+ T cells could modulate immune responses via differentiation to T helper (Th) cells. In this study, we showed that stress promotes the release of the Th1 cytokines interferon (IFN)-γ and tumor necrosis factor (TNF)-α, the Th2 cytokines interleukin (IL)-4 and IL-10 and the Th17 cytokine IL-17 of splenic naive CD4+ T cells. This suggests that stress promotes the differentiation of naive CD4+ T cells to Th1, Th2 and Th17 cells. Knockout strategies verified that TLR2 might modulate the differentiation of Th1/Th2 cells by inhibiting p38 mitogen-activated protein kinase (MAPK). Taken together, our data suggest that chronic stress induces immune suppression by targeting TLR2 and p38 MAPK in naive CD4+ T cells.
|
128 |
Model Medicago species for studies of low temperature signaling and cold acclimationKhalil, Hala. January 2000 (has links)
No description available.
|
129 |
The molecular associations in clathrin-coated pit regulate β-arrestin-mediated MAPK signaling downstream of μ-opioid receptor / クラスリン被覆小孔の構成分子との会合がμオピオイド受容体下流のβアレスチンを介したMAPK経路のシグナル伝達を制御するSato, Atsuko 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24525号 / 医博第4967号 / 新制||医||1065(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邊 直樹, 教授 中川 一路, 教授 秋山 芳展 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
130 |
Levodopa Drug Induced Alteration of Thiol Homeostasis in Model Neurons Activates Apoptosis Signaling Kinase 1: Implications for the Treatment of Parkinson's DiseaseSabens, Elizabeth Ann January 2010 (has links)
No description available.
|
Page generated in 0.0667 seconds