Spelling suggestions: "subject:"model based prognosis"" "subject:"godel based prognosis""
1 |
Filtering and uncertainty propagation methods for model-based prognosis / Méthodes de filtrage et de propagation d'incertitudes pour le pronostic à base de modèlesRobinson, Elinirina Iréna 10 October 2018 (has links)
Les travaux présentés dans ce mémoire concernent le développement de méthodes de pronostic à base de modèles. Le pronostic à base de modèles a pour but d'estimer le temps qu'il reste avant qu'un système ne soit défaillant, à partir d'un modèle physique de la dégradation du système. Ce temps de vie restant est appelé durée de résiduelle (RUL) du système.Le pronostic à base de modèle est composé de deux étapes principales : (i) estimation de l'état actuel de la dégradation et (ii) prédiction de l'état futur de la dégradation. La première étape, qui est une étape de filtrage, est réalisée à partir du modèle et des mesures disponibles. La seconde étape consiste à faire de la propagation d'incertitudes. Le principal enjeu du pronostic concerne la prise en compte des différentes sources d'incertitude pour obtenir une mesure de l'incertitude associée à la RUL prédite. Les principales sources d'incertitude sont les incertitudes de modèle, les incertitudes de mesures et les incertitudes liées aux futures conditions d'opération du système. Afin de gérer ces incertitudes et les intégrer au pronostic, des méthodes probabilistes ainsi que des méthodes ensemblistes ont été développées dans cette thèse.Dans un premier temps, un filtre de Kalman étendu ainsi qu'un filtre particulaire sont appliqués au pronostic de propagation de fissure, en utilisant la loi de Paris et des données synthétiques. Puis, une méthode combinant un filtre particulaire et un algorithme de détection (algorithme des sommes cumulatives) a été développée puis appliquée au pronostic de propagation de fissure dans un matériau composite soumis à un chargement variable. Cette fois, en plus des incertitudes de modèle et de mesures, les incertitudes liées aux futures conditions d'opération du système ont aussi été considérées. De plus, des données réelles ont été utilisées. Ensuite, deux méthodes de pronostic sont développées dans un cadre ensembliste où les erreurs sont considérées comme étant bornées. Elles utilisent notamment des méthodes d'inversion ensembliste et un observateur par intervalles pour des systèmes linéaires à temps discret. Enfin, l'application d'une méthode issue du domaine de l'analyse de fiabilité des systèmes au pronostic à base de modèles est présentée. Il s'agit de la méthode Inverse First-Order Reliability Method (Inverse FORM).Pour chaque méthode développée, des métriques d'évaluation de performance sont calculées dans le but de comparer leur efficacité. Il s'agit de l'exactitude, la précision et l'opportunité. / In this manuscript, contributions to the development of methods for on-line model-based prognosis are presented. Model-based prognosis aims at predicting the time before the monitored system reaches a failure state, using a physics-based model of the degradation. This time before failure is called the remaining useful life (RUL) of the system.Model-based prognosis is divided in two main steps: (i) current degradation state estimation and (ii) future degradation state prediction to predict the RUL. The first step, which consists in estimating the current degradation state using the measurements, is performed with filtering techniques. The second step is realized with uncertainty propagation methods. The main challenge in prognosis is to take the different uncertainty sources into account in order to obtain a measure of the RUL uncertainty. There are mainly model uncertainty, measurement uncertainty and future uncertainty (loading, operating conditions, etc.). Thus, probabilistic and set-membership methods for model-based prognosis are investigated in this thesis to tackle these uncertainties.The ability of an extended Kalman filter and a particle filter to perform RUL prognosis in presence of model and measurement uncertainty is first studied using a nonlinear fatigue crack growth model based on the Paris' law and synthetic data. Then, the particle filter combined to a detection algorithm (cumulative sum algorithm) is applied to a more realistic case study, which is fatigue crack growth prognosis in composite materials under variable amplitude loading. This time, model uncertainty, measurement uncertainty and future loading uncertainty are taken into account, and real data are used. Then, two set-membership model-based prognosis methods based on constraint satisfaction and unknown input interval observer for linear discete-time systems are presented. Finally, an extension of a reliability analysis method to model-based prognosis, namely the inverse first-order reliability method (Inverse FORM), is presented.In each case study, performance evaluation metrics (accuracy, precision and timeliness) are calculated in order to make a comparison between the proposed methods.
|
2 |
Contribution au pronostic des systèmes à base de modèles : théorie et application / Contribution to nonlinear systems prognosis based on models : theory and applicationGucik-Derigny, David 09 December 2011 (has links)
Cette thèse est une contribution au problème du pronostic des systèmes complexes. Plus précisément, elle concerne l'approche basée modèles et est composée de trois contributions principales. Tout d'abord, dans une première contribution une définition du concept de pronostic est proposée et est positionnée par rapport aux concepts de diagnostic et de diagnostic prédictif. Pour cela, une notion de contrainte temporelle a été introduite afin de donner toute pertinence à la prédiction réalisée. Il a également été montré comment le pronostic est lié à la notion d'accessibilité en temps fini.La deuxième contribution est dédiée à l'utilisation des observateurs à convergence en temps fini pour la problématique du pronostic. Une méthodologie de pronostic est présentée pour les systèmes non linéaires à échelle de temps multiple. Puis, une troisième contribution est introduite par l'utilisation des observateurs par intervalle pour le pronostic. Une méthodologie de pronostic est proposée pour les systèmes non linéaires incertains à échelle de temps multiple. Pour illustrer les différents résultats théoriques, des simulations ont été conduites sur un modèle de comportement d'un oscillateur électromécanique. / This thesis is a contribution to the problem of a complex system prognosis. More precisely, it concerns the model-based prognosis approach and the thesis is divided into three main contributions. First of all, a definition of prognosis concept is proposed as a first contribution and is positionned in reference to the diagnosis and predictive diagnosis concepts. For that, a notion of temporal constraint is introduced to give all pertinence to the prediction achieved. It is also shown how prognosis is linked to the finite time reachability notion. The second contribution is dedicated to the use of finite time convergence observer for the prognosis problem. A prognosis methodology is presented for nonlinear multiple time scale systems. Then, a last contribution is introduced through the use of interval observer for the prognosis problem. A pronognosis methodology is proposed for nonlinear uncertain multiple time scale systems. To illustrate the theorical results, simulations are achieved based on a model of an electromechanical oscillator system.
|
3 |
Metody technické prognostiky aplikovatelné v embedded systémech / Methods of Technical Prognostics Applicable to Embedded SystemsKrupa, Miroslav January 2012 (has links)
Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.
|
Page generated in 0.072 seconds