• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 690
  • 147
  • 146
  • 111
  • 61
  • 20
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 8
  • 8
  • Tagged with
  • 1556
  • 159
  • 156
  • 129
  • 126
  • 107
  • 106
  • 105
  • 101
  • 87
  • 83
  • 75
  • 74
  • 71
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The role of microscopic mixing in the description of turbulent diffusion in fluid continuum /

Guo, Ya January 1992 (has links)
No description available.
22

Mesoscale Modeling of Vertical Ozone Profiles in Southern Taiwan

Peng, Yen-Ping 21 December 2007 (has links)
Vertical simulations of ozone were made using a TAPM (The Air Pollution Model) at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was simulated at altitudes of 0, 100, 300, 500 and 1000 m from November 23 to 25 in 2005 and March 21 to 23 in 2006. The surface ozone concentrations that were predicted using TAPM were high (33.7−119 ppbv) in the daytime (10:00−16:00) and were low (10−40 ppbv) at other times, which predictions were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m) than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx) and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.
23

Numerical Modelling and Field Study of Thermal Plume Dispersion in Rivers and Coastal Waters

Pilechi, Abolghasem January 2016 (has links)
Field measurement and numerical modeling are the most popular and fundamental approaches for studying mixing pattern in rivers and coastal waters. Due to the limitations associated with both of these methods they should be used together to verify each other. Extensive field measurement was conducted on the effluent plume from the outfall of the Capital Region waste water treatment plant in the North Saskatchewan River. Tracer was injected at the outfall location and the mixing pattern was investigated by tracking the tracer concentration over a 83 km reach of the river. Flow velocity and depth were also measured simultaneously using an acoustic Doppler current profiler. An integrated in situ fluorometer-GPS measurement technique was introduced and used for field tracer studies in meandering rivers. The full transverse mixing length for the river was estimated to be 130 km. A stream-tube orthogonal curvilinear mesh generation algorithm was also developed for numerical modeling of meandering rivers. The method eliminates the effect of transverse velocity field using the stream-tube concept. The field measured velocity data were used for calculating the stream tube width in each cross-sectional strip. The stream-tube grid was used to develop a practical and efficient coupled field-numerical model for estimating the transverse mixing coefficient in meandering rivers. In this model the computational costs associated with solving the hydrodynamic sub-model is reduced by generating the velocity field from measured data. Using the calibrated model, the average transverse mixing coefficient was calculated for the surveyed reach. Extensive field study was also conducted on the near-field and far-field of a thermal plume discharged by the Ras Laffan Industrial City in Qatar. Three-dimensional perspective of the plume behavior was obtained using field measured temperature and velocity data. Different characteristics of the observed plume including the extent of different zones of the plume, plume thickness, detachment depth and variation of the minimum dilution were investigated and compared with available theories. The contribution of each effective mixing mechanism was also calculated using the field measured data. Vertical confinement was found to be the main effective parameter on the near-field mixing rate which reduced the minimum dilution rate up to 80%. An innovative remote sensing technique was introduced to investigate the near-field mixing of thermal surface plumes. The method generates a calibrated thermal image of the plume using LandSat thermal infrared (TIR) satellite images. Using a combination of remote sensing and numerical modeling, the near-field dynamics of the plume was found to be influenced by the wind action. It was also observed that the previous classification for determining the effect of wind on the plume dynamics did not successfully predict the plume behavior in shallow water. Two non-dimensional parameters, WI1=Uwl/U0 (ratio of the long-shore wind speed (Uwl) to the discharge velocity (Uo) and WI2= Uwc/U0 (ratio of the cross-shore wind (Uwc) to the discharge velocity), were introduced to quantify the effect of wind on the plume dilution and deflection. The plume trajectory was found to be sensitive to a longshore wind greater than 2 m/s, which is half of the reported value for deep water conditions. The surveyed coastal outfall was also modeled using a nested coupled hydrodynamic-wave approach. Validation of the model with field measured and remote sensing data showed that the employed approach can be used for engineering applications such as designing outfall systems and environmental impact assessment purposes. The calibrated model was used to investigate the effect of various effective factors on the mixing process such as lateral confinement, wave-flow interaction, wave dissipation factors and turbulence models. Lateral confinement was found to reduce the mixing potential of the outfall by 50% at the end of the near-field.
24

Effect of Concentration of Sphagnum Peat Moss on Strength of Binder-Treated Soil

Bennett, Michael Dever 21 August 2019 (has links)
Organic soils are formed as deceased plant and animal wildlife is deposited and decomposed in wet environs. These soils have loose structures, low undrained strengths, and high natural water contents, and require improvement before they can be used as foundation materials. Previous researchers have found that the deep mixing method effectively improves organic soils. This study presents a quantitative and reliable method for predicting the strength of one organic soil treated with deep mixing. For this thesis, organic soils were manufactured from commercially available components. Soil-binder mixture specimens with different values of organic matter content, OM, binder content, water-to-binder ratio, and curing time were tested for unconfined compressive strength (UCS). Least-squares regression was used to fit a predictive equation, modified from the findings of previous researchers, to this data. The equation estimates the UCS of a deep-mixed organic soil specimen using its total water-to-binder ratio and mixture dry unit weight. Soil OM is incorporated into the equation as a threshold binder content, aT, required to improve a soil with a given OM; the aT term is used to calculate an effective total water-to-binder ratio. This thesis reached several important conclusions. The modified equation was successfully fitted to the data, meaning that the UCS of some organic soil-binder mixtures may be predicted in the same manner as that of inorganic soil-binder mixtures. The fitting coefficients from the predictive equations indicated that for the soils and binder tested, specimens of organic soil-binder mixtures have a greater relative gain of UCS immediately after mixing compared to specimens of inorganic soil-binder mixtures. However, the inorganic mixtures generally have a greater relative gain of UCS during the curing period. The influence of curing temperature was found to be similar for organic and inorganic mixtures. For the organic soils and binder tested in this research, aT may be expressed as a linear or power function of OM. For both functions, the value of aT was negligible at values of OM below 45%, which reflects the chemistry of the organic matter in the peat moss. For projects involving deep mixing of organic soils, the predictive equation will be used most effectively by fitting it to the results of bench-scale testing and then checking it against the results of field-scale testing. / Master of Science / Organic soils are formed continuously as matter from deceased organisms – mainly plants – is deposited in wet environs and decomposes. Organic soils are most commonly found in swamps, marshes, and coastal areas. These soils make poor foundation materials due to their low strengths. Deep mixing, or soil mixing, involves introducing a binder like Portland cement or lime into soil and blending the soil and binder together to form columns or blocks. Upon mixing, cementitious reactions occur, and the soil-binder mixture gains strength as it cures. Deep mixing may be performed using either a dry binder, known as dry mixing, or a binder-water slurry, referred to as wet mixing. Deep mixing may be used to treat either inorganic or organic soils to depths of 30 meters or greater. Contractor experience has shown that deep mixing is one of the most effective methods of improving the strength of organic soils. Lab-scale studies (by previous researchers) of wet mixing of inorganic soils have found that the strength of soil-binder mixtures can be expressed as a function of mixture curing time and curing temperature, as well as the quantity of binder used, or binder factor, and the consistency of the binder slurry. No corresponding expression has been generated for wet mixing of organic soils, although many studies on the subject have been performed by previous researchers. The goal of this research was to generate such an expression for one organic soil. The soil used was made of sphagnum peat moss, an organic material commonly found in nature, and an inorganic clay used by previous researchers in studies of deep mixing in inorganic soils. The binder used in this research was a Portland cement. For this research, 43 unique soil-binder mixtures were manufactured. Each mixture involved a unique combination of soil organic matter content, binder factor, and binder slurry consistency. After a soil-binder mixture was made, it was divided, placed into cylindrical molds, and allowed to cure. The temperature of the curing environment of the mixture was monitored. Mixture compressive strength was assessed after 7, 14, and 28 days of curing using two cylindrically molded specimens of the mixture. Data on mixture strength was then evaluated to assess whether it could be expressed as a function of the variables tested. iv This research determined that the strength of at least some organic soils improved with wet mixing can be expressed as a function of soil organic matter content, binder factor, binder slurry consistency, and mixture curing time and curing temperature. The function will likely prove useful to deep mixing contractors, who routinely perform lab-scale deep mixing trials on samples of the soils to be improved in the field. Assuming wet mixing is used, the results of the trials are used to select values of binder factor and binder slurry consistency for the project. The function generated from this research will allow deep mixing contractors to select these values more reliably during the lab-scale phase of their work.
25

Mixing of segregation particles

Chang, Yuehsiung January 2011 (has links)
Digitized by Kansas Correctional Industries
26

The dynamics of buoyancy-induced turbulent mixing in a narrow vertical tank

Van Sommeren, Daan Daniël Johannes Antonius January 2014 (has links)
No description available.
27

Investigation of jet pulsation effects on near-nozzle mixing and entrainment

Nygård, Alexander January 2016 (has links)
Turbulent jet flows are very common in engineering applications. One example is that of fuel injection in internal combustion engines, which is closely related to the combustion process. Because of the widespread use, the resulting emissions of such engines have a significant impact on human health and the environment. For a long time, research has sought to improve the mixing in developing turbulent jets to reduce the level of pollutants. Findings have indicated that injection unsteadiness can be used to improve the spray quality. Furthermore, it has been demonstrated that important spray characteristics can be linked to physical phenomena occurring in the region close to the nozzle. In this work, the breakup of an intermittently injected jet is investigated using numerical simulations. Cases of both single-phase and two-phase conditions are studied, characterizing the pulse breakup for different injection timing and varying fluid properties. For single-phase pulsation, mixing efficiency is shown to be connected to the generation of different secondary flow structures and their interaction. The breaking of symmetry along the pulse, responsible for the increased the mixing, is explained through a consideration of vorticity transport. This sequence shows local mixing is faster in the trailing region of pulses that are long enough to form secondary vorticies in the corresponding region. The study is extended to include effects of acceleration and deceleration during injection. The mixing rate depends on the accumulation of jet fluid within the generated flow structures. A rapid injection increase or decrease is found to promote the jet mixing and spreading by triggering jet fluid shedding and destabilization of such flow structures closer to the nozzle. Slow velocity changes promote separation of the injected fluid which instead suppresses near-nozzle mixing. Simulations of intermittent injection of liquid into quiescent gas have also been performed. Primary breakup of liquid pulses is assessed by considering the increase of the liquid-to-gas interface area and volumetric decrease over time. The disintegration process for these cases are less sensitive to the surrounding gas flow because of the higher jet inertia. Increased injection frequency and lower injection to non-injection ratio, is observed to stimulate primary breakup. This is due partly to a stretching action near the nozzle, and partly to a stronger relative influence of collision between liquid pulses. / <p>QC 20160504</p>
28

Flow and mixing in packed columns

蔡燦茂, Choi, Tsan-mau. January 1996 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
29

Performance and robustness of self-consolidating concrete

Ng, Yu-ting, Ivan., 吳汝鋌. January 2008 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
30

Studies of the behaviour of trace metals during mixing in some estuaries of the Solent region

Fang, Tien-Hsi January 1995 (has links)
No description available.

Page generated in 0.0547 seconds