Spelling suggestions: "subject:"mixed formulation"" "subject:"fixed formulation""
1 |
Zur Numerik der inversen Aufgabe für gemischte (u/p) Formulierungen am Beispiel der nahezu inkompressiblen Elastizität bei großen VerzerrungenGörke, Uwe-Jens, Bucher, Anke, Kreißig, Reiner 28 November 2007 (has links) (PDF)
In dieser Publikation werden ein numerisches
Verfahren zur Kalibrierung von Materialmodellen
für die Simulation großer, nahezu inkompressibler
hyperelastischer Verzerrungen sowie dessen
numerische Realiserung im Rahmen einer gemischten
Finite Elemente Formulierung vorgestellt.
Dabei werden die Parameter der konstitutiven
Beziehungen auf der Grundlage experimentell erfasster
Verschiebungsfelder (vorzugsweise inhomogener)
bzw. globaler Informationen ermittelt. Dieses
inkorrekte, inverse Problem wird mit Hilfe eines
deterministischen Optimierungsverfahrens vom
trust-region-Typ gelöst. Wesentlicher Bestandteil
ist dabei die halbanalytische Sensitivitätsanalyse,
die ein effizientes und hochgenaues Verfahren zur
Ermittlung des Gradienten der Zielfunktion darstellt.
Sie erfordert die einmalige Lösung eines zur direkten
Aufgabe analogen Gleichungssystems pro Parameter und
Lastschritt und basiert auf der impliziten
Differentiation der schwachen Formulierung des
gemischten Randwertproblems nach den
Materialparametern. Genauigkeit und Konvergenzverhalten
der numerischen Algorithmen werden an illustrativen
Beispielen mit synthetischen Messwerten demonstriert.
Im Mittelpunkt stehen dabei Untersuchungen zur
Abhängigkeit des Optimierungsergebnisses von den
Startwerten für unterschiedliche konstitutive
Ansätze der kompressiblen und nahezu
inkompressiblen Elastizität.
|
2 |
Ein Beitrag zur gemischten Finite-Elemente-Formulierung der Theorie gesättigter poröser Medien bei großen VerzerrungenGörke, Uwe-Jens, Kaiser, Sonja, Bucher, Anke, Kreißig, Reiner 24 April 2009 (has links) (PDF)
This paper presents the theoretical background of
a phenomenological biphasic material approach at
large strains based on the theory of porous media
as well as its numerical realization within the
context of an adaptive mixed finite element formulation.
The study is aimed at the simulation of coupled
multiphysics problems with special focus on biomechanics.
As the materials of interest can be considered as
a mixture of two immiscible components (solid and
fluid phases), they can be modeled as saturated
porous media. For the numerical treatment of according
problems within a finite element approach, weak
formulations of the balance equations of momentum
and volume of the mixture are developed. Within this
context, a generalized Lagrangean approach is
preferred assuming the initial configuration of
the solid phase as reference configuration of the
mixture. The transient problem results in weak
formulations with respect to the displacement and
pore pressure fields as well as their time derivatives.
Therefore special linearization techniques are applied,
and after spatial discretization a global system for the
incremental solution of the initial boundary value
problem within the framework of a stable mixed U/p-c
finite element approach is defined. The global system
is solved using an iterative solver with hierarchical
preconditioning. Adaptive mesh evolution is controlled
by a residual a posteriori error estimator.
The accuracy and the efficiency of the numerical
algorithms are demonstrated on a typical example.
|
3 |
Überlegungen zur Parameterwahl im Bramble-Pasciak-CG für gemischte FEMMeyer, Arnd, Steinhorst, Peter 11 September 2006 (has links) (PDF)
Variants on the choice of nessecary control parameters in the generalized Bramble-Pasciak-CG method are discussed.
|
4 |
Zur Numerik der inversen Aufgabe für gemischte (u/p) Formulierungen am Beispiel der nahezu inkompressiblen Elastizität bei großen VerzerrungenGörke, Uwe-Jens, Bucher, Anke, Kreißig, Reiner 28 November 2007 (has links)
In dieser Publikation werden ein numerisches
Verfahren zur Kalibrierung von Materialmodellen
für die Simulation großer, nahezu inkompressibler
hyperelastischer Verzerrungen sowie dessen
numerische Realiserung im Rahmen einer gemischten
Finite Elemente Formulierung vorgestellt.
Dabei werden die Parameter der konstitutiven
Beziehungen auf der Grundlage experimentell erfasster
Verschiebungsfelder (vorzugsweise inhomogener)
bzw. globaler Informationen ermittelt. Dieses
inkorrekte, inverse Problem wird mit Hilfe eines
deterministischen Optimierungsverfahrens vom
trust-region-Typ gelöst. Wesentlicher Bestandteil
ist dabei die halbanalytische Sensitivitätsanalyse,
die ein effizientes und hochgenaues Verfahren zur
Ermittlung des Gradienten der Zielfunktion darstellt.
Sie erfordert die einmalige Lösung eines zur direkten
Aufgabe analogen Gleichungssystems pro Parameter und
Lastschritt und basiert auf der impliziten
Differentiation der schwachen Formulierung des
gemischten Randwertproblems nach den
Materialparametern. Genauigkeit und Konvergenzverhalten
der numerischen Algorithmen werden an illustrativen
Beispielen mit synthetischen Messwerten demonstriert.
Im Mittelpunkt stehen dabei Untersuchungen zur
Abhängigkeit des Optimierungsergebnisses von den
Startwerten für unterschiedliche konstitutive
Ansätze der kompressiblen und nahezu
inkompressiblen Elastizität.
|
5 |
Überlegungen zur Parameterwahl im Bramble-Pasciak-CG für gemischte FEMMeyer, Arnd, Steinhorst, Peter 11 September 2006 (has links)
Variants on the choice of nessecary control parameters in the generalized Bramble-Pasciak-CG method are discussed.
|
6 |
Ein Beitrag zur gemischten Finite-Elemente-Formulierung der Theorie gesättigter poröser Medien bei großen VerzerrungenGörke, Uwe-Jens, Kaiser, Sonja, Bucher, Anke, Kreißig, Reiner 24 April 2009 (has links)
This paper presents the theoretical background of
a phenomenological biphasic material approach at
large strains based on the theory of porous media
as well as its numerical realization within the
context of an adaptive mixed finite element formulation.
The study is aimed at the simulation of coupled
multiphysics problems with special focus on biomechanics.
As the materials of interest can be considered as
a mixture of two immiscible components (solid and
fluid phases), they can be modeled as saturated
porous media. For the numerical treatment of according
problems within a finite element approach, weak
formulations of the balance equations of momentum
and volume of the mixture are developed. Within this
context, a generalized Lagrangean approach is
preferred assuming the initial configuration of
the solid phase as reference configuration of the
mixture. The transient problem results in weak
formulations with respect to the displacement and
pore pressure fields as well as their time derivatives.
Therefore special linearization techniques are applied,
and after spatial discretization a global system for the
incremental solution of the initial boundary value
problem within the framework of a stable mixed U/p-c
finite element approach is defined. The global system
is solved using an iterative solver with hierarchical
preconditioning. Adaptive mesh evolution is controlled
by a residual a posteriori error estimator.
The accuracy and the efficiency of the numerical
algorithms are demonstrated on a typical example.
|
7 |
Modèle d’ordre réduit en mécanique du contact. Application à la simulation du comportement des combustibles nucléaires / Model order reduction in contact mechanics. Application to nuclear fuels behavior simulationFauque de Maistre, Jules 07 November 2018 (has links)
La réduction d'ordre de modèles d'un problème de contact demeure un sujet de recherche important en mécanique numérique des solides.Nous proposons une extension de l'hyper-réduction avec domaine d'intégration réduit à la mécanique du contact sans frottement s'écrivant à l'aide d'une formulation mixte.Comme la zone de contact potentiel se limite au domaine réduit, nous faisons le choix de prendre comme base réduite pour la variable duale (représentative des forces de contact) la base du modèle d'ordre plein restreinte.Nous obtenons ainsi un modèle hyper-réduit hybride avec une approximation de la variable primale par des modes empiriques et de la variable duale par les fonctions de base des éléments finis. Si nécessaire, la condition inf-sup de ce modèle peut être forcée par une approximation hybride la variable primale. Cela mène à une stratégie hybride combinant un modèle d'ordre hyper-réduit et un modèle d'ordre plein permettant l'obtention d'une meilleure approximation de la solution sur la zone de contact.Un post-traitement permettant la reconstruction des multiplicateurs de Lagrange sur l'ensemble de la zone de contact est également introduit.De manière à optimiser la sélection des snapshots, un indicateur d'erreur simple et efficace est avancé pour être couplé à un algorithme glouton. / The model order reduction of mechanical problems involving contact remains an important issue in computational solid mechanics.An extension of the hyper-reduction method based on a reduced integration domain to frictionless contact problems written by a mixed formulation is proposed.As the potential contact zone is naturally reduced through the reduced domain, the dual reduced basis is chosen as the restriction of the dual full-order model basis.A hybrid hyper-reduced model combining empirical modes for primal variables with finite element approximation for dual variables is then obtained.If necessary, the inf-sup condition of this hybrid saddle point problem can be enforced by extending the hybrid approximation to the primal variables. This leads to a hybrid hyper-reduced/full-order model strategy. By this way, a better approximation on the potential contact zone is furthermore obtained.A post-treatment dedicated to the reconstruction of the contact forces on the whole domain is introduced.In order to optimize the snapshots selection, an efficient error indicator is coupled to a greedy sampling algorithm leading to a robust reduced-order model.
|
8 |
Anisotropic Viscoelasticity at Large Strain DeformationsSchmidt, Hansjörg 14 August 2018 (has links)
The aim of this thesis is the fast and exact simulation of modern materials like fibre reinforced thermoplastics and fibre reinforced elastomers. These simulations are in the scope of large strain deformations and contain anisotropic and viscoelastic behaviour. The chapter Differential geometry outlines the necessary tensor analysis and differential geometry. We present the weak formulation in the undeformed domain and use Newton’s method to approximate the solution of this formulation, cf. Section 3.1 and Chapter 4, respectively. For the viscoelasticity we use a special ansatz for the internal variable. Next, we compute all necessary derivations for the Newton system, cf. Sections 4.2 and 4.3. We also investigate the symmetry of the material tensors in Section 4.4. Further, we present three methods to improve the convergence of Newton’s method, cf. Section 4.5. With these three methods we are able to consider more problems, compute them faster and in a more robust way. In Chapter 5 we concisely discuss the FEM and show the appearing matrices in detail. The aim of Chapter 6 is the application of the a posteriori error estimator to this complex material behaviour. We present some numerical examples in Chapter 7. In Chapter 8 the problems that arise in the simulation of fibre-reinforced elastomers are analysed and tackled with help of mixed formulations. We derive a symmetric mixed formulation from a reduced form of the energy density. Also, we reformulate the mixed variable for inextensibility to avoid the numerical cancellation in Section 8.3. The Section 8.4 is about a joined mixed formulation to solve problems with inextensible fibres in an incompressible matrix, like fibre-reinforced rubber. The succeeding section Section 8.5 deals with the arising indefinite block matrix system.:Contents
Glossary 5
1 Introduction – motivation 13
2 Differential geometry 15
2.1 From parametrisations to the Lagrangian strain 15
2.2 Derivatives of tensors 20
3 Physical foundations 25
3.1 Large Deformation 25
3.1.1 Balance of forces 25
3.1.2 Energy minimisation 28
3.2 Anisotropic energy density 29
3.3 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Newton’s method 37
4.1 Newton system 37
4.2 Anisotropic material tensor 40
4.3 Viscoelastic material tensor 41
4.4 Symmetry of the material tensor 44
4.5 Load steps and line-search 47
4.5.1 Load steps – time steps 47
4.5.2 Backtracking for det ℱ > 0 48
4.5.3 Line search for energy minimisation 49
5 Implementation 53
5.1 Numerical Integration 53
5.2 Finite element discretisation 54
5.3 Voigt notation 56
6 Mesh control 65
7 Numerical results 69
7.1 Semi-analytical example 69
7.2 Cook’s membrane 71
7.2.1 Viscoelastic example 72
7.3 Chemnitz hook – Chemnitzer Haken 72
8 Mixed formulation 75
8.1 Motivation 75
8.2 General considerations 78
8.3 Smooth square root 81
8.4 Joined mixed formulation 84
8.5 Matrix representation 86
9 Conclusion 91
10 Theses 93
11 Appendix 95
11.1 Derivatives of the distortion-invariants with respect to the pseudo invariants 95
Bibliography 101
|
9 |
Contrôle optimal des équations d'évolution et ses applications / Optimal control of evolution equations and its applicationsNabolsi, Hawraa 17 July 2018 (has links)
Dans cette thèse, tout d’abord, nous faisons l’Analyse Mathématique du modèle exact du chauffage radiatif d’un corps semi-transparent $\Omega$ par une source radiative noire qui l’entoure. Il s’agit donc d’étudier le couplage d’un système d’Equations de Transfert Radiatif avec condition au bord de réflectivité indépendantes avec une équation de conduction de la chaleur non linéaire avec condition limite non linéaire de type Robin. Nous prouvons l’existence et l’unicité de la solution et nous démontrons des bornes uniformes sur la solution et les intensités radiatives dans chaque bande de longueurs d’ondes pour laquelle le corps est semi-transparent, en fonction de bornes sur les données, Deuxièmement, nous considérons le problème du contrôle optimal de la température absolue à l’intérieur du corps semi-transparent $\Omega$ en agissant sur la température absolue de la source radiative noire qui l’entoure. À cet égard, nous introduisons la fonctionnelle coût appropriée et l’ensemble des contrôles admissibles $T_{S}$, pour lesquels nous prouvons l’existence de contrôles optimaux. En introduisant l’espace des états et l’équation d’état, une condition nécessaire de premier ordre pour qu’un contrôle $T_{S}$ : t ! $T_{S}$ (t) soit optimal, est alors dérivée sous la forme d’une inéquation variationnelle en utilisant le théorème des fonctions implicites et le problème adjoint. Ensuite, nous considérons le problème de l’existence et de l’unicité d’une solution faible des équations de la thermoviscoélasticité dans une formulation mixte de type Hellinger- Reissner, la nouveauté par rapport au travail de M.E. Rognes et R. Winther (M3AS, 2010) étant ici l’apparition de la viscosité dans certains coefficients de l’équation constitutive, viscosité qui dépend dans ce contexte de la température absolue T(x, t) et donc en particulier du temps t. Enfin, nous considérons dans ce cadre le problème du contrôle optimal de la déformation du corps semi-transparent $\Omega$, en agissant sur la température absolue de la source radiative noire qui l’entoure. Nous prouvons l’existence d’un contrôle optimal et nous calculons la dérivée Fréchet de la fonctionnelle coût réduite. / This thesis begins with a rigorous mathematical analysis of the radiative heating of a semi-transparent body made of glass, by a black radiative source surrounding it. This requires the study of the coupling between quasi-steady radiative transfer boundary value problems with nonhomogeneous reflectivity boundary conditions (one for each wavelength band in the semi-transparent electromagnetic spectrum of the glass) and a nonlinear heat conduction evolution equation with a nonlinear Robin boundary condition which takes into account those wavelengths for which the glass behaves like an opaque body. We prove existence and uniqueness of the solution, and give also uniform bounds on the solution i.e. on the absolute temperature distribution inside the body and on the radiative intensities. Now, we consider the temperature $T_{S}$ of the black radiative source S surrounding the semi-transparent body $\Omega$ as the control variable. We adjust the absolute temperature distribution (x, t) 7! T(x, t) inside the semi-transparent body near a desired temperature distribution Td(·, ·) during the time interval of radiative heating ]0, tf [ by acting on $T_{S}$. In this respect, we introduce the appropriate cost functional and the set of admissible controls $T_{S}$, for which we prove the existence of optimal controls. Introducing the State Space and the State Equation, a first order necessary condition for a control $T_{S}$ : t 7! $T_{S}$ (t) to be optimal is then derived in the form of a Variational Inequality by using the Implicit Function Theorem and the adjoint problem. We come now to the goal problem which is the deformation of the semi-transparent body $\Omega$ by heating it with a black radiative source surrounding it. We introduce a weak mixed formulation of this thermoviscoelasticity problem and study the existence and uniqueness of its solution, the novelty here with respect to the work of M.E. Rognes et R. Winther (M3AS, 2010) being the apparition of the viscosity in some of the coefficients of the constitutive equation, viscosity which depends on the absolute temperature T(x, t) and thus in particular on the time t. Finally, we state in this setting the related optimal control problem of the deformation of the semi-transparent body $\Omega$, by acting on the absolute temperature of the black radiative source surrounding it. We prove the existence of an optimal control and we compute the Fréchet derivative of the associated reduced cost functional.
|
Page generated in 0.1165 seconds