• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 293
  • 51
  • 24
  • 23
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 519
  • 519
  • 498
  • 166
  • 92
  • 91
  • 87
  • 77
  • 61
  • 54
  • 54
  • 54
  • 52
  • 50
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Robust Predictive Control for Legged Locomotion

Pandala, Abhishek-Goud 11 January 2024 (has links)
This dissertation aims to realize the goal of developing robust control solutions that can enable legged robots to navigate complex unknown environments. The idea of creating articulated-legged machines that can mimic animal locomotion has fueled the imagination of many researchers. These legged robots are designed to assist humans in their day-to-day tasks and challenging scenarios such as monitoring remote, inhospitable environments, disaster response, and other dangerous environments. Despite several decades of research, legged robots have yet to reach the dexterity or dynamic stability needed for real-world deployments. A fundamental gap exists in the understanding and development of reliable and scalable algorithms required for the real-time planning and control of legged robots. The overarching goal of this thesis is to formally develop computationally tractable, robust controllers based on nonlinear hybrid systems theory, model predictive control, and optimization for the real-time planning and control of agile locomotion in quadrupedal robots. Toward this objective, this thesis first investigates layered control architectures. In particular, we propose a two-level hierarchical control architecture in which the higher level is based on a reduced-order model predictive control (MPC), and the lower level is based on a full-order quadratic programming (QP) based virtual constraints controller. Specifically, two MPC architectures are explored: 1) An event-based MPC scheme that generates the optimal center of mass (COM) trajectories using a reduced-order linear inverted pendulum (LIP) model, and 2) A time-based MPC scheme that computes the optimal COM and ground reaction forces (GRF) using the reduced-order single rigid body (SRB) dynamics model. The optimal COM trajectories in the event-based MPC and the optimal COM trajectories, along with the ground reaction forces in the time-based MPC, are then tracked by the low-level virtual constraints controller. The event-based MPC scheme is numerically validated on the Vision 60 platform in a physics-based simulation environment. It has significantly reduced the computational burden associated with real-time planning-based MPC schemes. However, owing to the quasi-static nature of the optimal trajectories generated by the LIP model, we explored a time-based MPC scheme using Single Rigid Body Dynamics. This time-based MPC scheme is also numerically validated using the mathematical model of the A1 quadrupedal robot. Most MPC schemes use a reduced-order model to generate optimal trajectories. However, the abstraction and unmodeled dynamics in template models significantly increase the gap between reduced- and full-order models, limiting the robot's full scope and potential. In the second part of the thesis, we aim to develop a computationally tractable robust model predictive control (RMPC) scheme based on convex QPs to bridge this gap. The RMPC framework considers the single rigid body model subject to a set of unmodeled dynamics and plans for the optimal reduced-order trajectory and GRFs. The generated optimal GRFs of the high-level RMPC are then mapped to the full-order model using a low-level nonlinear controller based on virtual constraints and QP. The key innovation of the proposed RMPC framework is that it allows the integration of the hierarchical controller with Reinforcement Learning (RL) techniques to train a neural network to compute the vertices of the uncertainty set numerically. The proposed hierarchical control algorithm is validated numerically and experimentally for robust and blind locomotion of the A1 quadrupedal robot on different indoor and outdoor terrains and at different speeds. The numerical analysis of the RMPC suggests significant improvement in the performance of the rough terrain locomotion compared to the nominal MPC. In particular, the proposed RMPC algorithm outperforms the nominal MPC by over 60% during rough terrain locomotion over 550 uneven terrains. Our experimental studies also indicate a significant reduction in the gap between the reduced full-order models by comparing the desired and actual GRFs. Finally, the last part of the thesis presents a formal approach for synthesizing robust $mathcal{H}_2$- and $mathcal{H}_infty$-optimal MPCs to stabilize the periodic locomotion of legged robots. The proposed algorithm builds on the existing optimization-based control stack. We outline the set of conditions under which the closed-loop nonlinear dynamics around a periodic orbit can be transformed into a linear time-invariant (LTI) system using Floquet theory. We then outline an approach to systematically generate parameterized $mathcal{H}_2$- and $mathcal{H}_infty$- robust controllers using linear matrix inequalities (LMIs). We subsequently established a set of conditions guaranteeing the existence of such robust optimal controllers. The proposed $mathcal{H}_2$- and $mathcal{H}_infty$-optimal MPCs are extensively validated both numerically and experimentally for the robust locomotion of the A1 quadrupedal robot subject to various external disturbances and uneven terrains. Our numerical analysis suggests a significant improvement in the performance of robust locomotion compared to the nominal MPC. / Doctor of Philosophy / Legged robots have always been envisioned to work alongside humans, assisting them in mundane day-to-day tasks to challenging scenarios such as monitoring remote locations, planetary exploration, and supporting relief programs in disaster situations. Furthermore, research into legged locomotion can aid in designing and developing powered prosthetic limbs and exoskeletons. With these advantages in mind, several researchers have created sophisticated-legged robots and even more complicated algorithms to control them. Despite this, a significant gap exists between the agility, mobility, and dynamic stability shown by the existing legged robots and their biological counterparts. To work alongside humans, legged robots have to interact with complex environments and deal with uncertainties in the form of unplanned contacts and unknown terrains. Developing robust control solutions to accommodate disturbances explicitly marks the first step towards safe and reliable real-world deployment of legged robots. Toward this objective, this thesis aims to establish a formal foundation to develop computationally tractable robust controllers for the real-time planning and control of legged robots. Initial investigations in this thesis report on the use of layered control architectures, specifically event-based and time-based Model Predictive Control(MPC) schemes. These layered control architectures consist of an MPC scheme built around a reduced-order model at the high level and a virtual constraints-based nonlinear controller at the low level. Using these layered control architectures, this thesis proposed two robust control solutions to improve the rough terrain locomotion of legged robots. The first proposed robust control solution aims to mitigate one of the issues of layered control architecture. In particular, layered control architectures rely on a reduced order model at the high level to remain computationally tractable. However, the approximation of fullorder models with reduced-order models limits the full scope and potential of the robot. The proposed algorithm aims to bridge the gap between reduced- and full-order models with the integration of model-free Reinforcement Learning (RL) techniques. The second algorithm proposes a formal approach to generate robust optimal control solutions that can explicitly accommodate the disturbances and stabilize periodic legged locomotion. Under some mild conditions, the MPC control solution is analyzed, and an auxiliary feedback control solution that can handle disturbances explicitly is proposed. The thesis also theoretically establishes the sufficient conditions for the existence of such controllers. Both the proposed control solutions are extensively validated using numerical simulations and experiments using an A1 quadrupedal robot as a representative example.
212

HEIGHT PROFILE MODELING AND CONTROL OF INKJET 3D PRINTING

Yumeng Wu (13960689) 14 October 2022 (has links)
<p>Among all additive manufacturing processes, material jetting, or inkjet 3D printing, builds the product similar to the traditional inkjet printing, either by drop-on-demand or continuous printing. Aside from the common advantages as other additive manufacturing methods, it can achieve higher resolution than other additive manufacturing methods. Combining its ability to accept a wide range of functional inks, inkjet 3D printing is predominantly used in pharmaceutical and biomedical applications. A height profile model is necessary to achieve better estimation of the geometry of a printed product. Numerical height profile models have been documented that can estimate the inkjet printing process from when the droplet hits the substrate till fully cured. Although they can estimate height profiles relatively accurately, these models generally take a long time to compute. A simplified model that can achieve sufficient accuracy while reducing computational complexity is needed for real-time process control. In this work, a layer-to-layer height propagation model that aims to balance computational complexity and model accuracy is proposed and experimentally validated. The model consists of two sub-models where one is dedicated to multi-layer line printing and the other is more broadly applicable for multi-layer 2D patterns. Both models predict the height profile of drops through separate volume and area layer-to-layer propagation. The layer-to-layer propagation is based on material flow and volume conservation. The models are experimentally validated on an experimental inkjet 3D printing system equipped with a heated piezoelectric dispenser head made by Microdrop. There are notable similarities between inkjet 3D printing and inkjet image printing, which has been studied extensively to improve color printing quality. Image processing techniques are necessary to convert nearly continuous levels of color intensities to binary printing map while satisfying the human visual system at the same time. It is reasonable to leverage such image processing techniques to improve the quality of inkjet 3D printed products, which might be more effective and efficient. A framework is proposed to adapt image processing techniques for inkjet 3D printing. Standard error diffusion method is chosen as a demonstration of the framework to be adapted for inkjet 3D printing and this adaption is experimentally validated. The adapted error diffusion method can improve the printing quality in terms of geometry integrity with low demand on computation power. Model predictive control has been widely used for process control in various industries. With a carefully designed cost function, model predictive control can be an effective tool to improve inkjet 3D printing. While many researchers utilized model predictive control to indirectly improves functional side of the printed products, geometry control is often overlooked. This is possibly due to the lack of high quality height profile models for inkjet 3D printing for real-time control. Height profile control of inkjet 3D printing can be formulated as a constrained non-linear model predictive control problem. The input to the printing system is always constrained, as droplet volume not only is bounded but also cannot be continuously adjusted due to the limitation of the printhead.  A specific cost function is proposed to account for the geometry of both the final printed product and the intermediate layers better. The cost function is further adjusted for the inkjet 3D printing system to reduce memory usage for larger print geometries by introducing sparse matrix and scaler cost weights. Two patterns with different parameter settings are simulated using model predictive controller. The simulated results show a consistent improvement over open-loop prints. Experimental validation is also performed on both a bi-level pattern and a P pattern, same as that printed with adapted error diffusion for inkjet 3D printing. The model predictive controlled printing outperforms the open-loop printing. In summary, a set of layer-to-layer height propagation profile models for inkjet 3D printing are proposed and experimentally validated. A framework to adapt error diffusion to improve inkjet 3D printing is proposed and validated experimentally. Model predictive control can also improve geometric integrity of inkjet 3D printing with a carefully designed cost function to address memory usage. It is also experimentally validated.</p>
213

An Investigation into the Optimal Control Methods in Over-actuated Vehicles : With focus on energy loss in electric vehicles

Bhat, Sriharsha January 2016 (has links)
As vehicles become electrified and more intelligent in terms of sensing, actuation and processing; a number of interesting possibilities arise in controlling vehicle dynamics and driving behavior. Over-actuation with inwheel motors, all wheel steering and active camber is one such possibility, and can facilitate control combinations that push boundaries in energy consumption and safety. Optimal control can be used to investigate the best combinations of control inputs to an over-actuated system. In Part 1, a literature study is performed on the state of art in the field of optimal control, highlighting the strengths and weaknesses of different methods and their applicability to a vehicular system. Out of these methods, Dynamic Programming and Model Predictive Control are of particular interest. Prior work in overactuation, as well as control for reducing tire energy dissipation is studied, and utilized to frame the dynamics, constraints and objective of an optimal control problem. In Part 2, an optimal control problem representing the lateral dynamics of an over-actuated vehicle is formulated, and solved for different objectives using Dynamic Programming. Simulations are performed for standard driving maneuvers, performance parameters are defined, and a system design study is conducted. Objectives include minimizing tire cornering resistance (saving energy) and maintaining the reference vehicle trajectory (ensuring safety), and optimal combinations of input steering and camber angles are derived as a performance benchmark. Following this, Model Predictive Control is used to design an online controller that follows the optimal vehicle state, and studies are performed to assess the suitability of MPC to over-actuation. Simulation models are also expanded to include non-linear tires. Finally, vehicle implementation is considered on the KTH Research Concept Vehicle (RCV) and four vehicle-implementable control cases are presented. To conclude, this thesis project uses methods in optimal control to find candidate solutions to improve vehicle performance thanks to over-actuation. Extensive vehicle tests are needed for a clear indication of the energy saving achievable, but simulations show promising performance improvements for vehicles overactuated with all-wheel steering and active camber.
214

Model-predictive Collision Avoidance in Teleoperation of Mobile Robots

Salmanipour, Sajad 10 1900 (has links)
<p>In this thesis, a human-in-the-loop control system is presented to assist an operator in teleoperation of a mobile robot. In a conventional teleoperation paradigm, the human operator would directly navigate the robot without any assistance which may result in poor performance in complex and unknown task environments due to inadequacy of visual feedback. The proposed method in this thesis builds on an earlier general control framework that systematically combines teleoperation and autonomous control subtasks. In this approach, the operator controls the mobile robot (slave) using a force-feedback haptic interface (master). Teleoperation control commands coordinate master and slave robots while an autonomous control subtask helps the operator avoid collisions with obstacles in the robot task environment by providing corrective force feedback. The autonomous collision avoidance is based on a Model Predictive Control (MPC) philosophy. The autonomous subtask control commands are generated by formulating and solving a constrained optimization problem over a rolling horizon window of time into the future using system models to predict the operator force and robot motion. The goal of the optimization is to prevent collisions within the prediction horizon by applying corrective force feedback, while minimizing interference with the operator teleoperation actions. It is assumed that the obstacles are stationary and sonar sensors mounted on the mobile robot measure the obstacle distances relative to the robot. Two formulation of MPC-based collision avoidance are proposed. The first formulation directly incorporates raw observation points as constraints in the MPC optimization problem. The second formulation relies on a line segment representation of the task environment. This thesis employs the well-known Hough transform method to effectively transform the raw sensor data into line segments. The extracted line segments constitute a compact model for the environment that is used in the formulation of collision constraints. The effectiveness of the proposed model-predictive control obstacle avoidance schemes is demonstrated in teleoperation experiments where the master robot is a 3DOF haptic interface and the slave is a P3-DX mobile robot equipped with eight (8) sonar sensors at the front.</p> / Master of Applied Science (MASc)
215

Robust Position Sensorless Model Predictive Control for Interior Permanent Magnet Synchronous Motor Drives

Nalakath, Shamsuddeen January 2018 (has links)
This thesis focuses on utilizing the persistent voltage vector injections by finite control set model predictive control (FCSMPC) to enable simultaneous estimations of both position and parameters in order to realize robust sensorless interior permanent magnet synchronous machine (IPMSM) drives valid at the entire operating region including no-load standstill without any additional signal injection and switchover. The system (here, IPMSM) needs to meet certain observability conditions to identify the parameters and position. Moreover, each combination of the parameters and/or position involves different observability requirements which cannot be accomplished at every operating point. In particular, meeting the observability for parameters and position at no-load standstill is more challenging. This is overcome by generating persistent excitation in the system with high-frequency signal injection. The FCSMPC scheme inherently features the persistent excitation with voltage vector injection and hence no additional signal injection is required. Moreover, the persistent excitation always exists for FCSMPC except at the standstill where the control applies the null vectors when the reference currents are zero. However, introducing a small negative d axis current at the standstill would be sufficient to overcome this situation.The parameter estimations are investigated at first in this thesis. The observability is analyzed for the combinations of two, three and four parameters and experimentally validated by online identification based on recursive least square (RLS) based adaptive observer. The worst case operating points concerning observability are identified and experimentally proved that the online identification of all the parameter combinations could be accomplished with persistent excitation by FCMPC. Moreover, the effect of estimation error in one parameter on the other known as parameter coupling is reduced with the proposed decoupling technique. The persistent voltage vector injections by FCSMPC help to meet the observability conditions for estimating the position, especially at low speeds. However, the arbitrary nature of the switching ripples and absence of PWM modulator void the possibility of applying the standard demodulation based techniques for FCSMPC. Consequently, a nonlinear optimization based observer is proposed to estimate both the position and speed, and experimentally validated from standstill to maximum speed. Furthermore, a compensator is also proposed that prevents converging to saddle and symmetrical ( ambiguity) solutions. The robustness analysis of the proposed nonlinear optimization based observer shows that estimating the position without co-estimating the speed is more robust and the main influencing parameters on the accuracy of the position estimation are d and q inductances. Subsequently, the proposed nonlinear optimization based observer is extended to simultaneously estimate the position, d and q inductances. The experimental results show the substantial improvements in response time, and reduction in both steady and transient state position errors. In summary, this thesis presents the significance of persistent voltage vector injections in estimating both parameter and position, and also shows that nonlinear optimization based technique is an ideal candidate for robust sensorless FCSMPC. / Thesis / Doctor of Philosophy (PhD)
216

Design and Analysis of Dynamic Real-time Optimization Systems

Eskandari, Mahdi 30 November 2017 (has links)
Process economic improvement subject to safety, operational and environmental constraints is an ultimate goal of using on-line process optimization and control techniques. The dynamic nature of present-day market conditions motivates the consideration of process dynamics within the economic optimization calculation. Two key paradigms for implementing real-time dynamic economic optimization are a dynamic real-time optimization (DRTO) and regulatory MPC two-layer architecture, and a single-level economic model predictive control (EMPC) con figuration. In the two-layer architecture, the economically optimal set-point trajectories computed in an upper DRTO layer are provided to the MPC layer, while in the single-layer EMPC con figuration the economics are incorporated within the MPC objective function. There are limited studies on a systematic performance comparison between these two approaches. Furthermore, these studies do not simultaneously consider the economic, disturbance rejection and computational performance criteria. Thus, it may not be clear under what conditions one particular method is preferable over the other. These reasons motivate a more comprehensive comparison between the two paradigms, with both open and closed-loop predictions considered in the DRTO calculations. In order to conduct this comparison, we utilize two process case studies for the economic analysis and performance comparison of on-line optimization systems. The first case study is a process involving two stirred-tank reactors in-series with an intermediate mixing point, and the second case study is a linear multi-input single-output (MISO) system. These processes are represented using a fi rst principles model in the form of differential-algebraic equations (DAEs) system for the first case study and a simplified linear model of a polymerization reactor for the second case study problem. Both of the case study processes include constraints associated with input variables, safety considerations, and output quality. In these case study problems, the objective of optimal process operation is net profit improvement. The following performance evaluation criteria are considered in this study: (I) optimal value of the economic objective function, (II) average run time (ART) over a same operating time interval, (III) cumulative output constraint violation (COCV) for each constraint. The update time of the single-layer approach is selected to be equal to that of the control layer in the two-layer formulations, while the update time of the economic layer in the two-layer formulation is bigger than that of the single-layer approach. The nonlinear programing (NLP) problems which result in the single-layer and two-layer formulations and the quadratic programing problem which corresponds to the MPC formulation are solved using the fmincon and quadprog optimization solvers in MATLAB. Performance assessment of the single-layer and two-layer formulations is evaluated in the presence of a variety of unknown disturbance scenarios for the first case study problem. The effect of a dynamic transition in the product quality is considered in the performance comparison of the single-layer and two-layer methods in the second case-study problem. The first case study problem results show that for all unknown disturbance scenarios, the economic performance of the single-layer approach is slightly higher than that of the two layer formulations. However, the average computation times for the DRTO-MPC two-layer formulations are at least one order of magnitude lower than that of the EMPC formulation. Also, comparison results of the COCV for the EMPC formulation for different sizes of update time intervals could justify the necessity of the MPC control layer to reduce the COCV for the economic optimization problems with update times larger than that of the MPC control layer. A similar computational advantage of the OL- and CL-DRTO-MPC over the EMPC is observed for the second case study problem. In particular, it is shown that increasing the economic horizon length in the EMPC formulation to a sufficiently large value may result a higher economic improvement. However, the increase in economic optimization horizon would increase the resulting NLP problem size. The computational burden could limit the use of the EMPC formulation with larger economic optimization horizons in real-time applications. The ART of the dual-layer methods is at least two orders of magnitude lower than that of the EMPC methods with an appropriate horizon length. The CL-DRTO-MPC economic performance is slightly less than that of the EMPC formulation with the same economic optimization horizon. In conclusion, the performance comparison on the basis of multiple criteria in this study demonstrates that the economic performance criterion is not necessarily the only important metric, and the operational constraint limitations and the optimization problem solution time could have an important impact on the selection of the most suitable real-time optimization approach. / Thesis / Master of Applied Science (MASc)
217

HEV Energy Management Considering Diesel Engine Fueling Control and Air Path Transients

Huo, Yi 07 1900 (has links)
This thesis mainly focuses on parallel hybrid electric vehicle energy management problems considering fueling control and air path dynamics of a diesel engine. It aims to explore the concealed fuel-saving potentials in conventional energy management strategies, by employing detailed engine models. The contributions of this study lie on the following aspects: 1) Fueling control consists of fuel injection mass and timing control. By properly selecting combinations of fueling control variables and torque split ratio, engine efficiency is increased and the HEV fuel consumption is further reduced. 2) A transient engine model considering air path dynamics is applied to more accurately predict engine torque. A model predictive control based energy management strategy is developed and solved by dynamic programming. The fuel efficiency is improved, comparing the proposed strategy to those that ignore the engine transients. 3) A novel adaptive control-step learning model predictive control scheme is proposed and implemented in HEV energy management design. It reveals a trade-off between control accuracy and computational efficiency for the MPC based strategies, and demonstrates a good adaptability to the variation of driving cycle while maintaining low computational burden. 4) Two methods are presented to deal with the conjunction between consecutive functions in the piece-wise linearization for the energy management problem. One of them shows a fairly close performance with the original nonlinear method, but much less computing time. / Thesis / Doctor of Philosophy (PhD)
218

Collaborative Locomotion of Quadrupedal Robots: From Centralized Predictive Control to Distributed Control

Kim, Jeeseop 26 August 2022 (has links)
This dissertation aims to realize the goal of deploying legged robots that cooperatively walk to transport objects in complex environments. More than half of the Earth's continent is unreachable to wheeled vehicles---this motivates the deployment of collaborative legged robots to enable the accessibility of these environments and thus bring robots into the real world. Although significant theoretical and technological advances have allowed the development of distributed controllers for complex robot systems, existing approaches are tailored to the modeling and control of multi-agent systems composed of collaborative robotic arms, multi-fingered robot hands, aerial vehicles, and ground vehicles, but not collaborative legged agents. Legged robots are inherently unstable, unlike most of the systems where these algorithms have been deployed. Models of cooperative legged robots are further described by high-dimensional, underactuated, and complex hybrid dynamical systems, which complicate the design of control algorithms for coordination and motion control. There is a fundamental gap in knowledge of control algorithms for safe motion control of these inherently unstable hybrid dynamical systems, especially in the context of collaborative work. The overarching goal of this dissertation is to create a formal foundation based on scalable optimization and robust and nonlinear control to develop distributed and hierarchical feedback control algorithms for cooperative legged robots to transport objects in complex environments. We first develop a hierarchical nonlinear control algorithm, based on model predictive control (MPC), quadratic programming (QP), and virtual constraints, to generate and stabilize locomotion patterns in a real-time manner for dynamical models of single-agent quadrupedal robots. The higher level of the proposed control scheme is developed based on an event-based MPC that computes the optimal center of mass (COM) trajectories for a reduced-order linear inverted pendulum (LIP) model subject to the feasibility of the net ground reaction force (GRF). QP-based virtual constraint controllers are developed at the lower level of the proposed control scheme to impose the full-order dynamics to track the optimal trajectories while having all individual GRFs in the friction cone. The analytical results are numerically verified to demonstrate stable and robust locomotion of a 22 degree of freedom (DOF) quadrupedal robot, in the presence of payloads, external disturbances, and ground height variations. We then present a hierarchical nonlinear control algorithm for the real-time planning and control of cooperative locomotion of legged robots that collaboratively carry objects. An innovative network of reduced-order models subject to holonomic constraints, referred to as interconnected LIP dynamics, is presented to study quasi-statically stable cooperative locomotion. The higher level of the proposed algorithm employs a supervisory controller, based on event-based MPC, to effectively compute the optimal reduced-order trajectories for the interconnected LIP dynamics. The lower level of the proposed algorithm employs distributed nonlinear controllers to reduce the gap between reduced- and full-order complex models of cooperative locomotion. We numerically investigate the effectiveness of the proposed control algorithm via full-order simulations of a team of collaborative quadrupedal robots, each with a total of 22 DOFs. The dissertation also investigates the robustness of the proposed control algorithm against uncertainties in the payload mass and changes in the ground height profile. Finally, we present a layered control approach for real-time trajectory planning and control of dynamically stable cooperative locomotion by two holonomically constrained quadrupedal robots. An innovative and interconnected network of reduced-order models, based on the single rigid body (SRB) dynamics, is developed for trajectory planning purposes. At the higher level of the control scheme, two different MPC algorithms are proposed to address the optimal control problem of the interconnected SRB dynamics: centralized and distributed MPCs. The MPCs compute the reduced-order states, GRFs, and interaction wrenches between the agents. The distributed MPC assumes two local QPs that share their optimal solutions according to a one-step communication delay and an agreement protocol. At the lower level of the control scheme, distributed nonlinear controllers are employed to impose the full-order dynamics to track the prescribed and optimal reduced-order trajectories and GRFs. The effectiveness of the proposed layered control approach is verified with extensive numerical simulations and experiments for the blind, robust, and cooperative locomotion of two holonomically constrained A1 robots with different payloads on different terrains and in the presence of external disturbances. It is shown that the distributed MPC has a performance similar to that of the centralized MPC, while the computation time is reduced significantly. / Doctor of Philosophy / Future cities will include a complex and interconnected network of collaborative robots that cooperatively work with each other and people to support human societies. Human-centered communities, including factories, offices, and homes, are developed for humans who are bipedal walkers capable of stepping over gaps, walking up/down stairs, and climbing ladders. One of the most challenging problems in deploying the next generation of collaborative robots is maneuvering in those complex environments. Although significant theoretical and technological advances have allowed the development of distributed controllers for motion control of multi-agent robotic systems, existing approaches do not address the collaborative locomotion problem of legged robots. Legged robots are inherently unstable with nonlinear and hybrid natures, unlike most systems where these algorithms have been deployed. Furthermore, the evolution of legged collaborative robot teams that cooperatively manipulate objects can be represented by high-dimensional and complex dynamical systems, complicating the design of control algorithms for coordination and motion control. This dissertation aims to establish a formal foundation based on nonlinear control and optimization theory to develop hierarchical feedback control algorithms for effective motion control of legged robots. The proposed layered control algorithms are developed based on interconnected reduced-order models. At the high level, we formulate cooperative locomotion as an optimal control problem of the reduced-order models to generate optimal trajectories. To realize the generated optimal trajectories, nonlinear controllers at the low level of the hierarchy impose the full-order models to track the trajectories while sustaining stability. The effectiveness of the proposed layered control approach is verified with extensive numerical simulations and experiments for the blind and stable cooperative locomotion of legged robots with different payloads on different terrains and subject to external disturbances. The proposed architecture's robustness is shown under various indoor and outdoor conditions, including landscapes with randomly placed wood blocks, slippery surfaces, gravel, grass, and mulch.
219

Threat Assessment and Proactive Decision-Making for Crash Avoidance in Autonomous Vehicles

Khattar, Vanshaj 24 May 2021 (has links)
Threat assessment and reliable motion-prediction of surrounding vehicles are some of the major challenges encountered in autonomous vehicles' safe decision-making. Predicting a threat in advance can give an autonomous vehicle enough time to avoid crashes or near crash situations. Most vehicles on roads are human-driven, making it challenging to predict their intentions and movements due to inherent uncertainty in their behaviors. Moreover, different driver behaviors pose different kinds of threats. Various driver behavior predictive models have been proposed in the literature for motion prediction. However, these models cannot be trusted entirely due to the human drivers' highly uncertain nature. This thesis proposes a novel trust-based driver behavior prediction and stochastic reachable set threat assessment methodology for various dangerous situations on the road. This trust-based methodology allows autonomous vehicles to quantify the degree of trust in their predictions to generate the probabilistically safest trajectory. This approach can be instrumental in the near-crash scenarios where no collision-free trajectory exists. Three different driving behaviors are considered: Normal, Aggressive, and Drowsy. Hidden Markov Models are used for driver behavior prediction. A "trust" in the detected driver is established by combining four driving features: Longitudinal acceleration, lateral acceleration, lane deviation, and velocity. A stochastic reachable set-based approach is used to model these three different driving behaviors. Two measures of threat are proposed: Current Threat and Short Term Prediction Threat which quantify present and the future probability of a crash. The proposed threat assessment methodology resulted in a lower rate of false positives and negatives. This probabilistic threat assessment methodology is used to address the second challenge in autonomous vehicle safety: crash avoidance decision-making. This thesis presents a fast, proactive decision-making methodology based on Stochastic Model Predictive Control (SMPC). A proactive decision-making approach exploits the surrounding human-driven vehicles' intent to assess the future threat, which helps generate a safe trajectory in advance, unlike reactive decision-making approaches that do not account for the surrounding vehicles' future intent. The crash avoidance problem is formulated as a chance-constrained optimization problem to account for uncertainty in the surrounding vehicle's motion. These chance-constraints always ensure a minimum probabilistic safety of the autonomous vehicle by keeping the probability of crash below a predefined risk parameter. This thesis proposes a tractable and deterministic reformulation of these chance-constraints using convex hull formulation for a fast real-time implementation. The controller's performance is studied for different risk parameters used in the chance-constraint formulation. Simulation results show that the proposed control methodology can avoid crashes in most hazardous situations on the road. / Master of Science / Unexpected road situations frequently arise on the roads which leads to crashes. In an NHTSA study, it was reported that around 94% of car crashes could be attributed to driver errors and misjudgments. This could be attributed to drinking and driving, fatigue, or reckless driving on the roads. Full self-driving cars can significantly reduce the frequency of such accidents. Testing of self-driving cars has recently begun on certain roads, and it is estimated that one in ten cars will be self-driving by the year 2030. This means that these self-driving cars will need to operate in human-driven environments and interact with human-driven vehicles. Therefore, it is crucial for autonomous vehicles to understand the way humans drive on the road to avoid collisions and interact safely with human-driven vehicles on the road. Detecting a threat in advance and generating a safe trajectory for crash avoidance are some of the major challenges faced by autonomous vehicles. We have proposed a reliable decision-making algorithm for crash avoidance in autonomous vehicles. Our framework addresses two core challenges encountered in crash avoidance decision-making in autonomous vehicles: 1. The outside challenge: Reliable motion prediction of surrounding vehicles to continuously assess the threat to the autonomous vehicle. 2. The inside challenge: Generating a safe trajectory for the autonomous vehicle in case of future predicted threat. The outside challenge is to predict the motion of surrounding vehicles. This requires building a reliable model through which future evolution of their position states can be predicted. Building these models is not trivial, as the surrounding vehicles' motion depends on human driver intentions and behaviors, which are highly uncertain. Various driver behavior predictive models have been proposed in the literature. However, most do not quantify trust in their predictions. We have proposed a trust-based driver behavior prediction method which combines all sensor measurements to output the probability (trust value) of a certain driver being "drowsy", "aggressive", or "normal". This method allows the autonomous vehicle to choose how much to trust a particular prediction. Once a picture is painted of surrounding vehicles, we can generate safe trajectories in advance – the inside challenge. Most existing approaches use stochastic optimal control methods, which are computationally expensive and impractical for fast real-time decision-making in crash scenarios. We have proposed a fast, proactive decision-making algorithm to generate crash avoidance trajectories based on Stochastic Model Predictive Control (SMPC). We reformulate the SMPC probabilistic constraints as deterministic constraints using convex hull formulation, allowing for faster real-time implementation. This deterministic SMPC implementation ensures in real-time that the vehicle maintains a minimum probabilistic safety.
220

Vehicle Wheel Energy Reduction at Intersections using Signal Timing and Adaptive Cruise Control

Scott, Dillon Parker 25 May 2022 (has links)
The Hybrid Electric Vehicle Team (HEVT) at Virginia Tech participates in the 4-Year EcoCAR Mobility Challenge organized by Argonne National Laboratory. The objective of this competition is to modify a stock 2019 internal combustion engine Chevrolet Blazer and incorporate a hybrid powertrain and advanced driver assist systems. The Blazer has a P4 hybrid architecture which contains an electric traction motor on the rear axle and an internal combustion engine on the front axle. HEVT seeks to develop a vehicle with advanced driving capabilities to demonstrate energy savings by utilizing existing technologies. The hybrid market has generally been tailored to small compact vehicles however, a Chevrolet Blazer is a midsize utility vehicle that offers additional space with the benefit of increased fuel economy. The research discussed in this paper focuses on the design of a Signalized Intersection Control Strategy. First, research is performed on different methods of intersection control and implementation with an existing Model Predictive Adaptive Cruise Controller. Based on ease of integration into an existing tuned Eco Adaptive Cruise Control System (ACC), a control strategy operating in the background of the main vehicle controllers is chosen. The main topic of this research is the development and simulation of a Signalized Intersection Control Strategy that works through an Eco ACC system to achieve further energy savings during an approach to a connected intersection while ensuring rider safety. This paper expands on the current knowledge of vehicle utilization of Signal Phase and Timing (SPaT) signals through simulated test cases of a vehicle system model using MATLAB. In each case, the tractive energy consumption and travel times are analyzed for both the Eco ACC system with Signalized Intersection Control Strategy (informed) vehicle and an assumed uninformed driver for comparison. In the case of a vehicle approaching a green intersection which turns red several seconds after SPaT information is received, the informed system shows a 92% decrease or 75 Wh/mi reduction in propel energy consumption at when compared to an uninformed driver. However, in a similar case where the vehicle accelerates back to cruising speed after the light turns green, displays only an 11% decrease or 47 Wh/mi reduction in propel energy consumption at the wheel when compared to the uninformed driver. These simulations confirm that the Signalized Intersection Control Strategy reduces the propel energy consumption at the wheel during approaches to signalized intersections without extending the travel time greatly and in some cases at all. The results of this research show that the control strategy reduces tractive energy consumption while maintaining travel time. / Master of Science / The Hybrid Electric Vehicle Team (HEVT) at Virginia Tech participates in the 4-Year EcoCAR Mobility Challenge organized by Argonne National Laboratory. The objective of this competition is to change a stock 2019 internal combustion engine Chevrolet Blazer into a functioning hybrid. This conversion is accomplished with the addition of an electric motor to allow the vehicle to burn less gasoline and increase customer appeal. The hybrid market has generally been tailored to small compact vehicles however, a Chevrolet Blazer is a midsize utility vehicle that offers additional space with the benefit of increased fuel economy. The research discussed in this paper focuses on the design of a Signalized Intersection Control Strategy. First, research is performed on various methods of existing intersection speed control. Based on ease of integration, a background process is chosen to update the set speed of the vehicle. The main topic of this research is the development and simulation of a Signalized Intersection Control Strategy that achieves greater energy savings during approaches to intersections. This paper expands on the current knowledge of vehicle utilization of Signal Phase and Timing (SPaT) signals through simulated test cases of a vehicle system model using MATLAB. In the case of a vehicle approaching a green intersection which turns red several seconds later, the implemented strategy shows a 92% decrease in energy consumption when compared to an uninformed driver. However, a similar case where the vehicle accelerates back to cruising speed after the light turns green displays only an 11% decrease in energy consumption when compared to an uninformed driver. These simulations confirm that the Signalized Intersection Control Strategy successfully reduces energy consumption without significant travel time extensions. The results of this research show that the control strategy reduces tractive energy consumption while maintaining travel time.

Page generated in 0.0813 seconds