• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 691
  • 147
  • 146
  • 112
  • 61
  • 20
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 8
  • 8
  • Tagged with
  • 1559
  • 159
  • 156
  • 129
  • 126
  • 107
  • 106
  • 105
  • 101
  • 87
  • 83
  • 75
  • 74
  • 72
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Perceptual mixing for musical production

Terrell, Michael John January 2012 (has links)
A general model of music mixing is developed, which enables a mix to be evaluated as a set of acoustic signals. A second model describes the mixing process as an optimisation problem, in which the errors are evaluated by comparing sound features of a mix with those of a reference mix, and the parameters are the controls on the mixing console. Initial focus is placed on live mixing, where the practical issues of: live acoustic sources, multiple listeners, and acoustic feedback, increase the technical burden on the mixing engineer. Using the two models, a system is demonstrated that takes as input reference mixes, and automatically sets the controls on the mixing console to recreate their objective, acoustic sound features for all listeners, taking into account the practical issues outlined above. This reduces the complexity of mixing live music to that of recorded music, and unifies future mixing research. Sound features evaluated from audio signals are shown to be unsuitable for describing a mix, because they do not incorporate the effects of listening conditions, or masking interactions between sounds. Psychophysical test methods are employed to develop a new perceptual sound feature, termed the loudness balance, which is the first loudness feature to be validated for musical sounds. A novel, perceptual mixing system is designed, which allows users to directly control the loudness balance of the sounds they are mixing, for both live and recorded music, and which can be extended to incorporate other perceptual features. The perceptual mixer is also employed as an analytical tool, to allow direct measurement of mixing best practice, to provide fully-automatic mixing functionality, and is shown to be an improvement over current heuristic models. Based on the conclusions of the work, a framework for future automatic mixing is provided, centred on perceptual sound features that are validated using psychophysical methods.
102

Mixing in stably stratified turbulent Taylor-Couette flow

Oglethorpe, Rosalind Leigh Frances January 2014 (has links)
No description available.
103

Calorimetric and depolarized Rayleigh scattering studies of normal and branched alkane mixtures

Tancrède, Pierre January 1976 (has links)
No description available.
104

Convection, turbulent mixing and salt fingers

Wells, Mathew Graeme. January 2001 (has links)
No description available.
105

Flow induced mixing in high aspect ratio microchannels

Siripoorikan, Bunchong 12 February 2003 (has links)
Micro-fluid mixing is an important aspect of many of the various micro-fluidic systems used in biochemical production, biomedical industries, micro-energy systems and some electronic devices. Typically, because of size constraints and laminar flow conditions, different fluids may only have the opportunity to mix by diffusion, which is extremely rate limited. Therefore, active or highly effective passive mixing techniques are often required. In this study, two pulsed injectors are used to actively enhance mixing in a high aspect ratio microchannel (125 ��m deep and 1 mm wide). The main channel has two adjacent flowing streams with 100% dye and 0% dye concentrations, respectively. Two injectors (125 ��m deep and 250 ��m wide) are located on separate sides of the channel, with one downstream 2 mm (equivalent to two main channel widths or eight injector widths) from the other. This results in an asymmetric mixing as the flow proceeds downstream. A dye solution is used to map local mixing throughout the channel by measuring concentration variations as a function of both space and time. The primary flow rates are varied from 0.01 to 0.20 ml/min (Reynolds numbers of 0.3 to 26.6), the injector flow rate ratios are varied from 0.125 to 2, and the pulsing frequencies are varied from 5 to 15 Hz. Images of the concentration variations within the channel are used to quantify mixing by calibrating the intensity of the image with the concentration of the dye solution. The degree of mixing (DoM) is used as a measure of quality and is defined based on the integration across the channel of the difference between the local concentration and the 50% concentration values. DoM is normalized by the 50% concentration value and subtracted from one to yield a parameter that varies from 0 (no mixing) to 1 (perfect mixing). It is shown that there is a high degree of repeatability of concentration distribution as a function of phase of the pulsing cycle. A mixing map is constructed over the range of variables tested which indicates an optimum set of flow and pulsing conditions needed to achieve maximum mixing in the main channel flow. The flow rate ratio between the injectors and main channel is found to be the most influential parameter on overall mixing. The highest DoM in the main channel was found to be 0.89. It is also noticed that improved mixing can occur at very low flow ratios under a unique set of primary flow and low frequency pulsing conditions. In general, there is an inverse relationship between primary flow rate and pulsing frequency to achieve better overall mixing. / Graduation date: 2003
106

Design manual for excavation support using deep mixing technology

Rutherford, Cassandra Janel 17 February 2005 (has links)
Deep mixing (DM) is the modification of in situ soil to increase strength, control deformation, and reduce permeability. Multi–axis augers and mixing paddles are used to construct overlapping columns strengthened by mixing cement with in situ soils. This method has been used for excavation support to increase bearing capacity, reduce movements, prevent sliding failure, control seepage by acting as a cut–off barrier, and as a measure against base heave. DM is effectively used in excavations both in conjunction with and in substitution of traditional techniques, where it results in more economical and convenient solutions for the stability of the system and the prevention of seepage. Although DM is currently used for excavation control in numerous projects, no standard procedure has been developed and the different applications have not been evaluated. As this technique emerges as a more economical and effective alternative to traditional excavation shoring, there is a need for guidelines describing proven procedures for evaluation of design, analysis and construction. The main objective of this research is to develop a methodology to design retaining systems using deep mixing technology. The method will be evaluated using numerical analysis of one selected case history.
107

Assessment of the mixing state and cloud nucleating efficiency of Asian aerosols using aircraft-based measurements of hygroscopicity

Thomas, Timothy William 16 August 2006 (has links)
Global warming theories continue to overestimate their predictions of increased mean global temperatures (Hudson 1991). This would imply that some other influence is counteracting the global warming influences; i.e. a cooling effect. Cloud albedo characteristics are currently being researched to determine the impact clouds have on the net cooling of the atmosphere in relation to the global warming theory. These characteristics are influenced by the type, size, composition, and abundance of aerosol particles that act as cloud condensation nuclei. This study employs Tandem Differential Mobility Analyzer (TDMA) data collected in the vicinity of Japan during the Asian Aerosol Characterization Experiment (ACE-Asia) to investigate the influence of aerosol concentration and composition on the light scattering properties of clouds. Measurements of particle size (Dp), particle growth factor (GF), and relative humidity (RH) yield critical supersaturations (Sc) with the assumption that the soluble part of the particle is composed primarily of one substance. This indirect composition analysis allows us to determine whether the aerosol was internally mixed (particles have uniform composition and yield a single-peak distribution or similar growth factors) or externally mixed (different particles have different compositions yielding multiple peaks in the distribution). Through the use of calculated supersaturations, we can gain insight into cloud droplet activation properties of the samples for various aerosol types, which ultimately allows us to look at the influence of these particles on albedo characteristics of clouds formed by these particles.
108

Design manual for excavation support using deep mixing technology

Rutherford, Cassandra Janel 17 February 2005 (has links)
Deep mixing (DM) is the modification of in situ soil to increase strength, control deformation, and reduce permeability. Multi–axis augers and mixing paddles are used to construct overlapping columns strengthened by mixing cement with in situ soils. This method has been used for excavation support to increase bearing capacity, reduce movements, prevent sliding failure, control seepage by acting as a cut–off barrier, and as a measure against base heave. DM is effectively used in excavations both in conjunction with and in substitution of traditional techniques, where it results in more economical and convenient solutions for the stability of the system and the prevention of seepage. Although DM is currently used for excavation control in numerous projects, no standard procedure has been developed and the different applications have not been evaluated. As this technique emerges as a more economical and effective alternative to traditional excavation shoring, there is a need for guidelines describing proven procedures for evaluation of design, analysis and construction. The main objective of this research is to develop a methodology to design retaining systems using deep mixing technology. The method will be evaluated using numerical analysis of one selected case history.
109

Assessment of the mixing state and cloud nucleating efficiency of Asian aerosols using aircraft-based measurements of hygroscopicity

Thomas, Timothy William 16 August 2006 (has links)
Global warming theories continue to overestimate their predictions of increased mean global temperatures (Hudson 1991). This would imply that some other influence is counteracting the global warming influences; i.e. a cooling effect. Cloud albedo characteristics are currently being researched to determine the impact clouds have on the net cooling of the atmosphere in relation to the global warming theory. These characteristics are influenced by the type, size, composition, and abundance of aerosol particles that act as cloud condensation nuclei. This study employs Tandem Differential Mobility Analyzer (TDMA) data collected in the vicinity of Japan during the Asian Aerosol Characterization Experiment (ACE-Asia) to investigate the influence of aerosol concentration and composition on the light scattering properties of clouds. Measurements of particle size (Dp), particle growth factor (GF), and relative humidity (RH) yield critical supersaturations (Sc) with the assumption that the soluble part of the particle is composed primarily of one substance. This indirect composition analysis allows us to determine whether the aerosol was internally mixed (particles have uniform composition and yield a single-peak distribution or similar growth factors) or externally mixed (different particles have different compositions yielding multiple peaks in the distribution). Through the use of calculated supersaturations, we can gain insight into cloud droplet activation properties of the samples for various aerosol types, which ultimately allows us to look at the influence of these particles on albedo characteristics of clouds formed by these particles.
110

OECD/CSNI ISP NR. 43 Rapid Boron Dilution Transient Tests For Code Verification Post Test Calculation With CFX-4

Gavrilas, M., Höhne, T. 31 March 2010 (has links) (PDF)
The need of the experimental support for validation of the computational tools to be applied to analyze the mixing of diluted slugs has been recognized in various countries. The test series for the International Standard Problem ISP-43 provides a platform for experiences to be applied to the simulation of a well-defined test series. Test A and B of the UM2x4 loop test facility were calculated with the CFD Code CFX-4.3. Sensitivity studies were made to analyze the used turbulence model and numerical errors. The results show good agreement with the experimental data for both tests.

Page generated in 0.0566 seconds