Spelling suggestions: "subject:"coci2"" "subject:"5oi2""
1 |
Maximum element temperature for Kanthal Super 1800S in flowing nitrogen atmosphere with low content of oxygenPersson, Petter January 2010 (has links)
<p><strong>Abstract</strong></p><p>The behavior for MoSi<sub>2</sub> based high temperature heating elements for resistive heating has been examined in elevated temperature and low oxygen content environment. MoSi<sub>2</sub> spontaneously forms a protective SiO<sub>2</sub> scale at high temperature if the amount of oxygen in the ambient atmosphere is sufficient according to the following reaction:</p><p>5MoSi<sub>2</sub> + 7O<sub>2</sub>(g) 7SiO<sub>2</sub> + Mo<sub>5</sub>Si<sub>3</sub></p><p>If the oxygen content at a specific temperature is too low, SiO(g) is more stable than SiO<sub>2</sub> and the following reaction will occur instead:</p><p>2SiO<sub>2</sub> 2SiO(g) + O<sub>2</sub>(g)</p><p>Then surface will be Si-deplated and finally, the base material will be exposed. Si and Mo will oxidize and degas from the surface as SiO and MoO<sub>3</sub> with severe diameter reduction of the heating element as a result. It is therefore of high interest to find the relationship between the maximum element temperature and the oxygen content in the ambient atmosphere to be able to fully exploit the potential of the heating elements and also to aid and help diagnose customer complaints.</p><p> </p><p>After 14 full scale tests in a custom made atmospheric furnace, the following equation could be calculated:</p><p>p(O<sub>2</sub>) = 1.748·10<sup>0.01677·T·log(e)-10</sup></p><p>The equation gives the minimum oxygen content at a specified temperature. The equation is based on 100 hours tests at atmospheric pressure, gas flow rate of 4 liter per minute, varying temperature and varying oxygen content. Nitrogen has been used as carrier gas for the oxygen.</p>
|
2 |
Maximum element temperature for Kanthal Super 1800S in flowing nitrogen atmosphere with low content of oxygenPersson, Petter January 2010 (has links)
Abstract The behavior for MoSi2 based high temperature heating elements for resistive heating has been examined in elevated temperature and low oxygen content environment. MoSi2 spontaneously forms a protective SiO2 scale at high temperature if the amount of oxygen in the ambient atmosphere is sufficient according to the following reaction: 5MoSi2 + 7O2(g) 7SiO2 + Mo5Si3 If the oxygen content at a specific temperature is too low, SiO(g) is more stable than SiO2 and the following reaction will occur instead: 2SiO2 2SiO(g) + O2(g) Then surface will be Si-deplated and finally, the base material will be exposed. Si and Mo will oxidize and degas from the surface as SiO and MoO3 with severe diameter reduction of the heating element as a result. It is therefore of high interest to find the relationship between the maximum element temperature and the oxygen content in the ambient atmosphere to be able to fully exploit the potential of the heating elements and also to aid and help diagnose customer complaints. After 14 full scale tests in a custom made atmospheric furnace, the following equation could be calculated: p(O2) = 1.748·100.01677·T·log(e)-10 The equation gives the minimum oxygen content at a specified temperature. The equation is based on 100 hours tests at atmospheric pressure, gas flow rate of 4 liter per minute, varying temperature and varying oxygen content. Nitrogen has been used as carrier gas for the oxygen.
|
3 |
Oxidationsverhalten hochgeschwindigkeitsflammgespritzter Schichten auf Basis von MolybdänsilizidenReisel, Guido 21 July 2003 (has links) (PDF)
Schichten auf Basis von Molybdändisilizid werden mittels Hochgeschwindigkeitsflammspritzens an Stelle der heute gebräuchlichen Plasmaspritzverfahren erzeugt. Für die Herstellung der Spritzpulver kommen die Hochenergiemahlung und anschließend das drucklose Sintern zum Einsatz.
Zur gezielten Einstellung der Schichtporosität werden relevante Prozessparameter mit Hilfe der statistischen Versuchsplanung ermittelt. Anschließend erfolgt die Abscheidung von MoSi2-Schichten mit unterschiedlichen Porositätsniveaus.
Als für die Nutzung von Molybdändisilizidschichten im Hochtemperaturbereich relevanteste Systemeigenschaft wird das Oxidationsverhalten bei unterschiedlichen Temperaturen im Bereich von 500 °C bis 1500 °C untersucht. Dafür kommen thermogravimetrische Methoden, Temperaturwechselfestigkeits- und Thermoschockversuche zur Anwendung. Ein Praxistest in einer Hausmüllverbrennungsanlage prüft die Korrosionsbeständigkeit der MoSi2-Beschichtungen in einer möglichen Anwendung.
Zusätzlich zur Analyse der Schichtgefüge mit licht- und elektronenmikroskopischen Verfahren, Röntgenfeinstrukturanalyse und Sauerstoffgehaltsmessungen werden die mechanischen Kennwerte Oberflächenrauheit und Mikrohärte bestimmt.
Die Untersuchungsergebnisse weisen nach, dass hochgeschwindigkeitsflammgespritzte Molybdändisilizidschichten nach entsprechender Gefügeoptimierung im Temperaturbereich von 500 °C bis 1500 °C, vor allem bei Temperaturen oberhalb von 1200 °C, als Oxidationsschutzschichten empfohlen werden können.
|
4 |
Elaboration par Spark Plasma Sintering et caractérisation de composites et multi-couches zircone yttrié/MoSi2(B) pour application barrière thermique auto-cicatrisante / Elaboration by Spark Plasma Sintering and characterization of yttria partially stabilized zirconia/MoSi2(B) composites and multi-layer systems for self-healing thermal barrier coatingsNozahic, Franck 28 November 2016 (has links)
La réparation des revêtements barrières thermiques endommagés par fissuration entraine des coûts de maintenance très élevés. Dans cette étude, qui s’inscrit dans le cadre du projet Européen FP7-SAMBA, il a été proposé d’utiliser des particules de MoSi2(B), revêtues d’une couche d’alumine, comme agent cicatrisant. L’oxydation de celles-ci doit entrainer la formation de silice amorphe qui s’écoule dans la fissure puis réagit avec la barrière thermique en zircone yttriée pour former du zircon. Cette étude traite dans un premier temps de l’élaboration par Spark Plasma Sintering (SPS) de composites modèles composés de zircone yttriée et de particules de MoSi2(B) non revêtues. Les propriétés mécaniques (ténacité, dureté, module d’Young) et thermiques (conductivité thermique, coefficient de dilatation) de ces composites ont été déterminées. Les travaux se sont ensuite orientés vers l’étude du comportement en oxydation cyclique à 1100 °C sous air de ces composites par thermogravimétrie cyclique. La modélisation de l’oxydation de ces composites mais aussi de systèmes multi-couches MoSi2(B)/YPSZ modèles a permis de déterminer les mécanismes et les cinétiques de formation de la silice et du zircon. Une augmentation significative des cinétiques de formation de ces oxydes a été observée lorsque le bore est ajouté dans le MoSi2 ce qui peut être potentiellement très bénéfique pour la cicatrisation des fissures. L'utilisation du procédé SPS a permis de réaliser des systèmes barrières thermiques auto-cicatrisants sur substrats en superalliages à base de nickel revêtus à partir de zircone yttriée et de particules de MoSi2(B) elles-mêmes revêtues d’une couche d’alumine. La pré-oxydation des substrats revêtus favorise la croissance d’une couche d’alumine qui empêche la formation de siliciures par réaction entre les particules et la sous-couche. Ces revêtements présentent une bonne résistance à l’endommagement en cyclage thermique. Les observations post-mortem de ces systèmes mettent en évidence la cicatrisation locale de fissures par formation de silice et de zircon. Bien qu’il ne soit pas possible aujourd’hui de dire si la présence de ces particules augmente ou non la durée de vie de la barrière thermique, par manque de systèmes de référence, ces observations très encourageantes démontrent expérimentalement la validité du concept d’auto-cicatrisation des barrières thermiques proposé dans le cadre de ce projet. / Repair of thermal barrier coatings (TBC) systems damaged by cracking leads to significant maintenance costs. In this project (FP7-SAMBA), it was proposed to use MoSi2(B) particles, coated with an alumina shell, as healing agent for TBCs. Healing particles intercepted by cracks will oxidize preferentially, leading to the formation of amorphous SiO2, which flows into cracks and subsequently reacts with the TBC leading to the formation of a load bearing ZrSiO4 phase. In this study model composite materials were prepared from mixtures of yttria partially stabilized zirconia (YPSZ) and uncoated MoSi2(B) particles by using Spark Plasma Sintering (SPS) technique. Mechanical (toughness, hardness, Young modulus) and thermal (conductivity, coefficient of thermal expansion) properties of these materials were determined. Then, cyclic thermogravimetry analysis (CTGA) was used to study the oxidation behavior of these materials at 1100 °C in air. Kinetics of silica and zircon formations were determined through modelling of the oxidation of composite materials but also the oxidation of multi-layer YPSZ/MoSi2(B) materials. Boron addition was shown to significantly increase silica and zircon formation rates which could be very beneficial for the healing of the cracks. Then, SPS technique was used to sinter self-healing thermal barrier coatings on bond coated Ni-based superalloys from mixtures of YPSZ and Al2O3-coated MoSi2(B) particles. The pre-oxidation of coated substrates was shown to prevent the detrimental formation of silicides by the reaction of MoSi2(B) particles and the bond coat. Good results were obtained upon thermal cycling and post-mortem observations highlight local healing of cracks. At this time, it is too early to quantify the potential effect of the particles on the TBC lifetime due to a lack of reference systems and statistics. However, these observations demonstrate, experimentally, the validity of the self-healing mechanism proposed in the framework of this project.
|
5 |
Oxidationsverhalten hochgeschwindigkeitsflammgespritzter Schichten auf Basis von MolybdänsilizidenReisel, Guido 08 July 2003 (has links)
Schichten auf Basis von Molybdändisilizid werden mittels Hochgeschwindigkeitsflammspritzens an Stelle der heute gebräuchlichen Plasmaspritzverfahren erzeugt. Für die Herstellung der Spritzpulver kommen die Hochenergiemahlung und anschließend das drucklose Sintern zum Einsatz.
Zur gezielten Einstellung der Schichtporosität werden relevante Prozessparameter mit Hilfe der statistischen Versuchsplanung ermittelt. Anschließend erfolgt die Abscheidung von MoSi2-Schichten mit unterschiedlichen Porositätsniveaus.
Als für die Nutzung von Molybdändisilizidschichten im Hochtemperaturbereich relevanteste Systemeigenschaft wird das Oxidationsverhalten bei unterschiedlichen Temperaturen im Bereich von 500 °C bis 1500 °C untersucht. Dafür kommen thermogravimetrische Methoden, Temperaturwechselfestigkeits- und Thermoschockversuche zur Anwendung. Ein Praxistest in einer Hausmüllverbrennungsanlage prüft die Korrosionsbeständigkeit der MoSi2-Beschichtungen in einer möglichen Anwendung.
Zusätzlich zur Analyse der Schichtgefüge mit licht- und elektronenmikroskopischen Verfahren, Röntgenfeinstrukturanalyse und Sauerstoffgehaltsmessungen werden die mechanischen Kennwerte Oberflächenrauheit und Mikrohärte bestimmt.
Die Untersuchungsergebnisse weisen nach, dass hochgeschwindigkeitsflammgespritzte Molybdändisilizidschichten nach entsprechender Gefügeoptimierung im Temperaturbereich von 500 °C bis 1500 °C, vor allem bei Temperaturen oberhalb von 1200 °C, als Oxidationsschutzschichten empfohlen werden können.
|
6 |
Investigations Of Mechanical And Thermoelectric Properties Of Group (VIB) Transition Metal DisilicidesDasgupta, Titas 12 1900 (has links)
Transition Metal (TM) silicides are potential materials for different high temperature applications due to their high melting points and chemical stability at elevated temperatures. In the present work, the possible use of Gr (VIB) disilicides: MoSi2 and CrSi2 for high temperature structural application and thermopower generation respectively are investigated. Literature reports on MoSi2 indicate this material to have excellent mechanical and thermal behaviors at temperatures greater than 1273 K. The major problems limiting its use are the low temperature brittleness and oxidation at intermediate temperatures and form the scope of this work. Also, CrSi2 is reported to be a narrow band gap semiconductor. Its feasibility as a thermoelectric material for power generation is investigated.
The first chapter briefly summarizes the literature on MoSi2 and CrSi2 relevant to structural and thermoelectric applications respectively. Based on the available literature, the scope of further work is discussed. The second chapter describes the methods of synthesis employed for these materials and the characterization techniques adopted. Some experimental setups like thermal conductivity and hot pressing unit that were fabricated as part of the work are described in detail. The thermal conductivity apparatus is based on the principle of parallel heat flow technique. It allows accurate measurement of K and S in the temperature range 300-700 K. The induction based hot-pressing unit allows compaction of polycrystalline powders to near theoretical densities thereby allowing quantitative evaluation of the physical properties.
In the third chapter, an understanding of ductility/brittleness based of electron charge density distribution is attempted. The electron charge density in Tin and simple metals (BCC and FCC) is analyzed using Bader’s Atoms in Molecule (AIM) theory. Also the relevant surface and dislocation energies in these materials are calculated according to the Rice Model. It is found that the electron densities at the critical points correlate in a simple way with the relevant stacking fault and surface energetics. Based on these results, a ductility parameter (DM odel) based on electron charge distribution, to predict the effects of chemical substitutions on ductility/brittleness in materials is proposed.
In the fourth chapter, possible elements to impart ductility in MoSi2 are identified based on the DM odel values. Calculations indicate, Nb, Ta, Al, Mg and Ga to be suitable candidates for improving ductility in MoSi2. Also oxidation studies based on present experiments and reported literature data reveal, Al to improve the intermediate temperature (773-873 K) oxidation behavior. Thus to simultaneously improve the low temperature ductility and oxidation resistance, Nb and Al were identified as suitable candidates.
In the fifth chapter, the experimental data of Nb and Al co-substituted MoSi2 samples are reported. Oxidation studies carried out by thermogravimetry show improved oxidation resistance in Nb and Al co-substituted samples compared to pure MoSi2 in the temperature range of 773-873 K. Mechanical characterization was carried out for (Mo0.99Nb0.01)(Si0.96Al0.04)2 co-substituted composition. Compression testing at room temperature show plastic deformation at low strain rates (10−3 /sec). Indentation experiments show a reduction in the hardness and stiffness compared to pure MoSi2. There is also an increase in the fracture toughness (K1C ) value with the fracture modes being predominantly transgranular.
The sixth chapter describes the structural, thermal and transport properties of CrSi2. Structural refinement was carried out by Rietveld method and the positional, thermal parameters and occupancy were fixed. Thermo-gravimetric analysis shows oxidation resistance in powdered samples upto 1000 K. Thermal expansion (α) studies reveal anisotropy in the α values with an unusual decrease in the average αV values between 500 and 600 K. Measurements of electrical resistivity and seebeck coefficient indicate a degenerate semiconducting behavior. Electronic band structure calculations indicate a narrow indirect band gap (EG) material with EG~0.35 eV. Thermal conductivity (K) measurements show a decrease in K value with increasing temperature. Calculation of the thermoelectric figure of merit (ZT) show a maximum value of 0.18 at 800 K for the temperature range studied. Based on an analysis of the experimental and theoretical results, it is identified that further improvements in ZT of CrSi2 may be possible by reducing the lattice thermal conductivity and optimization of the carrier concentration.
In chapter seven, the effect of particle size on ZT of CrSi2 is studied. Nano powders of CrSi2 were prepared by mechanical milling. Contamination is found to be a major problem during milling and the different milling parameters (milling speed, atmosphere, dispersant etc) were optimized to minimize contamination. The milled powders were further hot pressed to achieve high densities in a short duration thereby minimizing the grain growth. It is observed that the lattice thermal conductivity is reduced significantly with decreasing grain size. Measurements of ZT show a maximum value of 0.20 in the milled sample compared to 0.14 in arc melted CrSi2 at 600 K.
In chapter eight the effect of chemical substitutions on ZT of CrSi2 is studied. Mn substitutions in Cr site were carried out to study the effect of atomic mass on lattice thermal conductivity (KP ). Al substitutions in Si site were carried out to tune the Fermi level. Results of Mn substitution show a large decrease in KP but also a reduction in the thermoelectric power factor (S2σ). The maximum ZT observed in the Mn substituted samples was 0.12 at 600 K. Al substitution results in an increase in the thermoelectric power factor and a subsequent increase in ZT. The maximum ZT observed was 0.27 at 700 K for 10% substitution of Al in Si site.
The work reported in the thesis has been carried out by the candidate as a part of the Ph.D. training programme at Materials Research Centre, Indian Institute of Science, Bangalore, India. He hopes that this work would constitute a worthwhile contribution towards (a) basic understanding of ductility/brittleness in materials and understanding the effects of chemical substitutions, (b) Suitability of chemically substituted MoSi2 to overcome the problems of low temperature brittleness and oxidation. (c) Development of CrSi2 as a high temperature thermoelectric material.
|
Page generated in 0.0245 seconds