• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 4
  • 2
  • Tagged with
  • 39
  • 39
  • 32
  • 29
  • 29
  • 27
  • 26
  • 24
  • 19
  • 19
  • 19
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

L'électrophysiologie temps-réel en neuroscience cognitive : vers des paradigmes adaptatifs pour l'étude de l'apprentissage et de la prise de décision perceptive chez l'homme / Real-time electrophysiology in cognitive neuroscience : towards adaptive paradigms to study perceptual learning and decision making in humans

Sanchez, Gaëtan 27 June 2014 (has links)
Aujourd’hui, les modèles computationnels de l'apprentissage et de la prise de décision chez l'homme se sont raffinés et complexifiés pour prendre la forme de modèles génératifs des données psychophysiologiques de plus en plus réalistes d’un point de vue neurobiologique et biophysique. Dans le même temps, le nouveau champ de recherche des interfaces cerveau-machine (ICM) s’est développé de manière exponentielle. L'objectif principal de cette thèse était d'explorer comment le paradigme de l'électrophysiologie temps-réel peut contribuer à élucider les processus d'apprentissage et de prise de décision perceptive chez l’homme. Au niveau expérimental, j'ai étudié les décisions perceptives somatosensorielles grâce à des tâches de discrimination de fréquence tactile. En particulier, j'ai montré comment un contexte sensoriel implicite peut influencer nos décisions. Grâce à la magnétoencéphalographie (MEG), j'ai pu étudier les mécanismes neuronaux qui sous-tendent cette adaptation perceptive. L’ensemble de ces résultats renforce l'hypothèse de la construction implicite d’un a priori ou d'une référence interne au cours de l'expérience. Aux niveaux théoriques et méthodologiques, j'ai proposé une vue générique de la façon dont l'électrophysiologie temps-réel pourrait être utilisée pour optimiser les tests d'hypothèses, en adaptant le dessin expérimental en ligne. J'ai pu fournir une première validation de cette démarche adaptative pour maximiser l'efficacité du dessin expérimental au niveau individuel. Ce travail révèle des perspectives en neurosciences fondamentales et cliniques ainsi que pour les ICM / Today, psychological as well as physiological models of perceptual learning and decision-making processes have recently become more biologically plausible, leading to more realistic (and more complex) generative models of psychophysiological observations. In parallel, the young but exponentially growing field of Brain-Computer Interfaces (BCI) provides new tools and methods to analyze (mostly) electrophysiological data online. The main objective of this PhD thesis was to explore how the BCI paradigm could help for a better understanding of perceptual learning and decision making processes in humans. At the empirical level, I studied decisions based on tactile stimuli, namely somatosensory frequency discrimination. More specifically, I showed how an implicit sensory context biases our decisions. Using magnetoencephalography (MEG), I was able to decipher some of the neural correlates of those perceptual adaptive mechanisms. These findings support the hypothesis that an internal perceptual-reference builds up along the course of the experiment. At the theoretical and methodological levels, I propose a generic view and method of how real-time electrophysiology could be used to optimize hypothesis testing, by adapting the experimental design online. I demonstrated the validity of this online adaptive design optimization (ADO) approach to maximize design efficiency at the individual level. I also discussed the implications of this work for basic and clinical neuroscience as well as BCI itself
22

Latent variable language models

Tan, Shawn 08 1900 (has links)
No description available.
23

Deep Learning for Video Modelling

Mastropietro, Olivier 12 1900 (has links)
No description available.
24

Improved training of energy-based models

Kumar, Rithesh 06 1900 (has links)
No description available.
25

Generative models : a critical review

Lamb, Alexander 07 1900 (has links)
No description available.
26

Advances in deep learning with limited supervision and computational resources

Almahairi, Amjad 12 1900 (has links)
Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de la technologie pour une vaste gamme de tâches, comme la reconnaissance d'objets, la modélisation du langage et la traduction automatique. Mis à part le progrès important établi dans les architectures et les procédures de formation des réseaux de neurones profonds, deux facteurs ont été la clé du succès remarquable de l'apprentissage profond : la disponibilité de grandes quantités de données étiquetées et la puissance de calcul massive. Cette thèse par articles apporte plusieurs contributions à l'avancement de l'apprentissage profond, en particulier dans les problèmes avec très peu ou pas de données étiquetées, ou avec des ressources informatiques limitées. Le premier article aborde la question de la rareté des données dans les systèmes de recommandation, en apprenant les représentations distribuées des produits à partir des commentaires d'évaluation de produits en langage naturel. Plus précisément, nous proposons un cadre d'apprentissage multitâches dans lequel nous utilisons des méthodes basées sur les réseaux de neurones pour apprendre les représentations de produits à partir de textes de critiques de produits et de données d'évaluation. Nous démontrons que la méthode proposée peut améliorer la généralisation dans les systèmes de recommandation et atteindre une performance de pointe sur l'ensemble de données Amazon Reviews. Le deuxième article s'attaque aux défis computationnels qui existent dans l'entraînement des réseaux de neurones profonds à grande échelle. Nous proposons une nouvelle architecture de réseaux de neurones conditionnels permettant d'attribuer la capacité du réseau de façon adaptative, et donc des calculs, dans les différentes régions des entrées. Nous démontrons l'efficacité de notre modèle sur les tâches de reconnaissance visuelle où les objets d'intérêt sont localisés à la couche d'entrée, tout en maintenant une surcharge de calcul beaucoup plus faible que les architectures standards des réseaux de neurones. Le troisième article contribue au domaine de l'apprentissage non supervisé, avec l'aide du paradigme des réseaux antagoniste génératifs. Nous introduisons un cadre fléxible pour l'entraînement des réseaux antagonistes génératifs, qui non seulement assure que le générateur estime la véritable distribution des données, mais permet également au discriminateur de conserver l'information sur la densité des données à l'optimum global. Nous validons notre cadre empiriquement en montrant que le discriminateur est capable de récupérer l'énergie de la distribution des données et d'obtenir une qualité d'échantillons à la fine pointe de la technologie. Enfin, dans le quatrième article, nous nous attaquons au problème de l'apprentissage non supervisé à travers différents domaines. Nous proposons un modèle qui permet d'apprendre des transformations plusieurs à plusieurs à travers deux domaines, et ce, à partir des données non appariées. Nous validons notre approche sur plusieurs ensembles de données se rapportant à l'imagerie, et nous montrons que notre méthode peut être appliquée efficacement dans des situations d'apprentissage semi-supervisé. / Deep neural networks are the cornerstone of state-of-the-art systems for a wide range of tasks, including object recognition, language modelling and machine translation. In the last decade, research in the field of deep learning has led to numerous key advances in designing novel architectures and training algorithms for neural networks. However, most success stories in deep learning heavily relied on two main factors: the availability of large amounts of labelled data and massive computational resources. This thesis by articles makes several contributions to advancing deep learning, specifically in problems with limited or no labelled data, or with constrained computational resources. The first article addresses sparsity of labelled data that emerges in the application field of recommender systems. We propose a multi-task learning framework that leverages natural language reviews in improving recommendation. Specifically, we apply neural-network-based methods for learning representations of products from review text, while learning from rating data. We demonstrate that the proposed method can achieve state-of-the-art performance on the Amazon Reviews dataset. The second article tackles computational challenges in training large-scale deep neural networks. We propose a conditional computation network architecture which can adaptively assign its capacity, and hence computations, across different regions of the input. We demonstrate the effectiveness of our model on visual recognition tasks where objects are spatially localized within the input, while maintaining much lower computational overhead than standard network architectures. The third article contributes to the domain of unsupervised learning with the generative adversarial networks paradigm. We introduce a flexible adversarial training framework, in which not only the generator converges to the true data distribution, but also the discriminator recovers the relative density of the data at the optimum. We validate our framework empirically by showing that the discriminator is able to accurately estimate the true energy of data while obtaining state-of-the-art quality of samples. Finally, in the fourth article, we address the problem of unsupervised domain translation. We propose a model which can learn flexible, many-to-many mappings across domains from unpaired data. We validate our approach on several image datasets, and we show that it can be effectively applied in semi-supervised learning settings.
27

Sequential modeling, generative recurrent neural networks, and their applications to audio

Mehri, Soroush 12 1900 (has links)
No description available.
28

Locality and compositionality in representation learning for complex visual tasks

Sylvain, Tristan 03 1900 (has links)
L'utilisation d'architectures neuronales profondes associée à des innovations spécifiques telles que les méthodes adversarielles, l’entraînement préalable sur de grands ensembles de données et l'estimation de l'information mutuelle a permis, ces dernières années, de progresser rapidement dans de nombreuses tâches de vision par ordinateur complexes telles que la classification d'images de catégories préalablement inconnues (apprentissage zéro-coups), la génération de scènes ou la classification multimodale. Malgré ces progrès, il n’est pas certain que les méthodes actuelles d’apprentissage de représentations suffiront à atteindre une performance équivalente au niveau humain sur des tâches visuelles arbitraires et, de fait, cela pose des questions quant à la direction de la recherche future. Dans cette thèse, nous nous concentrerons sur deux aspects des représentations qui semblent nécessaires pour atteindre de bonnes performances en aval pour l'apprentissage des représentations : la localité et la compositionalité. La localité peut être comprise comme la capacité d'une représentation à retenir des informations locales. Ceci sera pertinent dans de nombreux cas, et bénéficiera particulièrement à la vision informatique, domaine dans lequel les images naturelles comportent intrinsèquement des informations locales, par exemple des parties pertinentes d’une image, des objets multiples présents dans une scène... D'autre part, une représentation compositionnelle peut être comprise comme une représentation qui résulte d'une combinaison de parties plus simples. Les réseaux neuronaux convolutionnels sont intrinsèquement compositionnels, et de nombreuses images complexes peuvent être considérées comme la composition de sous-composantes pertinentes : les objets et attributs individuels dans une scène, les attributs sémantiques dans l'apprentissage zéro-coups en sont deux exemples. Nous pensons que ces deux propriétés détiennent la clé pour concevoir de meilleures méthodes d'apprentissage de représentations. Dans cette thèse, nous présentons trois articles traitant de la localité et/ou de la compositionnalité, et de leur application à l'apprentissage de représentations pour des tâches visuelles complexes. Dans le premier article, nous introduisons des méthodes de mesure de la localité et de la compositionnalité pour les représentations d'images, et nous démontrons que les représentations locales et compositionnelles sont plus performantes dans l'apprentissage zéro-coups. Nous utilisons également ces deux notions comme base pour concevoir un nouvel algorithme d'apprentissage des représentations qui atteint des performances de pointe dans notre cadre expérimental, une variante de l'apprentissage "zéro-coups" plus difficile où les informations externes, par exemple un pré-entraînement sur d'autres ensembles de données d'images, ne sont pas autorisées. Dans le deuxième article, nous montrons qu'en encourageant un générateur à conserver des informations locales au niveau de l'objet, à l'aide d'un module dit de similarité de graphes de scène, nous pouvons améliorer les performances de génération de scènes. Ce modèle met également en évidence l'importance de la composition, car de nombreux composants fonctionnent individuellement sur chaque objet présent. Pour démontrer pleinement la portée de notre approche, nous effectuons une analyse détaillée et proposons un nouveau cadre pour évaluer les modèles de génération de scènes. Enfin, dans le troisième article, nous montrons qu'en encourageant une forte information mutuelle entre les représentations multimodales locales et globales des images médicales en 2D et 3D, nous pouvons améliorer la classification et la segmentation des images. Ce cadre général peut être appliqué à une grande variété de contextes et démontre les avantages non seulement de la localité, mais aussi de la compositionnalité, car les représentations multimodales sont combinées pour obtenir une représentation plus générale. / The use of deep neural architectures coupled with specific innovations such as adversarial methods, pre-training on large datasets and mutual information estimation has in recent years allowed rapid progress in many complex vision tasks such as zero-shot learning, scene generation, or multi-modal classification. Despite such progress, it is still not clear if current representation learning methods will be enough to attain human-level performance on arbitrary visual tasks, and if not, what direction should future research take. In this thesis, we will focus on two aspects of representations that seem necessary to achieve good downstream performance for representation learning: locality and compositionality. Locality can be understood as a representation's ability to retain local information. This will be relevant in many cases, and will specifically benefit computer vision where natural images inherently feature local information, i.e. relevant patches of an image, multiple objects present in a scene... On the other hand, a compositional representation can be understood as one that arises from a combination of simpler parts. Convolutional neural networks are inherently compositional, and many complex images can be seen as composition of relevant sub-components: individual objects and attributes in a scene, semantic attributes in zero-shot learning are two examples. We believe both properties hold the key to designing better representation learning methods. In this thesis, we present 3 articles dealing with locality and/or compositionality, and their application to representation learning for complex visual tasks. In the first article, we introduce ways of measuring locality and compositionality for image representations, and demonstrate that local and compositional representations perform better at zero-shot learning. We also use these two notions as the basis for designing class-matching deep info-max, a novel representation learning algorithm that achieves state-of-the-art performance on our proposed "Zero-shot from scratch" setting, a harder zero-shot setting where external information, e.g. pre-training on other image datasets is not allowed. In the second article, we show that by encouraging a generator to retain local object-level information, using a scene-graph similarity module, we can improve scene generation performance. This model also showcases the importance of compositionality as many components operate individually on each object present. To fully demonstrate the reach of our approach, we perform detailed analysis, and propose a new framework to evaluate scene generation models. Finally, in the third article, we show that encouraging high mutual information between local and global multi-modal representations of 2D and 3D medical images can lead to improvements in image classification and segmentation. This general framework can be applied to a wide variety of settings, and demonstrates the benefits of not only locality, but also of compositionality as multi-modal representations are combined to obtain a more general one.
29

On representation learning for generative models of text

Subramanian, Sandeep 08 1900 (has links)
Cette thèse fait des petits pas dans la construction et la compréhension des systèmes d'apprentissage des représentations neuronales et des modèles génératifs pour le traitement du langage naturel. Il est présenté comme une thèse par article qui contient quatre travaux. Dans le premier article, nous montrons que l'apprentissage multi-tâches peut être utilisé pour combiner les biais inductifs de plusieurs tâches d'apprentissage auto-supervisées et supervisées pour apprendre des représentations de phrases distribuées de longueur fixe à usage général qui obtiennent des résultats solides sur les tâches d'apprentissage par transfert en aval sans tout modèle de réglage fin. Le deuxième article s'appuie sur le premier et présente un modèle génératif en deux étapes pour le texte qui modélise la distribution des représentations de phrases pour produire de nouveaux plongements de phrases qui servent de "contour neuronal" de haut niveau qui est reconstruit en mots avec un récurrent neuronal autorégressif conditionnel décodeur. Le troisième article étudie la nécessité de représentations démêlées pour la génération de texte contrôlable. Une grande partie des systèmes de génération de texte contrôlables reposent sur l'idée que le contrôle d'un attribut (ou d'un style) particulier nécessite la construction de représentations dissociées qui séparent le contenu et le style. Nous démontrons que les représentations produites dans des travaux antérieurs qui utilisent la formation contradictoire du domaine ne sont pas dissociées dans la pratique. Nous présentons ensuite une approche qui ne vise pas à apprendre des représentations démêlées et montrons qu'elle permet d'obtenir des résultats nettement meilleurs que les travaux antérieurs. Dans le quatrième article, nous concevons des modèles de langage de transformateur qui apprennent les représentations à plusieurs échelles de temps et montrent que ceux-ci peuvent aider à réduire l'empreinte mémoire importante de ces modèles. Il présente trois architectures multi-échelles différentes qui présentent des compromis favorables entre la perplexité et l'empreinte mémoire. / This thesis takes baby steps in building and understanding neural representation learning systems and generative models for natural language processing. It is presented as a thesis by article that contains four pieces of work. In the first article, we show that multi-task learning can be used to combine the inductive biases of several self-supervised and supervised learning tasks to learn general-purpose fixed-length distributed sentence representations that achieve strong results on downstream transfer learning tasks without any model fine-tuning. The second article builds on the first and presents a two-step generative model for text that models the distribution of sentence representations to produce novel sentence embeddings that serves as a high level ``neural outline'' that is reconstructed to words with a conditional autoregressive RNN decoder. The third article studies the necessity of disentangled representations for controllable text generation. A large fraction of controllable text generation systems rely on the idea that control over a particular attribute (or style) requires building disentangled representations that separate content and style. We demonstrate that representations produced in previous work that uses domain adversarial training are not disentangled in practice. We then present an approach that does not aim to learn disentangled representations and show that it achieves significantly better results than prior work. In the fourth article, we design transformer language models that learn representations at multiple time scales and show that these can help address the large memory footprint these models typically have. It presents three different multi-scale architectures that exhibit favorable perplexity vs memory footprint trade-offs.
30

Conditional generative modeling for images, 3D animations, and video

Voleti, Vikram 07 1900 (has links)
Generative modeling for computer vision has shown immense progress in the last few years, revolutionizing the way we perceive, understand, and manipulate visual data. This rapidly evolving field has witnessed advancements in image generation, 3D animation, and video prediction that unlock diverse applications across multiple fields including entertainment, design, healthcare, and education. As the demand for sophisticated computer vision systems continues to grow, this dissertation attempts to drive innovation in the field by exploring novel formulations of conditional generative models, and innovative applications in images, 3D animations, and video. Our research focuses on architectures that offer reversible transformations of noise and visual data, and the application of encoder-decoder architectures for generative tasks and 3D content manipulation. In all instances, we incorporate conditional information to enhance the synthesis of visual data, improving the efficiency of the generation process as well as the generated content. Prior successful generative techniques which are reversible between noise and data include normalizing flows and denoising diffusion models. The continuous variant of normalizing flows is powered by Neural Ordinary Differential Equations (Neural ODEs), and have shown some success in modeling the real image distribution. However, they often involve huge number of parameters, and high training time. Denoising diffusion models have recently gained huge popularity for their generalization capabilities especially in text-to-image applications. In this dissertation, we introduce the use of Neural ODEs to model video dynamics using an encoder-decoder architecture, demonstrating their ability to predict future video frames despite being trained solely to reconstruct current frames. In our next contribution, we propose a conditional variant of continuous normalizing flows that enables higher-resolution image generation based on lower-resolution input. This allows us to achieve comparable image quality to regular normalizing flows, while significantly reducing the number of parameters and training time. Our next contribution focuses on a flexible encoder-decoder architecture for accurate estimation and editing of full 3D human pose. We present a comprehensive pipeline that takes human images as input, automatically aligns a user-specified 3D human/non-human character with the pose of the human, and facilitates pose editing based on partial input information. We then proceed to use denoising diffusion models for image and video generation. Regular diffusion models involve the use of a Gaussian process to add noise to clean images. In our next contribution, we derive the relevant mathematical details for denoising diffusion models that use non-isotropic Gaussian processes, present non-isotropic noise, and show that the quality of generated images is comparable with the original formulation. In our final contribution, devise a novel framework building on denoising diffusion models that is capable of solving all three video tasks of prediction, generation, and interpolation. We perform ablation studies using this framework, and show state-of-the-art results on multiple datasets. Our contributions are published articles at peer-reviewed venues. Overall, our research aims to make a meaningful contribution to the pursuit of more efficient and flexible generative models, with the potential to shape the future of computer vision. / La modélisation générative pour la vision par ordinateur a connu d’immenses progrès ces dernières années, révolutionnant notre façon de percevoir, comprendre et manipuler les données visuelles. Ce domaine en constante évolution a connu des avancées dans la génération d’images, l’animation 3D et la prédiction vidéo, débloquant ainsi diverses applications dans plusieurs domaines tels que le divertissement, le design, la santé et l’éducation. Alors que la demande de systèmes de vision par ordinateur sophistiqués ne cesse de croître, cette thèse s’efforce de stimuler l’innovation dans le domaine en explorant de nouvelles formulations de modèles génératifs conditionnels et des applications innovantes dans les images, les animations 3D et la vidéo. Notre recherche se concentre sur des architectures offrant des transformations réversibles du bruit et des données visuelles, ainsi que sur l’application d’architectures encodeur-décodeur pour les tâches génératives et la manipulation de contenu 3D. Dans tous les cas, nous incorporons des informations conditionnelles pour améliorer la synthèse des données visuelles, améliorant ainsi l’efficacité du processus de génération ainsi que le contenu généré. Les techniques génératives antérieures qui sont réversibles entre le bruit et les données et qui ont connu un certain succès comprennent les flux de normalisation et les modèles de diffusion de débruitage. La variante continue des flux de normalisation est alimentée par les équations différentielles ordinaires neuronales (Neural ODEs) et a montré une certaine réussite dans la modélisation de la distribution d’images réelles. Cependant, elles impliquent souvent un grand nombre de paramètres et un temps d’entraînement élevé. Les modèles de diffusion de débruitage ont récemment gagné énormément en popularité en raison de leurs capacités de généralisation, notamment dans les applications de texte vers image. Dans cette thèse, nous introduisons l’utilisation des Neural ODEs pour modéliser la dynamique vidéo à l’aide d’une architecture encodeur-décodeur, démontrant leur capacité à prédire les images vidéo futures malgré le fait d’être entraînées uniquement à reconstruire les images actuelles. Dans notre prochaine contribution, nous proposons une variante conditionnelle des flux de normalisation continus qui permet une génération d’images à résolution supérieure à partir d’une entrée à résolution inférieure. Cela nous permet d’obtenir une qualité d’image comparable à celle des flux de normalisation réguliers, tout en réduisant considérablement le nombre de paramètres et le temps d’entraînement. Notre prochaine contribution se concentre sur une architecture encodeur-décodeur flexible pour l’estimation et l’édition précises de la pose humaine en 3D. Nous présentons un pipeline complet qui prend des images de personnes en entrée, aligne automatiquement un personnage 3D humain/non humain spécifié par l’utilisateur sur la pose de la personne, et facilite l’édition de la pose en fonction d’informations partielles. Nous utilisons ensuite des modèles de diffusion de débruitage pour la génération d’images et de vidéos. Les modèles de diffusion réguliers impliquent l’utilisation d’un processus gaussien pour ajouter du bruit aux images propres. Dans notre prochaine contribution, nous dérivons les détails mathématiques pertinents pour les modèles de diffusion de débruitage qui utilisent des processus gaussiens non isotropes, présentons du bruit non isotrope, et montrons que la qualité des images générées est comparable à la formulation d’origine. Dans notre dernière contribution, nous concevons un nouveau cadre basé sur les modèles de diffusion de débruitage, capable de résoudre les trois tâches vidéo de prédiction, de génération et d’interpolation. Nous réalisons des études d’ablation en utilisant ce cadre et montrons des résultats de pointe sur plusieurs ensembles de données. Nos contributions sont des articles publiés dans des revues à comité de lecture. Dans l’ensemble, notre recherche vise à apporter une contribution significative à la poursuite de modèles génératifs plus efficaces et flexibles, avec le potentiel de façonner l’avenir de la vision par ordinateur.

Page generated in 0.4434 seconds