• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimations paramétriques et non-paramétriques pour des modèles de diffusions périodiques / Parametric and not - parametric estimations for models of periodic distributions

El Waled, Khalil 25 November 2015 (has links)
Cette thèse est consacrée au problème d'estimation de la fonction de dérive de certains modèles de processus stochastiques périodiques lorsque la durée d'observation tend vers l'infini. Aucune hypothèse de récurrence n'est posée a priori.Dans un premier temps nous considérons le modèle du type signal plus bruit dζt = f (t, θ)dt + σ(t)dWt,; et puis nous étudions l'estimation du paramètre θ à partir d'une observation continue et puis d'une observation discrète du processus {ζt} sur l'intervalle [0; T]. Les fonctions f (·, ·) et σ(·) sont continues et périodiques en t de même période P > 0, σ(·) > 0 et θ ∈ Θ ⊂R. Nous établissons la convergence en probabilité d'un estimateur du maximum de vraisemblance θˆT , sa normalité asymptotique et son efficacité asymptotique minimax. Lorsque f (t, θ) = θf (t), l'expression de θˆT est explicite et nous obtenons la convergence en moyenne quadratique aussi bien pour le cas d'une observation continue que pour le cas d'une observation discrète. De plus, nous déduisons la convergence presque sûre dans le cas d'une observation continue.Dans la seconde partie nous traitons l'estimation non-paramétrique de la fonction f(_) pour les modèles périodiques du type signal plus bruit et du type Ornstein-Uhlenbeck donnés par dζt = f (t)dt + σ(t)dWt, dξt = f (t)ξtdt + dWt. Pour le premier modèle, un estimateur à noyau périodique est construit, la convergence en moyenne quadratique uniformément sur [0; P] et presque sûre de cet estimateur est établie ainsi que sa normalité asymptotique. Dans le cas du modèle d'Ornstein-Uhlenbeck, la convergence du biais ainsi que la convergence en moyenne quadratique uniformément sur [0; P] sont prouvées, et leurs vitesses de convergence sont étudiées. / In this thesis, we consider a drift estimation problem of a certain class of stochastic periodic processes when the length of observation goes to infinity. Firstly, we deal with the linear periodic signal plus noise model dζt = f (t, θ)dt + σ(t)dWt, ;and we study the parametric estimation from a continuous and discrete observation of the process f_tg throughout the interval [0; T]. Using the maximum likelihood method we show the existence of an estimator θˆT which is consistent, asymptotically normal and asymptotically efficient in the sens minimax. When f(t; _) = _f(t), the expression of ^_T is explicit and we obtain the mean square convergence in the both continuous and discrete observation cases. In addition, we deduce the strong consistency in the case of continuous observation.Secondly, we consider the nonparametric estimation problem of the function f(_) for the next two periodic models of type signal plus noise and Ornstein-Uhlenbeckd_t = f(t)dt + _(t)dWt; d_t = f(t)_tdt + dWt:For the signal plus noise model, we build a kernel estimator, the convergence in mean square uniformly over [0; P] and almost sure convergence are established, as well as the asymptotic normality. For the Ornstein-Uhlenbeck model, we prove the convergence uniformly over [0; P] of the bias and the mean square convergence. Moreover, we study the speed of these convergences.
2

Théorèmes limites pour des martingales vectorielles en temps continu et applications statistiques.

Fathallah, Hamdi 19 February 2010 (has links) (PDF)
Cette thèse se compose de trois parties. Dans la première partie, en utilisant les théorèmes limites par moyennisation logarithmique pour des martingales continues en temps continu, on construit un estimateur du couple $(\theta,\sigma^{2})$ pour un modèle autorégressif gaussien stable à temps continu et on montre que cet estimateur est asymptotiquement distribué comme un couple de variables aléatoires gaussiennes indépendantes quelle que soit la loi de l'\état initial $X_{0}$. La deuxième partie est consacrée à établir des résultats autour du théorème limite presque-sûre pour des martingales vectorielles quasi-continues à gauche en temps continu et à croissance explosive ou mixte. On applique les résultats obtenus au modèle d'Ornstein-Uhlenbeck bivarié utilisé en modélisation biologique et en mathématiques financières. Dans la dernière partie, on établit pour l'estimateur des moindres carrés $\hat{\theta}$ de $\theta$ d'un modèle autorégressif gaussien à temps continu non nécessairement stable, un théorème limite centrale presque-sûre (TLCPS), une loi forte quadratique associée au TLCPS et un théorème de la limite centrale logarithmique. Dans le cas stable, on propose d'utiliser l'estimateur des moindres carrés pondéré $\tilde{\theta}$ de $\theta$ pour améliorer les vitesses de convergence logarithmique dans les théorèmes obtenus. Dans le cas instable, on établit, pour l'estimateur des moindres carrés $\hat{\theta}$, les mêmes type de propriétés asymptotiques avec une vitesse de convergence arithmétique.

Page generated in 0.0615 seconds