• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Da epidemiologia para a neurociência: entendendo Neurônios disparantes acoplados eletricamente através do Modelo sirs estocástico na rede hipercúbica

Ramos Vitorino de Assis, Vladimir January 2006 (has links)
Made available in DSpace on 2014-06-12T18:06:49Z (GMT). No. of bitstreams: 2 arquivo7761_1.pdf: 1846414 bytes, checksum: 4722f3ce1da69981fe1c64c5b5847ff8 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A função de resposta de neurônios disparantes sensoriais individuais (taxa de disparo versus intensidade de estímulo) tem uma faixa dinâmica pequena. Por exemplo, em neurônios sensoriais do olfato, somente 10 dB de intensidade de estímulo podem ser razoavelmente codi ficados, se a saturação e o ruído de baixo estímulo forem desprezados. Isso está em completo contraste com a grande faixa dinâmica observada no próximo passo sináptico: a resposta dos glomérulos e das células mitrais do olfato pode ter faixa dinâmica duas vezes maior. Há evidência experimental de que o acoplamento elétrico entre neurônios (via junções de abertura ou interações efáticas) pode ser responsável por essa melhora da faixa dinâmica. Para calcular o efeito do acoplamento elétrico na resposta coletiva de neurônios disparantes, estudamos o modelo epidêmico SIRS estocástico na rede hipercúbica e reinterpretamos os estados suscetível-infectado-recuperado-suscetível, como polarizado-disparando-refratário-polarizado, respectivamente. Estendemos o modelo recentemente estudado por Jaewook Joo e Joel L. Lebowitz [1], introduzindo um estímulo sensorial externo (que, no contexto epidemiológico, acrescenta uma taxa de infecção espontânea). Fizemos os cálculos analíticos da aproximação de campo médio simples e da aproximação de pares, bem como simulações numéricas. Mostramos que, devido à amplificação via ondas excitáveis, a faixa dinâmica cresce com o acoplamento elétrico até um valor crítico, acima do qual a rede apresenta atividade auto-sustentada. Acima da criticalidade, a faixa dinâmica diminui com o acoplamento elétrico, porque a atividade auto-sustentada mascara o baixo estímulo. A maior faixa dinâmica é, então, obtida precisamente na transição de fase de não-equilíbrio, fornecendo um exemplo bem definido de processamento ótimo na criticalidade. Além disso, o valor máximo da faixa dinâmica para a rede hipercúbica d-dimensional diminui com d
2

Transição de fase para um modelo de percolação de discos em grafos / Phase transition for a disk percolation model on graphs

Rodriguez, Pablo Martin 15 February 2007 (has links)
Associamos independentemente a cada vértice v de un grafo infinito G um raio de infecção aleatório R_v e definimos um modelo de percolação sujeito às seguintes regras: (1) no tempo zero só a raiz é declarada infectada, (2) um vértice é declarado infectado em um instante t, t>0, se está a uma distância no maximo R_v de algum vértice v previamente infectado, e (3) vértices infectados permanecem infectados para sempre. Dizemos que há sobrevivência em uma realização particular do modelo se o número final de vértices infectados é infinito. Neste trabalho damos condições suficientes sobre o grafo G para a transição de fase deste modelo, estabelecendo limitantes não triviais para o parâmetro crítico quando os raios R_v têm distribuição geometrica de parâmetro 1-p. Além disto, restringindo nosso estudo para o caso das árvores esfericamente simétricas, obtemos um melhor limitante superior para este parâmetro. Finalmente, concluímos que o parâmetro crítico para o modelo nas árvores homogêneas de grau d+1 se comporta assintoticamente como 1/(2d). / We assign independently to each vertex v of an infinite graph G, a random radius of infection R_v and define a percolation model subject to the following rules: (1) at time zero, only the root is declared infected, (2) a vertex is declared infected at time t, t>0, if it is at distance at most R_v of some vertex v previously infected, and (3) infected vertices stay infected forever. We say that there is survival in a particular realization of the model if the final number of infected vertices is infinite. In this work, we give sufficient conditions on the graph G for the phase transition of this model, by stating non-trivial bounds for the critical parameter when the radii have geometrical distribution with parameter 1-p. In addition, restricting our study to the case of the spherically symmetric trees, we obtain an improved upper bound for this critical parameter. Finally, we conclude that the critical parameter for the model on homogeneous trees of degree (d+1) behaves asymptotically as 1/(2d).
3

Modelagem de epidemias via sistemas de partículas interagentes / Modeling epidemics through interacting particle systems

Vargas Junior, Valdivino 08 April 2010 (has links)
Estudamos um sistema de partículas a tempo discreto cuja dinâmica é a seguinte. Considere que no instante inicial sobre cada inteiro não negativo há uma partícula, inicialmente inativa. A partícula da origem é ativada e instantaneamente ativa um conjunto aleatório contíguo de partículas que estão a sua direita. Como regra, no instante seguinte ao que foi ativada, cada partícula ativa realiza esta mesma dinâmica de modo independente de todo o resto. Dizemos que o processo sobrevive se em qualquer momento sempre há ao menos uma partícula ativa. Chamamos este processo de Firework, associando a dinâmica de ativação de uma partícula inativa a uma infecção ou explosão. Nosso interesse é estabelecer se o processo tem probabilidade positiva de sobrevivência e apresentar limites para esta probabilidade. Isto deve ser feito em função da distribuição da variável aleatória que define o raio de ação de uma partícula. Associando o processo de ativação a uma infecção, podemos pensar este modelo como um modelo epidêmico. Consideramos também algumas variações dessa dinâmica. Dentre elas, variantes com partículas distribuídas sobre a semirreta dos reais positivos (nesta vertente, existem condições para as distâncias entre partículas consecutivas) e também com as partículas distribuídas sobre vértices de árvores. Estudamos também para esses casos a transição de fase e probabilidade de sobrevivência. Nesta variante os resultados obtidos são funções da sequência de distribuições dos alcances das explosões e da estrutura dos lugares onde se localizam as partículas. Consideramos também variações do modelo onde cada partícula ao ser ativada, permanece ativa durante um tempo aleatório e nesse período emite explosões que ocorrem em instantes aleatórios. / We studied a discrete time particle system whose dynamic is as follows. Consider that at time zero, on each non-negative integer, there is a particle, initially inactive. A particle which is placed at origin is activated and instantly activates a contiguous random set of particles that is on its right. As a rule, the next moment to what it has been activated, each active particle carries the same behavior independently of the rest. We say that the process survives if the amount of particles activated along the process is infinite. We call this the Firework process, associating the activation dynamic of a particle to an infection or explosion process. Our interest is to establish whether the process has positive probability of survival and to present limits to this probability. This is done according to the distribution random variable that defines the radius of infection of each active particle, Associating the activation process to an infection, we think this model as a model epidemic. We also consider some variations of this dynamic. Among them, variants with particles distributed over the half line (there are conditions for the distances between consecutive particles) and also with particles distributed over the vertices of a tree. We studied phase transitions and the correspondent survival probability. In this variant the results depend on the sequence of probability distributions for the range of the explosions and on the particles displacement. We also consider a variation where each particle after activated, remains active during a random time period emitting explosions that occur in random moments.
4

Estudo de parâmetros epidemiológicos através de modelamento matemático: aspectos estacionários, espaciais e temporais. / The study of epidemiological parameters through mathematical modelling: stationary, spatial and temporal features.

Amaku, Marcos 27 June 2001 (has links)
Estudamos, através de modelagem matemática, aspectos estacionários, espaciais e temporais relacionados à propagação e controle de doenças infecciosas de transmissão direta por contato pessoa-a-pessoa. Elaboramos modelos matemáticos determinísticos fundamentados no princípio de ação de massas em Epidemiologia, levando em consideração a simetria no número de contatos entre suscetíveis e infectados, o que nos permitiu estimar a taxa per capita de contatos potencialmente infectantes e, por conseguinte, a força de infecção e os possíveis efeitos de diferentes programas de vacinação. O desenvolvimento do modelo de estado estacionário foi feito com base em dados sorológicos de rubéola (Azevedo Neto 1992) para uma população que ainda não havia sido imunizada por meio de vacinação. Analisamos, então, o efeito de três diferentes esquemas de vacinação para a rubéola, nos seguintes intervalos de idade: de 1 a 2 anos, de 7 a 8 anos e de 14 a 15 anos. A incerteza estatística na idade média de infecção foi estimada com o auxílio do método de Monte Carlo e tal metodologia foi aplicada a dados de varicela e hepatite A. Estudamos também o aspecto espacial, com a inclusão da variável distância na formulação de um modelo SIR e análise da influência do alcance de interação entre indivíduos. E, através do estudo da força de infecção em função da idade e do tempo, pudemos analisar, de modo qualitativo, diferentes cenários na evolução temporal de uma doença infecciosa. / We have studied, based on mathematical modelling, stationary, spatial and temporal features related to the propagation and control of directly transmitted infectious diseases through person-to-person contact. We have developed deterministic mathematical models founded on the mass-action principle of Epidemiology, taking into account the symmetry of contacts among susceptible and infectious individuals. Such symmetry enabled us to estimate the potentially infective per capita contact rate and, therefore, the force of infection and the possible effects of different vaccination programmes. The steady state modelling has been based on rubella serological data of a non-immunized population (Azevedo Neto 1992) and we have analysed three different vaccination schemes against rubella in the following age intervals: from 1 to 2 years of age, from 7 to 8 years of age, and from 14 to 15 years of age. The serological data variability has been considered in the estimation of the statistical uncertainty of the average age at infection by means of the Monte Carlo method and we have applied this methodology to varicella and hepatitis A data. The spatial feature in a SIR model has been studied with the analysis of the influence of the interaction range among individuals. We have also studied the force of infection as a function of age and time and we have analysed, in a qualitative way, different situations in the time evolution of an infectious disease.
5

O algoritmo de simulação estocástica para o estudo do comportamento da epidemia de dengue em sua fase inicial / The stochastic simulation algorithm for the study of the behavior of the dengue epidemic in its initial phase

Nakashima, Anderson Tamotsu 24 August 2018 (has links)
O comportamento de sistemas epidêmicos é frequentemente descrito de maneira determinística, através do emprego de equações diferenciais ordinárias. Este trabalho visa fornecer uma visão estocástica do problema, traçando um paralelo entre o encontro de indivíduos em uma população e o choque entre partículas de uma reação química. Através dessa abordagem é apresentado o algoritmo de Gillespie, que fornece uma forma simples de simular a evolução de um sistema epidêmico. Fundamentos de processos estocásticos são apresentados para fundamentar uma técnica para a estimação de parâmetros através de dados reais. Apresentamos ainda o modelo de Tau-leaping e o modelo difusivo elaborados através de equações diferenciais estocásticas que são aproximações do modelo proposto por Gillespie. A aplicação dos modelos apresentados é exemplificada através do estudo de dados reais da epidemia de dengue ocorrida no estado do Rio de Janeiro entre os anos de 2012 e 2013. / The behavior of epidemic systems is often described in a deterministic way, through the use of ordinary differential equations. This paper aims to provide a stochastic view of the problem, drawing a parallel between the encounter between individuals in a population and the clash between particles of a chemical reaction. Through this approach is presented the Gillespie algorithm, which provides a simple way to simulate the evolution of an epidemic system. Fundamentals of stochastic process theory are presented to support a technique for estimating parameters through real data. We present the model of Tau-leaping and the diffusive model elaborated by stochastic differential equations that are approximations of the model proposed by Gillespie. The application of the presented models is exemplified through the study of real data of the dengue epidemic occurred in the state of Rio de Janeiro between the years of 2012 and 2013.
6

Transição de fase para um modelo de percolação de discos em grafos / Phase transition for a disk percolation model on graphs

Pablo Martin Rodriguez 15 February 2007 (has links)
Associamos independentemente a cada vértice v de un grafo infinito G um raio de infecção aleatório R_v e definimos um modelo de percolação sujeito às seguintes regras: (1) no tempo zero só a raiz é declarada infectada, (2) um vértice é declarado infectado em um instante t, t>0, se está a uma distância no maximo R_v de algum vértice v previamente infectado, e (3) vértices infectados permanecem infectados para sempre. Dizemos que há sobrevivência em uma realização particular do modelo se o número final de vértices infectados é infinito. Neste trabalho damos condições suficientes sobre o grafo G para a transição de fase deste modelo, estabelecendo limitantes não triviais para o parâmetro crítico quando os raios R_v têm distribuição geometrica de parâmetro 1-p. Além disto, restringindo nosso estudo para o caso das árvores esfericamente simétricas, obtemos um melhor limitante superior para este parâmetro. Finalmente, concluímos que o parâmetro crítico para o modelo nas árvores homogêneas de grau d+1 se comporta assintoticamente como 1/(2d). / We assign independently to each vertex v of an infinite graph G, a random radius of infection R_v and define a percolation model subject to the following rules: (1) at time zero, only the root is declared infected, (2) a vertex is declared infected at time t, t>0, if it is at distance at most R_v of some vertex v previously infected, and (3) infected vertices stay infected forever. We say that there is survival in a particular realization of the model if the final number of infected vertices is infinite. In this work, we give sufficient conditions on the graph G for the phase transition of this model, by stating non-trivial bounds for the critical parameter when the radii have geometrical distribution with parameter 1-p. In addition, restricting our study to the case of the spherically symmetric trees, we obtain an improved upper bound for this critical parameter. Finally, we conclude that the critical parameter for the model on homogeneous trees of degree (d+1) behaves asymptotically as 1/(2d).
7

Modelagem de epidemias via sistemas de partículas interagentes / Modeling epidemics through interacting particle systems

Valdivino Vargas Junior 08 April 2010 (has links)
Estudamos um sistema de partículas a tempo discreto cuja dinâmica é a seguinte. Considere que no instante inicial sobre cada inteiro não negativo há uma partícula, inicialmente inativa. A partícula da origem é ativada e instantaneamente ativa um conjunto aleatório contíguo de partículas que estão a sua direita. Como regra, no instante seguinte ao que foi ativada, cada partícula ativa realiza esta mesma dinâmica de modo independente de todo o resto. Dizemos que o processo sobrevive se em qualquer momento sempre há ao menos uma partícula ativa. Chamamos este processo de Firework, associando a dinâmica de ativação de uma partícula inativa a uma infecção ou explosão. Nosso interesse é estabelecer se o processo tem probabilidade positiva de sobrevivência e apresentar limites para esta probabilidade. Isto deve ser feito em função da distribuição da variável aleatória que define o raio de ação de uma partícula. Associando o processo de ativação a uma infecção, podemos pensar este modelo como um modelo epidêmico. Consideramos também algumas variações dessa dinâmica. Dentre elas, variantes com partículas distribuídas sobre a semirreta dos reais positivos (nesta vertente, existem condições para as distâncias entre partículas consecutivas) e também com as partículas distribuídas sobre vértices de árvores. Estudamos também para esses casos a transição de fase e probabilidade de sobrevivência. Nesta variante os resultados obtidos são funções da sequência de distribuições dos alcances das explosões e da estrutura dos lugares onde se localizam as partículas. Consideramos também variações do modelo onde cada partícula ao ser ativada, permanece ativa durante um tempo aleatório e nesse período emite explosões que ocorrem em instantes aleatórios. / We studied a discrete time particle system whose dynamic is as follows. Consider that at time zero, on each non-negative integer, there is a particle, initially inactive. A particle which is placed at origin is activated and instantly activates a contiguous random set of particles that is on its right. As a rule, the next moment to what it has been activated, each active particle carries the same behavior independently of the rest. We say that the process survives if the amount of particles activated along the process is infinite. We call this the Firework process, associating the activation dynamic of a particle to an infection or explosion process. Our interest is to establish whether the process has positive probability of survival and to present limits to this probability. This is done according to the distribution random variable that defines the radius of infection of each active particle, Associating the activation process to an infection, we think this model as a model epidemic. We also consider some variations of this dynamic. Among them, variants with particles distributed over the half line (there are conditions for the distances between consecutive particles) and also with particles distributed over the vertices of a tree. We studied phase transitions and the correspondent survival probability. In this variant the results depend on the sequence of probability distributions for the range of the explosions and on the particles displacement. We also consider a variation where each particle after activated, remains active during a random time period emitting explosions that occur in random moments.
8

Estudo de parâmetros epidemiológicos através de modelamento matemático: aspectos estacionários, espaciais e temporais. / The study of epidemiological parameters through mathematical modelling: stationary, spatial and temporal features.

Marcos Amaku 27 June 2001 (has links)
Estudamos, através de modelagem matemática, aspectos estacionários, espaciais e temporais relacionados à propagação e controle de doenças infecciosas de transmissão direta por contato pessoa-a-pessoa. Elaboramos modelos matemáticos determinísticos fundamentados no princípio de ação de massas em Epidemiologia, levando em consideração a simetria no número de contatos entre suscetíveis e infectados, o que nos permitiu estimar a taxa per capita de contatos potencialmente infectantes e, por conseguinte, a força de infecção e os possíveis efeitos de diferentes programas de vacinação. O desenvolvimento do modelo de estado estacionário foi feito com base em dados sorológicos de rubéola (Azevedo Neto 1992) para uma população que ainda não havia sido imunizada por meio de vacinação. Analisamos, então, o efeito de três diferentes esquemas de vacinação para a rubéola, nos seguintes intervalos de idade: de 1 a 2 anos, de 7 a 8 anos e de 14 a 15 anos. A incerteza estatística na idade média de infecção foi estimada com o auxílio do método de Monte Carlo e tal metodologia foi aplicada a dados de varicela e hepatite A. Estudamos também o aspecto espacial, com a inclusão da variável distância na formulação de um modelo SIR e análise da influência do alcance de interação entre indivíduos. E, através do estudo da força de infecção em função da idade e do tempo, pudemos analisar, de modo qualitativo, diferentes cenários na evolução temporal de uma doença infecciosa. / We have studied, based on mathematical modelling, stationary, spatial and temporal features related to the propagation and control of directly transmitted infectious diseases through person-to-person contact. We have developed deterministic mathematical models founded on the mass-action principle of Epidemiology, taking into account the symmetry of contacts among susceptible and infectious individuals. Such symmetry enabled us to estimate the potentially infective per capita contact rate and, therefore, the force of infection and the possible effects of different vaccination programmes. The steady state modelling has been based on rubella serological data of a non-immunized population (Azevedo Neto 1992) and we have analysed three different vaccination schemes against rubella in the following age intervals: from 1 to 2 years of age, from 7 to 8 years of age, and from 14 to 15 years of age. The serological data variability has been considered in the estimation of the statistical uncertainty of the average age at infection by means of the Monte Carlo method and we have applied this methodology to varicella and hepatitis A data. The spatial feature in a SIR model has been studied with the analysis of the influence of the interaction range among individuals. We have also studied the force of infection as a function of age and time and we have analysed, in a qualitative way, different situations in the time evolution of an infectious disease.

Page generated in 0.3951 seconds